blob: d72883e1371687b0916c5270fd7d944335b6d0c5 [file] [log] [blame]
#define _GNU_SOURCE
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <stdint.h>
#include <errno.h>
#include <sys/mman.h>
#include "libc.h"
#include "atomic.h"
#include "pthread_impl.h"
#include "malloc_impl.h"
#if defined(__GNUC__) && defined(__PIC__)
#define inline inline __attribute__((always_inline))
#endif
static struct {
volatile uint64_t binmap;
struct bin bins[64];
volatile int free_lock[2];
} mal;
int __malloc_replaced;
/* Synchronization tools */
static inline void lock(volatile int *lk)
{
if (libc.threads_minus_1)
while(a_swap(lk, 1)) __wait(lk, lk+1, 1, 1);
}
static inline void unlock(volatile int *lk)
{
if (lk[0]) {
a_store(lk, 0);
if (lk[1]) __wake(lk, 1, 1);
}
}
static inline void lock_bin(int i)
{
lock(mal.bins[i].lock);
if (!mal.bins[i].head)
mal.bins[i].head = mal.bins[i].tail = BIN_TO_CHUNK(i);
}
static inline void unlock_bin(int i)
{
unlock(mal.bins[i].lock);
}
static int first_set(uint64_t x)
{
#if 1
return a_ctz_64(x);
#else
static const char debruijn64[64] = {
0, 1, 2, 53, 3, 7, 54, 27, 4, 38, 41, 8, 34, 55, 48, 28,
62, 5, 39, 46, 44, 42, 22, 9, 24, 35, 59, 56, 49, 18, 29, 11,
63, 52, 6, 26, 37, 40, 33, 47, 61, 45, 43, 21, 23, 58, 17, 10,
51, 25, 36, 32, 60, 20, 57, 16, 50, 31, 19, 15, 30, 14, 13, 12
};
static const char debruijn32[32] = {
0, 1, 23, 2, 29, 24, 19, 3, 30, 27, 25, 11, 20, 8, 4, 13,
31, 22, 28, 18, 26, 10, 7, 12, 21, 17, 9, 6, 16, 5, 15, 14
};
if (sizeof(long) < 8) {
uint32_t y = x;
if (!y) {
y = x>>32;
return 32 + debruijn32[(y&-y)*0x076be629 >> 27];
}
return debruijn32[(y&-y)*0x076be629 >> 27];
}
return debruijn64[(x&-x)*0x022fdd63cc95386dull >> 58];
#endif
}
static const unsigned char bin_tab[60] = {
32,33,34,35,36,36,37,37,38,38,39,39,
40,40,40,40,41,41,41,41,42,42,42,42,43,43,43,43,
44,44,44,44,44,44,44,44,45,45,45,45,45,45,45,45,
46,46,46,46,46,46,46,46,47,47,47,47,47,47,47,47,
};
static int bin_index(size_t x)
{
x = x / SIZE_ALIGN - 1;
if (x <= 32) return x;
if (x < 512) return bin_tab[x/8-4];
if (x > 0x1c00) return 63;
return bin_tab[x/128-4] + 16;
}
static int bin_index_up(size_t x)
{
x = x / SIZE_ALIGN - 1;
if (x <= 32) return x;
x--;
if (x < 512) return bin_tab[x/8-4] + 1;
return bin_tab[x/128-4] + 17;
}
#if 0
void __dump_heap(int x)
{
struct chunk *c;
int i;
for (c = (void *)mal.heap; CHUNK_SIZE(c); c = NEXT_CHUNK(c))
fprintf(stderr, "base %p size %zu (%d) flags %d/%d\n",
