blob: 7f24589552072326acbcfaf7b79fdcb02d59ff1a [file] [log] [blame]
#include "precompiled.h"
//
// Copyright (c) 2012-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Renderer9.cpp: Implements a back-end specific class for the D3D9 renderer.
#include "libGLESv2/main.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Texture.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/renderer/IndexDataManager.h"
#include "libGLESv2/renderer/Renderer9.h"
#include "libGLESv2/renderer/renderer9_utils.h"
#include "libGLESv2/renderer/ShaderExecutable9.h"
#include "libGLESv2/renderer/SwapChain9.h"
#include "libGLESv2/renderer/TextureStorage9.h"
#include "libGLESv2/renderer/Image9.h"
#include "libGLESv2/renderer/Blit.h"
#include "libGLESv2/renderer/RenderTarget9.h"
#include "libGLESv2/renderer/VertexBuffer9.h"
#include "libGLESv2/renderer/IndexBuffer9.h"
#include "libGLESv2/renderer/BufferStorage9.h"
#include "libGLESv2/renderer/Query9.h"
#include "libGLESv2/renderer/Fence9.h"
#include "libEGL/Display.h"
// Can also be enabled by defining FORCE_REF_RAST in the project's predefined macros
#define REF_RAST 0
// The "Debug This Pixel..." feature in PIX often fails when using the
// D3D9Ex interfaces. In order to get debug pixel to work on a Vista/Win 7
// machine, define "ANGLE_ENABLE_D3D9EX=0" in your project file.
#if !defined(ANGLE_ENABLE_D3D9EX)
// Enables use of the IDirect3D9Ex interface, when available
#define ANGLE_ENABLE_D3D9EX 1
#endif // !defined(ANGLE_ENABLE_D3D9EX)
namespace rx
{
static const D3DFORMAT RenderTargetFormats[] =
{
D3DFMT_A1R5G5B5,
// D3DFMT_A2R10G10B10, // The color_ramp conformance test uses ReadPixels with UNSIGNED_BYTE causing it to think that rendering skipped a colour value.
D3DFMT_A8R8G8B8,
D3DFMT_R5G6B5,
// D3DFMT_X1R5G5B5, // Has no compatible OpenGL ES renderbuffer format
D3DFMT_X8R8G8B8
};
static const D3DFORMAT DepthStencilFormats[] =
{
D3DFMT_UNKNOWN,
// D3DFMT_D16_LOCKABLE,
D3DFMT_D32,
// D3DFMT_D15S1,
D3DFMT_D24S8,
D3DFMT_D24X8,
// D3DFMT_D24X4S4,
D3DFMT_D16,
// D3DFMT_D32F_LOCKABLE,
// D3DFMT_D24FS8
};
enum
{
MAX_VERTEX_CONSTANT_VECTORS_D3D9 = 256,
MAX_PIXEL_CONSTANT_VECTORS_SM2 = 32,
MAX_PIXEL_CONSTANT_VECTORS_SM3 = 224,
MAX_VARYING_VECTORS_SM2 = 8,
MAX_VARYING_VECTORS_SM3 = 10,
MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 = 4
};
Renderer9::Renderer9(egl::Display *display, HDC hDc, bool softwareDevice) : Renderer(display), mDc(hDc), mSoftwareDevice(softwareDevice)
{
mD3d9Module = NULL;
mD3d9 = NULL;
mD3d9Ex = NULL;
mDevice = NULL;
mDeviceEx = NULL;
mDeviceWindow = NULL;
mBlit = NULL;
mAdapter = D3DADAPTER_DEFAULT;
#if REF_RAST == 1 || defined(FORCE_REF_RAST)
mDeviceType = D3DDEVTYPE_REF;
#else
mDeviceType = D3DDEVTYPE_HAL;
#endif
mDeviceLost = false;
mMaxSupportedSamples = 0;
mMaskedClearSavedState = NULL;
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mLineLoopIB = NULL;
mMaxNullColorbufferLRU = 0;
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
mNullColorbufferCache[i].lruCount = 0;
