blob: 99a39398517ec742b2f5ebc0de5e9b611b54e97c [file] [log] [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/ssl/ssl_platform_key_win.h"
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/ranges/algorithm.h"
#include "base/strings/utf_string_conversions.h"
#include "crypto/openssl_util.h"
#include "crypto/scoped_capi_types.h"
#include "crypto/scoped_cng_types.h"
#include "net/base/features.h"
#include "net/base/net_errors.h"
#include "net/cert/x509_certificate.h"
#include "net/ssl/ssl_platform_key_util.h"
#include "net/ssl/ssl_private_key.h"
#include "net/ssl/threaded_ssl_private_key.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/ecdsa.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/ssl.h"
namespace net {
namespace {
bool ProbeSHA256(ThreadedSSLPrivateKey::Delegate* delegate) {
if (!base::FeatureList::IsEnabled(features::kPlatformKeyProbeSHA256)) {
return false;
}
// This input is chosen to avoid colliding with other signing inputs used in
// TLS 1.2 or TLS 1.3. We use the construct in RFC 8446, section 4.4.3, but
// change the context string. The context string ensures we don't collide with
// TLS 1.3 and any future version. The 0x20 (space) prefix ensures we don't
// collide with TLS 1.2 ServerKeyExchange or CertificateVerify.
static const uint8_t kSHA256ProbeInput[] = {
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20,
0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 0x20, 'C', 'h',
'r', 'o', 'm', 'i', 'u', 'm', ',', ' ', 'S', 'H', 'A',
'2', ' ', 'P', 'r', 'o', 'b', 'e', 0x00,
};
std::vector<uint8_t> signature;
return delegate->Sign(SSL_SIGN_RSA_PKCS1_SHA256, kSHA256ProbeInput,
&signature) == OK;
}
std::string GetCAPIProviderName(HCRYPTPROV provider) {
DWORD name_len;
if (!CryptGetProvParam(provider, PP_NAME, nullptr, &name_len, 0)) {
return "(error getting name)";
}
std::vector<BYTE> name(name_len);
if (!CryptGetProvParam(provider, PP_NAME, name.data(), &name_len, 0)) {
return "(error getting name)";
}
// Per Microsoft's documentation, PP_NAME is NUL-terminated. However,
// smartcard drivers are notoriously buggy, so check this.
auto nul = base::ranges::find(name, 0);
if (nul != name.end()) {
name_len = nul - name.begin();
}
return std::string(reinterpret_cast<const char*>(name.data()), name_len);
}
class SSLPlatformKeyCAPI : public ThreadedSSLPrivateKey::Delegate {
public:
// Takes ownership of |provider|.
SSLPlatformKeyCAPI(crypto::ScopedHCRYPTPROV provider, DWORD key_spec)
: provider_name_(GetCAPIProviderName(provider.get())),
provider_(std::move(provider)),
key_spec_(key_spec) {
// Check for SHA-256 support. The CAPI service provider may only be able to
// sign pre-TLS-1.2 and SHA-1 hashes. If SHA-256 doesn't work, prioritize
// SHA-1 as a workaround. See https://crbug.com/278370.