c, CHUNK_SIZE(c), bin_index(CHUNK_SIZE(c)),
c->csize & 15,
NEXT_CHUNK(c)->psize & 15);
for (i=0; i<64; i++) {
if (mal.bins[i].head != BIN_TO_CHUNK(i) && mal.bins[i].head) {
fprintf(stderr, "bin %d: %p\n", i, mal.bins[i].head);
if (!(mal.binmap & 1ULL<<i))
fprintf(stderr, "missing from binmap!\n");
} else if (mal.binmap & 1ULL<<i)
fprintf(stderr, "binmap wrongly contains %d!\n", i);
}
}
#endif
void *__expand_heap(size_t *);
static struct chunk *expand_heap(size_t n)
{
static int heap_lock[2];
static void *end;
void *p;
struct chunk *w;
/* The argument n already accounts for the caller's chunk
* overhead needs, but if the heap can't be extended in-place,
* we need room for an extra zero-sized sentinel chunk. */
n += SIZE_ALIGN;
lock(heap_lock);
p = __expand_heap(&n);
if (!p) {
unlock(heap_lock);
return 0;
}
/* If not just expanding existing space, we need to make a
* new sentinel chunk below the allocated space. */
if (p != end) {
/* Valid/safe because of the prologue increment. */
n -= SIZE_ALIGN;
p = (char *)p + SIZE_ALIGN;
w = MEM_TO_CHUNK(p);
w->psize = 0 | C_INUSE;
}
/* Record new heap end and fill in footer. */
end = (char *)p + n;
w = MEM_TO_CHUNK(end);
w->psize = n | C_INUSE;
w->csize = 0 | C_INUSE;
/* Fill in header, which may be new or may be replacing a
* zero-size sentinel header at the old end-of-heap. */
w = MEM_TO_CHUNK(p);
w->csize = n | C_INUSE;
unlock(heap_lock);
return w;
}
static int adjust_size(size_t *n)
{
/* Result of pointer difference must fit in ptrdiff_t. */
if (*n-1 > PTRDIFF_MAX - SIZE_ALIGN - PAGE_SIZE) {
if (*n) {
errno = ENOMEM;
return -1;
} else {
*n = SIZE_ALIGN;
return 0;
}
}
*n = (*n + OVERHEAD + SIZE_ALIGN - 1) & SIZE_MASK;
return 0;
}
static void unbin(struct chunk *c, int i)
{
if (c->prev == c->next)
a_and_64(&mal.binmap, ~(1ULL<<i));
c->prev->next = c->next;
c->next->prev = c->prev;
c->csize |= C_INUSE;
NEXT_CHUNK(c)->psize |= C_INUSE;
}
static int alloc_fwd(struct chunk *c)
{
int i;
size_t k;
while (!((k=c->csize) & C_INUSE)) {
i = bin_index(k);
lock_bin(i);
if (c->csize == k) {
unbin(c, i);
unlock_bin(i);
return 1;
}
unlock_bin(i);
}
return 0;
}
static int alloc_rev(struct chunk *c)
{
int i;
size_t k;
while (!((k=c->psize) & C_INUSE)) {
i = bin_index(k);
lock_bin(i);
if (c->psize == k) {
unbin(PREV_CHUNK(c), i);
unlock_bin(i);
return 1;
}
unlock_bin(i);
}
return 0;
}
/* pretrim - trims a chunk _prior_ to removing it from its bin.