mNullColorbufferCache[i].width = 0;
mNullColorbufferCache[i].height = 0;
mNullColorbufferCache[i].buffer = NULL;
}
}
Renderer9::~Renderer9()
{
releaseDeviceResources();
if (mDevice)
{
// If the device is lost, reset it first to prevent leaving the driver in an unstable state
if (testDeviceLost(false))
{
resetDevice();
}
mDevice->Release();
mDevice = NULL;
}
if (mDeviceEx)
{
mDeviceEx->Release();
mDeviceEx = NULL;
}
if (mD3d9)
{
mD3d9->Release();
mD3d9 = NULL;
}
if (mDeviceWindow)
{
DestroyWindow(mDeviceWindow);
mDeviceWindow = NULL;
}
if (mD3d9Ex)
{
mD3d9Ex->Release();
mD3d9Ex = NULL;
}
if (mD3d9Module)
{
mD3d9Module = NULL;
}
while (!mMultiSampleSupport.empty())
{
delete [] mMultiSampleSupport.begin()->second;
mMultiSampleSupport.erase(mMultiSampleSupport.begin());
}
}
Renderer9 *Renderer9::makeRenderer9(Renderer *renderer)
{
ASSERT(HAS_DYNAMIC_TYPE(rx::Renderer9*, renderer));
return static_cast<rx::Renderer9*>(renderer);
}
EGLint Renderer9::initialize()
{
if (!initializeCompiler())
{
return EGL_NOT_INITIALIZED;
}
if (mSoftwareDevice)
{
mD3d9Module = GetModuleHandle(TEXT("swiftshader_d3d9.dll"));
}
else
{
mD3d9Module = GetModuleHandle(TEXT("d3d9.dll"));
}
if (mD3d9Module == NULL)
{
ERR("No D3D9 module found - aborting!\n");
return EGL_NOT_INITIALIZED;
}
typedef HRESULT (WINAPI *Direct3DCreate9ExFunc)(UINT, IDirect3D9Ex**);
Direct3DCreate9ExFunc Direct3DCreate9ExPtr = reinterpret_cast<Direct3DCreate9ExFunc>(GetProcAddress(mD3d9Module, "Direct3DCreate9Ex"));
// Use Direct3D9Ex if available. Among other things, this version is less
// inclined to report a lost context, for example when the user switches
// desktop. Direct3D9Ex is available in Windows Vista and later if suitable drivers are available.
if (ANGLE_ENABLE_D3D9EX && Direct3DCreate9ExPtr && SUCCEEDED(Direct3DCreate9ExPtr(D3D_SDK_VERSION, &mD3d9Ex)))
{
ASSERT(mD3d9Ex);
mD3d9Ex->QueryInterface(IID_IDirect3D9, reinterpret_cast<void**>(&mD3d9));
ASSERT(mD3d9);
}
else
{
mD3d9 = Direct3DCreate9(D3D_SDK_VERSION);
}
if (!mD3d9)
{
ERR("Could not create D3D9 device - aborting!\n");
return EGL_NOT_INITIALIZED;
}
if (mDc != NULL)
{
// UNIMPLEMENTED(); // FIXME: Determine which adapter index the device context corresponds to
}
HRESULT result;
// Give up on getting device caps after about one second.
for (int i = 0; i < 10; ++i)
{
result = mD3d9->GetDeviceCaps(mAdapter, mDeviceType, &mDeviceCaps);
if (SUCCEEDED(result))
{
break;
}
else if (result == D3DERR_NOTAVAILABLE)
{
Sleep(100); // Give the driver some time to initialize/recover
}
else if (FAILED(result)) // D3DERR_OUTOFVIDEOMEMORY, E_OUTOFMEMORY, D3DERR_INVALIDDEVICE, or another error we can't recover from
{
ERR("failed to get device caps (0x%x)\n", result);
return EGL_NOT_INITIALIZED;
}
}
if (mDeviceCaps.PixelShaderVersion < D3DPS_VERSION(2, 0))
{
ERR("Renderer does not support PS 2.0. aborting!\n");
return EGL_NOT_INITIALIZED;
}
// When DirectX9 is running with an older DirectX8 driver, a StretchRect from a regular texture to a render target texture is not supported.