prefer_sha1_ = !ProbeSHA256(this);
}
SSLPlatformKeyCAPI(const SSLPlatformKeyCAPI&) = delete;
SSLPlatformKeyCAPI& operator=(const SSLPlatformKeyCAPI&) = delete;
~SSLPlatformKeyCAPI() override = default;
std::string GetProviderName() override { return "CAPI: " + provider_name_; }
std::vector<uint16_t> GetAlgorithmPreferences() override {
if (prefer_sha1_) {
return {SSL_SIGN_RSA_PKCS1_SHA1, SSL_SIGN_RSA_PKCS1_SHA256,
SSL_SIGN_RSA_PKCS1_SHA384, SSL_SIGN_RSA_PKCS1_SHA512};
}
return {SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_RSA_PKCS1_SHA384,
SSL_SIGN_RSA_PKCS1_SHA512, SSL_SIGN_RSA_PKCS1_SHA1};
}
Error Sign(uint16_t algorithm,
base::span<const uint8_t> input,
std::vector<uint8_t>* signature) override {
const EVP_MD* md = SSL_get_signature_algorithm_digest(algorithm);
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!md || !EVP_Digest(input.data(), input.size(), digest, &digest_len, md,
nullptr)) {
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
ALG_ID hash_alg;
switch (EVP_MD_type(md)) {
case NID_md5_sha1:
hash_alg = CALG_SSL3_SHAMD5;
break;
case NID_sha1:
hash_alg = CALG_SHA1;
break;
case NID_sha256:
hash_alg = CALG_SHA_256;
break;
case NID_sha384:
hash_alg = CALG_SHA_384;
break;
case NID_sha512:
hash_alg = CALG_SHA_512;
break;
default:
NOTREACHED();
return ERR_FAILED;
}
crypto::ScopedHCRYPTHASH hash_handle;
if (!CryptCreateHash(
provider_.get(), hash_alg, 0, 0,
crypto::ScopedHCRYPTHASH::Receiver(hash_handle).get())) {
PLOG(ERROR) << "CreateCreateHash failed";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
DWORD hash_len;
DWORD arg_len = sizeof(hash_len);
if (!CryptGetHashParam(hash_handle.get(), HP_HASHSIZE,
reinterpret_cast<BYTE*>(&hash_len), &arg_len, 0)) {
PLOG(ERROR) << "CryptGetHashParam HP_HASHSIZE failed";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
if (hash_len != digest_len)
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
if (!CryptSetHashParam(hash_handle.get(), HP_HASHVAL,
const_cast<BYTE*>(digest), 0)) {
PLOG(ERROR) << "CryptSetHashParam HP_HASHVAL failed";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
DWORD signature_len = 0;
if (!CryptSignHash(hash_handle.get(), key_spec_, nullptr, 0, nullptr,
&signature_len)) {
PLOG(ERROR) << "CryptSignHash failed";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
signature->resize(signature_len);
if (!CryptSignHash(hash_handle.get(), key_spec_, nullptr, 0,
signature->data(), &signature_len)) {
PLOG(ERROR) << "CryptSignHash failed";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
signature->resize(signature_len);
// CryptoAPI signs in little-endian, so reverse it.
std::reverse(signature->begin(), signature->end());
return OK;
}
private:
std::string provider_name_;
crypto::ScopedHCRYPTPROV provider_;
DWORD key_spec_;
bool prefer_sha1_ = false;
};
std::wstring GetCNGProviderName(NCRYPT_KEY_HANDLE key) {
crypto::ScopedNCryptProvider prov;
DWORD prov_len = 0;
SECURITY_STATUS status = NCryptGetProperty(
key, NCRYPT_PROVIDER_HANDLE_PROPERTY,
reinterpret_cast<BYTE*>(
crypto::ScopedNCryptProvider::Receiver(prov).get()),
sizeof(NCRYPT_PROV_HANDLE), &prov_len, NCRYPT_SILENT_FLAG);
if (FAILED(status)) {
return L"(error getting provider)";
}
DCHECK_EQ(sizeof(NCRYPT_PROV_HANDLE), prov_len);
// NCRYPT_NAME_PROPERTY is a NUL-terminated Unicode string, which means an
// array of wchar_t, however NCryptGetProperty works in bytes, so lengths must
// be converted.
DWORD name_len = 0;
status = NCryptGetProperty(prov.get(), NCRYPT_NAME_PROPERTY, nullptr, 0,
&name_len, NCRYPT_SILENT_FLAG);
if (FAILED(status) || name_len % sizeof(wchar_t) != 0) {
return L"(error getting provider name)";
}
std::vector<wchar_t> name;
name.reserve(name_len / sizeof(wchar_t));
status = NCryptGetProperty(
prov.get(), NCRYPT_NAME_PROPERTY, reinterpret_cast<BYTE*>(name.data()),
name.size() * sizeof(wchar_t), &name_len, NCRYPT_SILENT_FLAG);
if (FAILED(status)) {
return L"(error getting provider name)";
}
name.resize(name_len / sizeof(wchar_t));
// Per Microsoft's documentation, the name is NUL-terminated. However,
// smartcard drivers are notoriously buggy, so check this.
auto nul = base::ranges::find(name, 0);
if (nul != name.end()) {
name.erase(nul, name.end());
}
return std::wstring(name.begin(), name.end());
}
class SSLPlatformKeyCNG : public ThreadedSSLPrivateKey::Delegate {
public:
// Takes ownership of |key|.