* Must be called with i as the ideal bin for size n, j the bin
* for the _free_ chunk self, and bin j locked. */
static int pretrim(struct chunk *self, size_t n, int i, int j)
{
size_t n1;
struct chunk *next, *split;
/* We cannot pretrim if it would require re-binning. */
if (j < 40) return 0;
if (j < i+3) {
if (j != 63) return 0;
n1 = CHUNK_SIZE(self);
if (n1-n <= MMAP_THRESHOLD) return 0;
} else {
n1 = CHUNK_SIZE(self);
}
if (bin_index(n1-n) != j) return 0;
next = NEXT_CHUNK(self);
split = (void *)((char *)self + n);
split->prev = self->prev;
split->next = self->next;
split->prev->next = split;
split->next->prev = split;
split->psize = n | C_INUSE;
split->csize = n1-n;
next->psize = n1-n;
self->csize = n | C_INUSE;
return 1;
}
static void trim(struct chunk *self, size_t n)
{
size_t n1 = CHUNK_SIZE(self);
struct chunk *next, *split;
if (n >= n1 - DONTCARE) return;
next = NEXT_CHUNK(self);
split = (void *)((char *)self + n);
split->psize = n | C_INUSE;
split->csize = n1-n | C_INUSE;
next->psize = n1-n | C_INUSE;
self->csize = n | C_INUSE;
__bin_chunk(split);
}
void *malloc(size_t n)
{
struct chunk *c;
int i, j;
if (adjust_size(&n) < 0) return 0;
if (n > MMAP_THRESHOLD) {
size_t len = n + OVERHEAD + PAGE_SIZE - 1 & -PAGE_SIZE;
char *base = __mmap(0, len, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (base == (void *)-1) return 0;
c = (void *)(base + SIZE_ALIGN - OVERHEAD);
c->csize = len - (SIZE_ALIGN - OVERHEAD);
c->psize = SIZE_ALIGN - OVERHEAD;
return CHUNK_TO_MEM(c);
}
i = bin_index_up(n);
for (;;) {
uint64_t mask = mal.binmap & -(1ULL<<i);
if (!mask) {
c = expand_heap(n);
if (!c) return 0;
if (alloc_rev(c)) {
struct chunk *x = c;
c = PREV_CHUNK(c);
NEXT_CHUNK(x)->psize = c->csize =
x->csize + CHUNK_SIZE(c);
}
break;
}
j = first_set(mask);
lock_bin(j);
c = mal.bins[j].head;
if (c != BIN_TO_CHUNK(j)) {
if (!pretrim(c, n, i, j)) unbin(c, j);
unlock_bin(j);
break;
}
unlock_bin(j);
}
/* Now patch up in case we over-allocated */
trim(c, n);
return CHUNK_TO_MEM(c);
}
static size_t mal0_clear(char *p, size_t pagesz, size_t n)
{
#ifdef __GNUC__
typedef uint64_t __attribute__((__may_alias__)) T;
#else
typedef unsigned char T;
#endif
char *pp = p + n;
size_t i = (uintptr_t)pp & (pagesz - 1);
for (;;) {
pp = memset(pp - i, 0, i);
if (pp - p < pagesz) return pp - p;
for (i = pagesz; i; i -= 2*sizeof(T), pp -= 2*sizeof(T))
if (((T *)pp)[-1] | ((T *)pp)[-2])
break;
}
}
void *calloc(size_t m, size_t n)
{
if (n && m > (size_t)-1/n) {
errno = ENOMEM;
return 0;
}
n *= m;
void *p = malloc(n);
if (!p) return p;
if (!__malloc_replaced) {
if (IS_MMAPPED(MEM_TO_CHUNK(p)))
return p;
if (n >= PAGE_SIZE)
n = mal0_clear(p, PAGE_SIZE, n);
}
return memset(p, 0, n);
}
void *realloc(void *p, size_t n)
{
struct chunk *self, *next;
size_t n0, n1;
void *new;
if (!p) return malloc(n);
if (adjust_size(&n) < 0) return 0;
self = MEM_TO_CHUNK(p);
n1 = n0 = CHUNK_SIZE(self);
if (IS_MMAPPED(self)) {
size_t extra = self->psize;
char *base = (char *)self - extra;
size_t oldlen = n0 + extra;
size_t newlen = n + extra;
/* Crash on realloc of freed chunk */
if (extra & 1) a_crash();
if (newlen < PAGE_SIZE && (new = malloc(n-OVERHEAD))) {
n0 = n;
goto copy_free_ret;
}
newlen = (newlen + PAGE_SIZE-1) & -PAGE_SIZE;
if (oldlen == newlen) return p;
base = __mremap(base, oldlen, newlen, MREMAP_MAYMOVE);
if (base == (void *)-1)
goto copy_realloc;
self = (void *)(base + extra);
self->csize = newlen - extra;
return CHUNK_TO_MEM(self);
}
next = NEXT_CHUNK(self);