// This is required by Texture2D::convertToRenderTarget.
if ((mDeviceCaps.DevCaps2 & D3DDEVCAPS2_CAN_STRETCHRECT_FROM_TEXTURES) == 0)
{
ERR("Renderer does not support stretctrect from textures!\n");
return EGL_NOT_INITIALIZED;
}
mD3d9->GetAdapterIdentifier(mAdapter, 0, &mAdapterIdentifier);
// ATI cards on XP have problems with non-power-of-two textures.
mSupportsNonPower2Textures = !(mDeviceCaps.TextureCaps & D3DPTEXTURECAPS_POW2) &&
!(mDeviceCaps.TextureCaps & D3DPTEXTURECAPS_CUBEMAP_POW2) &&
!(mDeviceCaps.TextureCaps & D3DPTEXTURECAPS_NONPOW2CONDITIONAL) &&
!(getComparableOSVersion() < versionWindowsVista && mAdapterIdentifier.VendorId == VENDOR_ID_AMD);
// Must support a minimum of 2:1 anisotropy for max anisotropy to be considered supported, per the spec
mSupportsTextureFilterAnisotropy = ((mDeviceCaps.RasterCaps & D3DPRASTERCAPS_ANISOTROPY) && (mDeviceCaps.MaxAnisotropy >= 2));
mMinSwapInterval = 4;
mMaxSwapInterval = 0;
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_IMMEDIATE)
{
mMinSwapInterval = std::min(mMinSwapInterval, 0);
mMaxSwapInterval = std::max(mMaxSwapInterval, 0);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_ONE)
{
mMinSwapInterval = std::min(mMinSwapInterval, 1);
mMaxSwapInterval = std::max(mMaxSwapInterval, 1);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_TWO)
{
mMinSwapInterval = std::min(mMinSwapInterval, 2);
mMaxSwapInterval = std::max(mMaxSwapInterval, 2);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_THREE)
{
mMinSwapInterval = std::min(mMinSwapInterval, 3);
mMaxSwapInterval = std::max(mMaxSwapInterval, 3);
}
if (mDeviceCaps.PresentationIntervals & D3DPRESENT_INTERVAL_FOUR)
{
mMinSwapInterval = std::min(mMinSwapInterval, 4);
mMaxSwapInterval = std::max(mMaxSwapInterval, 4);
}
int max = 0;
for (unsigned int i = 0; i < ArraySize(RenderTargetFormats); ++i)
{
bool *multisampleArray = new bool[D3DMULTISAMPLE_16_SAMPLES + 1];
getMultiSampleSupport(RenderTargetFormats[i], multisampleArray);
mMultiSampleSupport[RenderTargetFormats[i]] = multisampleArray;
for (int j = D3DMULTISAMPLE_16_SAMPLES; j >= 0; --j)
{
if (multisampleArray[j] && j != D3DMULTISAMPLE_NONMASKABLE && j > max)
{
max = j;
}
}
}
for (unsigned int i = 0; i < ArraySize(DepthStencilFormats); ++i)
{
if (DepthStencilFormats[i] == D3DFMT_UNKNOWN)
continue;
bool *multisampleArray = new bool[D3DMULTISAMPLE_16_SAMPLES + 1];
getMultiSampleSupport(DepthStencilFormats[i], multisampleArray);
mMultiSampleSupport[DepthStencilFormats[i]] = multisampleArray;
for (int j = D3DMULTISAMPLE_16_SAMPLES; j >= 0; --j)
{
if (multisampleArray[j] && j != D3DMULTISAMPLE_NONMASKABLE && j > max)
{
max = j;
}
}
}
mMaxSupportedSamples = max;
static const TCHAR windowName[] = TEXT("AngleHiddenWindow");
static const TCHAR className[] = TEXT("STATIC");
mDeviceWindow = CreateWindowEx(WS_EX_NOACTIVATE, className, windowName, WS_DISABLED | WS_POPUP, 0, 0, 1, 1, HWND_MESSAGE, NULL, GetModuleHandle(NULL), NULL);
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
DWORD behaviorFlags = D3DCREATE_FPU_PRESERVE | D3DCREATE_NOWINDOWCHANGES;
result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_HARDWARE_VERTEXPROCESSING | D3DCREATE_PUREDEVICE, &presentParameters, &mDevice);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_DEVICELOST)
{
return EGL_BAD_ALLOC;
}
if (FAILED(result))
{
result = mD3d9->CreateDevice(mAdapter, mDeviceType, mDeviceWindow, behaviorFlags | D3DCREATE_SOFTWARE_VERTEXPROCESSING, &presentParameters, &mDevice);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY || result == D3DERR_NOTAVAILABLE || result == D3DERR_DEVICELOST);
return EGL_BAD_ALLOC;
}
}
if (mD3d9Ex)
{
result = mDevice->QueryInterface(IID_IDirect3DDevice9Ex, (void**) &mDeviceEx);
ASSERT(SUCCEEDED(result));
}
mVertexShaderCache.initialize(mDevice);
mPixelShaderCache.initialize(mDevice);