SSLPlatformKeyCNG(crypto::ScopedNCryptKey key, int type, size_t max_length)
: provider_name_(GetCNGProviderName(key.get())),
key_(std::move(key)),
type_(type),
max_length_(max_length) {
// If this is a 1024-bit RSA key or below, check for SHA-256 support. Older
// Estonian ID cards can only sign SHA-1 hashes. If SHA-256 does not work,
// prioritize SHA-1 as a workaround. See https://crbug.com/278370.
prefer_sha1_ =
type_ == EVP_PKEY_RSA && max_length_ <= 1024 / 8 && !ProbeSHA256(this);
}
SSLPlatformKeyCNG(const SSLPlatformKeyCNG&) = delete;
SSLPlatformKeyCNG& operator=(const SSLPlatformKeyCNG&) = delete;
std::string GetProviderName() override {
return "CNG: " + base::WideToUTF8(provider_name_);
}
std::vector<uint16_t> GetAlgorithmPreferences() override {
// Per TLS 1.3 (RFC 8446), the RSA-PSS code points in TLS correspond to
// RSA-PSS with salt length equal to the digest length. TPM 2.0's
// TPM_ALG_RSAPSS algorithm, however, uses the maximum possible salt length.
// The TPM provider will fail signing requests for other salt lengths and
// thus cannot generate TLS-compatible PSS signatures.
//
// However, as of TPM revision 1.16, TPMs which follow FIPS 186-4 will
// instead interpret TPM_ALG_RSAPSS using salt length equal to the digest
// length. Those TPMs can generate TLS-compatible PSS signatures. As a
// result, if this is a TPM-based key, we only report PSS as supported if
// the salt length will match the digest length.
bool supports_pss = true;
if (provider_name_ == MS_PLATFORM_KEY_STORAGE_PROVIDER) {
DWORD salt_size = 0;
DWORD size_of_salt_size = sizeof(salt_size);
HRESULT status =
NCryptGetProperty(key_.get(), NCRYPT_PCP_PSS_SALT_SIZE_PROPERTY,
reinterpret_cast<PBYTE>(&salt_size),
size_of_salt_size, &size_of_salt_size, 0);
if (FAILED(status) || salt_size != NCRYPT_TPM_PSS_SALT_SIZE_HASHSIZE) {
supports_pss = false;
}
}
if (prefer_sha1_) {
std::vector<uint16_t> ret = {
SSL_SIGN_RSA_PKCS1_SHA1,
SSL_SIGN_RSA_PKCS1_SHA256,
SSL_SIGN_RSA_PKCS1_SHA384,
SSL_SIGN_RSA_PKCS1_SHA512,
};
if (supports_pss) {
ret.push_back(SSL_SIGN_RSA_PSS_SHA256);
ret.push_back(SSL_SIGN_RSA_PSS_SHA384);
ret.push_back(SSL_SIGN_RSA_PSS_SHA512);
}
return ret;
}
return SSLPrivateKey::DefaultAlgorithmPreferences(type_, supports_pss);
}
Error Sign(uint16_t algorithm,
base::span<const uint8_t> input,
std::vector<uint8_t>* signature) override {
crypto::OpenSSLErrStackTracer tracer(FROM_HERE);
const EVP_MD* md = SSL_get_signature_algorithm_digest(algorithm);
uint8_t digest[EVP_MAX_MD_SIZE];
unsigned digest_len;
if (!md || !EVP_Digest(input.data(), input.size(), digest, &digest_len, md,
nullptr)) {
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
BCRYPT_PKCS1_PADDING_INFO pkcs1_padding_info = {nullptr};
BCRYPT_PSS_PADDING_INFO pss_padding_info = {nullptr};
void* padding_info = nullptr;
DWORD flags = 0;
if (SSL_get_signature_algorithm_key_type(algorithm) == EVP_PKEY_RSA) {
const WCHAR* hash_alg;
switch (EVP_MD_type(md)) {
case NID_md5_sha1:
hash_alg = nullptr;
break;
case NID_sha1:
hash_alg = BCRYPT_SHA1_ALGORITHM;
break;
case NID_sha256:
hash_alg = BCRYPT_SHA256_ALGORITHM;
break;
case NID_sha384:
hash_alg = BCRYPT_SHA384_ALGORITHM;
break;
case NID_sha512:
hash_alg = BCRYPT_SHA512_ALGORITHM;
break;
default:
NOTREACHED();
return ERR_FAILED;
}
if (SSL_is_signature_algorithm_rsa_pss(algorithm)) {
pss_padding_info.pszAlgId = hash_alg;
pss_padding_info.cbSalt = EVP_MD_size(md);
padding_info = &pss_padding_info;
flags |= BCRYPT_PAD_PSS;
} else {
pkcs1_padding_info.pszAlgId = hash_alg;
padding_info = &pkcs1_padding_info;
flags |= BCRYPT_PAD_PKCS1;
}
}
DWORD signature_len;
SECURITY_STATUS status =
NCryptSignHash(key_.get(), padding_info, const_cast<BYTE*>(digest),
digest_len, nullptr, 0, &signature_len, flags);
if (FAILED(status)) {
LOG(ERROR) << "NCryptSignHash failed: " << status;
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
signature->resize(signature_len);
status = NCryptSignHash(key_.get(), padding_info, const_cast<BYTE*>(digest),
digest_len, signature->data(), signature_len,
&signature_len, flags);
if (FAILED(status)) {
LOG(ERROR) << "NCryptSignHash failed: " << status;
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
signature->resize(signature_len);
// CNG emits raw ECDSA signatures, but BoringSSL expects a DER-encoded
// ECDSA-Sig-Value.