/* Crash on corrupted footer (likely from buffer overflow) */
if (next->psize != self->csize) a_crash();
/* Merge adjacent chunks if we need more space. This is not
* a waste of time even if we fail to get enough space, because our
* subsequent call to free would otherwise have to do the merge. */
if (n > n1 && alloc_fwd(next)) {
n1 += CHUNK_SIZE(next);
next = NEXT_CHUNK(next);
}
/* FIXME: find what's wrong here and reenable it..? */
if (0 && n > n1 && alloc_rev(self)) {
self = PREV_CHUNK(self);
n1 += CHUNK_SIZE(self);
}
self->csize = n1 | C_INUSE;
next->psize = n1 | C_INUSE;
/* If we got enough space, split off the excess and return */
if (n <= n1) {
//memmove(CHUNK_TO_MEM(self), p, n0-OVERHEAD);
trim(self, n);
return CHUNK_TO_MEM(self);
}
copy_realloc:
/* As a last resort, allocate a new chunk and copy to it. */
new = malloc(n-OVERHEAD);
if (!new) return 0;
copy_free_ret:
memcpy(new, p, n0-OVERHEAD);
free(CHUNK_TO_MEM(self));
return new;
}
void __bin_chunk(struct chunk *self)
{
struct chunk *next = NEXT_CHUNK(self);
size_t final_size, new_size, size;
int reclaim=0;
int i;
final_size = new_size = CHUNK_SIZE(self);
/* Crash on corrupted footer (likely from buffer overflow) */
if (next->psize != self->csize) a_crash();
for (;;) {
if (self->psize & next->csize & C_INUSE) {
self->csize = final_size | C_INUSE;
next->psize = final_size | C_INUSE;
i = bin_index(final_size);
lock_bin(i);
lock(mal.free_lock);
if (self->psize & next->csize & C_INUSE)
break;
unlock(mal.free_lock);
unlock_bin(i);
}
if (alloc_rev(self)) {
self = PREV_CHUNK(self);
size = CHUNK_SIZE(self);
final_size += size;
if (new_size+size > RECLAIM && (new_size+size^size) > size)
reclaim = 1;
}
if (alloc_fwd(next)) {
size = CHUNK_SIZE(next);
final_size += size;
if (new_size+size > RECLAIM && (new_size+size^size) > size)
reclaim = 1;
next = NEXT_CHUNK(next);
}
}
if (!(mal.binmap & 1ULL<<i))
a_or_64(&mal.binmap, 1ULL<<i);
self->csize = final_size;
next->psize = final_size;
unlock(mal.free_lock);
self->next = BIN_TO_CHUNK(i);
self->prev = mal.bins[i].tail;
self->next->prev = self;
self->prev->next = self;
/* Replace middle of large chunks with fresh zero pages */
if (reclaim) {
uintptr_t a = (uintptr_t)self + SIZE_ALIGN+PAGE_SIZE-1 & -PAGE_SIZE;
uintptr_t b = (uintptr_t)next - SIZE_ALIGN & -PAGE_SIZE;
#if 1
__madvise((void *)a, b-a, MADV_DONTNEED);
#else
__mmap((void *)a, b-a, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED, -1, 0);
#endif
}
unlock_bin(i);
}
static void unmap_chunk(struct chunk *self)
{
size_t extra = self->psize;
char *base = (char *)self - extra;
size_t len = CHUNK_SIZE(self) + extra;
/* Crash on double free */
if (extra & 1) a_crash();
__munmap(base, len);
}
void free(void *p)
{
if (!p) return;
struct chunk *self = MEM_TO_CHUNK(p);
if (IS_MMAPPED(self))
unmap_chunk(self);
else
__bin_chunk(self);
}
void __malloc_donate(char *start, char *end)
{
size_t align_start_up = (SIZE_ALIGN-1) & (-(uintptr_t)start - OVERHEAD);
size_t align_end_down = (SIZE_ALIGN-1) & (uintptr_t)end;
/* Getting past this condition ensures that the padding for alignment
* and header overhead will not overflow and will leave a nonzero
* multiple of SIZE_ALIGN bytes between start and end. */
if (end - start <= OVERHEAD + align_start_up + align_end_down)
return;
start += align_start_up + OVERHEAD;
end -= align_end_down;
struct chunk *c = MEM_TO_CHUNK(start), *n = MEM_TO_CHUNK(end);
c->psize = n->csize = C_INUSE;
c->csize = n->psize = C_INUSE | (end-start);
__bin_chunk(c);
}