// Check occlusion query support
IDirect3DQuery9 *occlusionQuery = NULL;
if (SUCCEEDED(mDevice->CreateQuery(D3DQUERYTYPE_OCCLUSION, &occlusionQuery)) && occlusionQuery)
{
occlusionQuery->Release();
mOcclusionQuerySupport = true;
}
else
{
mOcclusionQuerySupport = false;
}
// Check event query support
IDirect3DQuery9 *eventQuery = NULL;
if (SUCCEEDED(mDevice->CreateQuery(D3DQUERYTYPE_EVENT, &eventQuery)) && eventQuery)
{
eventQuery->Release();
mEventQuerySupport = true;
}
else
{
mEventQuerySupport = false;
}
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
// Check vertex texture support
// Only Direct3D 10 ready devices support all the necessary vertex texture formats.
// We test this using D3D9 by checking support for the R16F format.
mVertexTextureSupport = mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format,
D3DUSAGE_QUERY_VERTEXTEXTURE, D3DRTYPE_TEXTURE, D3DFMT_R16F));
// Check depth texture support
// we use INTZ for depth textures in Direct3D9
// we also want NULL texture support to ensure the we can make depth-only FBOs
// see http://aras-p.info/texts/D3D9GPUHacks.html
mDepthTextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format,
D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_TEXTURE, D3DFMT_INTZ)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format,
D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, D3DFMT_NULL));
// Check 32 bit floating point texture support
mFloat32FilterSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_FILTER,
D3DRTYPE_TEXTURE, D3DFMT_A32B32G32R32F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_FILTER,
D3DRTYPE_CUBETEXTURE, D3DFMT_A32B32G32R32F));
mFloat32RenderSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET,
D3DRTYPE_TEXTURE, D3DFMT_A32B32G32R32F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET,
D3DRTYPE_CUBETEXTURE, D3DFMT_A32B32G32R32F));
if (!mFloat32FilterSupport && !mFloat32RenderSupport)
{
mFloat32TextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0,
D3DRTYPE_TEXTURE, D3DFMT_A32B32G32R32F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0,
D3DRTYPE_CUBETEXTURE, D3DFMT_A32B32G32R32F));
}
else
{
mFloat32TextureSupport = true;
}
// Check 16 bit floating point texture support
mFloat16FilterSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_FILTER,
D3DRTYPE_TEXTURE, D3DFMT_A16B16G16R16F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_QUERY_FILTER,
D3DRTYPE_CUBETEXTURE, D3DFMT_A16B16G16R16F));
mFloat16RenderSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET,
D3DRTYPE_TEXTURE, D3DFMT_A16B16G16R16F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET,
D3DRTYPE_CUBETEXTURE, D3DFMT_A16B16G16R16F));
if (!mFloat16FilterSupport && !mFloat16RenderSupport)
{
mFloat16TextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0,
D3DRTYPE_TEXTURE, D3DFMT_A16B16G16R16F)) &&
SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0,
D3DRTYPE_CUBETEXTURE, D3DFMT_A16B16G16R16F));
}
else
{
mFloat16TextureSupport = true;
}
// Check DXT texture support
mDXT1TextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0, D3DRTYPE_TEXTURE, D3DFMT_DXT1));
mDXT3TextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0, D3DRTYPE_TEXTURE, D3DFMT_DXT3));
mDXT5TextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0, D3DRTYPE_TEXTURE, D3DFMT_DXT5));
// Check luminance[alpha] texture support
mLuminanceTextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0, D3DRTYPE_TEXTURE, D3DFMT_L8));
mLuminanceAlphaTextureSupport = SUCCEEDED(mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, 0, D3DRTYPE_TEXTURE, D3DFMT_A8L8));
initializeDevice();
return EGL_SUCCESS;
}
// do any one-time device initialization
// NOTE: this is also needed after a device lost/reset
// to reset the scene status and ensure the default states are reset.