if (type_ == EVP_PKEY_EC) {
if (signature->size() % 2 != 0) {
LOG(ERROR) << "Bad signature length";
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
size_t order_len = signature->size() / 2;
// Convert the RAW ECDSA signature to a DER-encoded ECDSA-Sig-Value.
bssl::UniquePtr<ECDSA_SIG> sig(ECDSA_SIG_new());
if (!sig || !BN_bin2bn(signature->data(), order_len, sig->r) ||
!BN_bin2bn(signature->data() + order_len, order_len, sig->s)) {
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
}
int len = i2d_ECDSA_SIG(sig.get(), nullptr);
if (len <= 0)
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
signature->resize(len);
uint8_t* ptr = signature->data();
len = i2d_ECDSA_SIG(sig.get(), &ptr);
if (len <= 0)
return ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED;
signature->resize(len);
}
return OK;
}
private:
std::wstring provider_name_;
crypto::ScopedNCryptKey key_;
int type_;
size_t max_length_;
bool prefer_sha1_ = false;
};
} // namespace
scoped_refptr<SSLPrivateKey> WrapCAPIPrivateKey(
const X509Certificate* certificate,
crypto::ScopedHCRYPTPROV prov,
DWORD key_spec) {
return base::MakeRefCounted<ThreadedSSLPrivateKey>(
std::make_unique<SSLPlatformKeyCAPI>(std::move(prov), key_spec),
GetSSLPlatformKeyTaskRunner());
}
scoped_refptr<SSLPrivateKey> WrapCNGPrivateKey(
const X509Certificate* certificate,
crypto::ScopedNCryptKey key) {
// Rather than query the private key for metadata, extract the public key from
// the certificate without using Windows APIs. CNG does not consistently work
// depending on the system. See https://crbug.com/468345.
int key_type;
size_t max_length;
if (!GetClientCertInfo(certificate, &key_type, &max_length)) {
return nullptr;
}
return base::MakeRefCounted<ThreadedSSLPrivateKey>(
std::make_unique<SSLPlatformKeyCNG>(std::move(key), key_type, max_length),
GetSSLPlatformKeyTaskRunner());
}
scoped_refptr<SSLPrivateKey> FetchClientCertPrivateKey(
const X509Certificate* certificate,
PCCERT_CONTEXT cert_context) {
HCRYPTPROV_OR_NCRYPT_KEY_HANDLE prov_or_key = 0;
DWORD key_spec = 0;
BOOL must_free = FALSE;
DWORD flags = CRYPT_ACQUIRE_PREFER_NCRYPT_KEY_FLAG;
if (!CryptAcquireCertificatePrivateKey(cert_context, flags, nullptr,
&prov_or_key, &key_spec, &must_free)) {
PLOG(WARNING) << "Could not acquire private key";
return nullptr;
}
// Should never get a cached handle back - ownership must always be
// transferred.
CHECK_EQ(must_free, TRUE);
if (key_spec == CERT_NCRYPT_KEY_SPEC) {
return WrapCNGPrivateKey(certificate, crypto::ScopedNCryptKey(prov_or_key));
} else {
return WrapCAPIPrivateKey(certificate,
crypto::ScopedHCRYPTPROV(prov_or_key), key_spec);
}
}
} // namespace net