void Renderer9::initializeDevice()
{
// Permanent non-default states
mDevice->SetRenderState(D3DRS_POINTSPRITEENABLE, TRUE);
mDevice->SetRenderState(D3DRS_LASTPIXEL, FALSE);
if (mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0))
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, (DWORD&)mDeviceCaps.MaxPointSize);
}
else
{
mDevice->SetRenderState(D3DRS_POINTSIZE_MAX, 0x3F800000); // 1.0f
}
markAllStateDirty();
mSceneStarted = false;
ASSERT(!mBlit && !mVertexDataManager && !mIndexDataManager);
mBlit = new Blit(this);
mVertexDataManager = new rx::VertexDataManager(this);
mIndexDataManager = new rx::IndexDataManager(this);
}
D3DPRESENT_PARAMETERS Renderer9::getDefaultPresentParameters()
{
D3DPRESENT_PARAMETERS presentParameters = {0};
// The default swap chain is never actually used. Surface will create a new swap chain with the proper parameters.
presentParameters.AutoDepthStencilFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferCount = 1;
presentParameters.BackBufferFormat = D3DFMT_UNKNOWN;
presentParameters.BackBufferWidth = 1;
presentParameters.BackBufferHeight = 1;
presentParameters.EnableAutoDepthStencil = FALSE;
presentParameters.Flags = 0;
presentParameters.hDeviceWindow = mDeviceWindow;
presentParameters.MultiSampleQuality = 0;
presentParameters.MultiSampleType = D3DMULTISAMPLE_NONE;
presentParameters.PresentationInterval = D3DPRESENT_INTERVAL_DEFAULT;
presentParameters.SwapEffect = D3DSWAPEFFECT_DISCARD;
presentParameters.Windowed = TRUE;
return presentParameters;
}
int Renderer9::generateConfigs(ConfigDesc **configDescList)
{
D3DDISPLAYMODE currentDisplayMode;
mD3d9->GetAdapterDisplayMode(mAdapter, &currentDisplayMode);
unsigned int numRenderFormats = ArraySize(RenderTargetFormats);
unsigned int numDepthFormats = ArraySize(DepthStencilFormats);
(*configDescList) = new ConfigDesc[numRenderFormats * numDepthFormats];
int numConfigs = 0;
for (unsigned int formatIndex = 0; formatIndex < numRenderFormats; formatIndex++)
{
D3DFORMAT renderTargetFormat = RenderTargetFormats[formatIndex];
HRESULT result = mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_RENDERTARGET, D3DRTYPE_SURFACE, renderTargetFormat);
if (SUCCEEDED(result))
{
for (unsigned int depthStencilIndex = 0; depthStencilIndex < numDepthFormats; depthStencilIndex++)
{
D3DFORMAT depthStencilFormat = DepthStencilFormats[depthStencilIndex];
HRESULT result = D3D_OK;
if(depthStencilFormat != D3DFMT_UNKNOWN)
{
result = mD3d9->CheckDeviceFormat(mAdapter, mDeviceType, currentDisplayMode.Format, D3DUSAGE_DEPTHSTENCIL, D3DRTYPE_SURFACE, depthStencilFormat);
}
if (SUCCEEDED(result))
{
if(depthStencilFormat != D3DFMT_UNKNOWN)
{
result = mD3d9->CheckDepthStencilMatch(mAdapter, mDeviceType, currentDisplayMode.Format, renderTargetFormat, depthStencilFormat);
}
if (SUCCEEDED(result))
{
ConfigDesc newConfig;
newConfig.renderTargetFormat = d3d9_gl::ConvertBackBufferFormat(renderTargetFormat);
newConfig.depthStencilFormat = d3d9_gl::ConvertDepthStencilFormat(depthStencilFormat);
newConfig.multiSample = 0; // FIXME: enumerate multi-sampling
newConfig.fastConfig = (currentDisplayMode.Format == renderTargetFormat);
(*configDescList)[numConfigs++] = newConfig;
}
}
}
}
}
return numConfigs;
}
void Renderer9::deleteConfigs(ConfigDesc *configDescList)
{
delete [] (configDescList);
}
void Renderer9::startScene()
{
if (!mSceneStarted)
{
long result = mDevice->BeginScene();
if (SUCCEEDED(result)) {
// This is defensive checking against the device being
// lost at unexpected times.
mSceneStarted = true;
}
}
}
void Renderer9::endScene()
{
if (mSceneStarted)
{
// EndScene can fail if the device was lost, for example due
// to a TDR during a draw call.
mDevice->EndScene();
mSceneStarted = false;
}
}
void Renderer9::sync(bool block)
{
HRESULT result;
IDirect3DQuery9* query = allocateEventQuery();
if (!query)
{
return;
}
result = query->Issue(D3DISSUE_END);
ASSERT(SUCCEEDED(result));
do
{
result = query->GetData(NULL, 0, D3DGETDATA_FLUSH);
if(block && result == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
Sleep(0);
// explicitly check for device loss
// some drivers seem to return S_FALSE even if the device is lost
// instead of D3DERR_DEVICELOST like they should
if (testDeviceLost(false))
{
result = D3DERR_DEVICELOST;
}
}
}
while(block && result == S_FALSE);
freeEventQuery(query);
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
}
}
SwapChain *Renderer9::createSwapChain(EGLNativeWindowType window, HANDLE shareHandle, GLenum backBufferFormat, GLenum depthBufferFormat)
{
return new rx::SwapChain9(this, window, shareHandle, backBufferFormat, depthBufferFormat);
}
IDirect3DQuery9* Renderer9::allocateEventQuery()
{
IDirect3DQuery9 *query = NULL;
if (mEventQueryPool.empty())
{
HRESULT result = mDevice->CreateQuery(D3DQUERYTYPE_EVENT, &query);
ASSERT(SUCCEEDED(result));
}
else
{
query = mEventQueryPool.back();
mEventQueryPool.pop_back();
}
return query;
}
void Renderer9::freeEventQuery(IDirect3DQuery9* query)
{
if (mEventQueryPool.size() > 1000)
{
query->Release();
}
else
{
mEventQueryPool.push_back(query);
}
}
IDirect3DVertexShader9 *Renderer9::createVertexShader(const DWORD *function, size_t length)
{
return mVertexShaderCache.create(function, length);
}
IDirect3DPixelShader9 *Renderer9::createPixelShader(const DWORD *function, size_t length)
{
return mPixelShaderCache.create(function, length);
}
HRESULT Renderer9::createVertexBuffer(UINT Length, DWORD Usage, IDirect3DVertexBuffer9 **ppVertexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateVertexBuffer(Length, Usage, 0, Pool, ppVertexBuffer, NULL);
}
VertexBuffer *Renderer9::createVertexBuffer()
{
return new VertexBuffer9(this);
}
HRESULT Renderer9::createIndexBuffer(UINT Length, DWORD Usage, D3DFORMAT Format, IDirect3DIndexBuffer9 **ppIndexBuffer)
{
D3DPOOL Pool = getBufferPool(Usage);
return mDevice->CreateIndexBuffer(Length, Usage, Format, Pool, ppIndexBuffer, NULL);
}
IndexBuffer *Renderer9::createIndexBuffer()
{
return new IndexBuffer9(this);
}
BufferStorage *Renderer9::createBufferStorage()
{
return new BufferStorage9();
}
QueryImpl *Renderer9::createQuery(GLenum type)
{
return new Query9(this, type);
}
FenceImpl *Renderer9::createFence()
{
return new Fence9(this);
}
void Renderer9::setSamplerState(gl::SamplerType type, int index, const gl::SamplerState &samplerState)
{
bool *forceSetSamplers = (type == gl::SAMPLER_PIXEL) ? mForceSetPixelSamplerStates : mForceSetVertexSamplerStates;
gl::SamplerState *appliedSamplers = (type == gl::SAMPLER_PIXEL) ? mCurPixelSamplerStates: mCurVertexSamplerStates;
if (forceSetSamplers[index] || memcmp(&samplerState, &appliedSamplers[index], sizeof(gl::SamplerState)) != 0)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSU, gl_d3d9::ConvertTextureWrap(samplerState.wrapS));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_ADDRESSV, gl_d3d9::ConvertTextureWrap(samplerState.wrapT));
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAGFILTER, gl_d3d9::ConvertMagFilter(samplerState.magFilter, samplerState.maxAnisotropy));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
gl_d3d9::ConvertMinFilter(samplerState.minFilter, &d3dMinFilter, &d3dMipFilter, samplerState.maxAnisotropy);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MINFILTER, d3dMinFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MIPFILTER, d3dMipFilter);
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXMIPLEVEL, samplerState.lodOffset);
if (mSupportsTextureFilterAnisotropy)
{
mDevice->SetSamplerState(d3dSampler, D3DSAMP_MAXANISOTROPY, (DWORD)samplerState.maxAnisotropy);
}
}
forceSetSamplers[index] = false;
appliedSamplers[index] = samplerState;
}
void Renderer9::setTexture(gl::SamplerType type, int index, gl::Texture *texture)
{
int d3dSamplerOffset = (type == gl::SAMPLER_PIXEL) ? 0 : D3DVERTEXTEXTURESAMPLER0;
int d3dSampler = index + d3dSamplerOffset;
IDirect3DBaseTexture9 *d3dTexture = NULL;
unsigned int serial = 0;
bool forceSetTexture = false;
unsigned int *appliedSerials = (type == gl::SAMPLER_PIXEL) ? mCurPixelTextureSerials : mCurVertexTextureSerials;
if (texture)
{
TextureStorageInterface *texStorage = texture->getNativeTexture();
if (texStorage)
{
TextureStorage9 *storage9 = TextureStorage9::makeTextureStorage9(texStorage->getStorageInstance());
d3dTexture = storage9->getBaseTexture();
}
// If we get NULL back from getBaseTexture here, something went wrong
// in the texture class and we're unexpectedly missing the d3d texture
ASSERT(d3dTexture != NULL);
serial = texture->getTextureSerial();
forceSetTexture = texture->hasDirtyImages();
}
if (forceSetTexture || appliedSerials[index] != serial)
{
mDevice->SetTexture(d3dSampler, d3dTexture);
}
appliedSerials[index] = serial;
}
void Renderer9::setRasterizerState(const gl::RasterizerState &rasterState)
{
bool rasterStateChanged = mForceSetRasterState || memcmp(&rasterState, &mCurRasterState, sizeof(gl::RasterizerState)) != 0;
if (rasterStateChanged)
{
// Set the cull mode
if (rasterState.cullFace)
{
mDevice->SetRenderState(D3DRS_CULLMODE, gl_d3d9::ConvertCullMode(rasterState.cullMode, rasterState.frontFace));
}
else
{
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
if (rasterState.polygonOffsetFill)
{
if (mCurDepthSize > 0)
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, *(DWORD*)&rasterState.polygonOffsetFactor);
float depthBias = ldexp(rasterState.polygonOffsetUnits, -static_cast<int>(mCurDepthSize));
mDevice->SetRenderState(D3DRS_DEPTHBIAS, *(DWORD*)&depthBias);
}
}
else
{
mDevice->SetRenderState(D3DRS_SLOPESCALEDEPTHBIAS, 0);
mDevice->SetRenderState(D3DRS_DEPTHBIAS, 0);
}
mCurRasterState = rasterState;
}
mForceSetRasterState = false;
}
void Renderer9::setBlendState(const gl::BlendState &blendState, const gl::Color &blendColor, unsigned int sampleMask)
{
bool blendStateChanged = mForceSetBlendState || memcmp(&blendState, &mCurBlendState, sizeof(gl::BlendState)) != 0;
bool blendColorChanged = mForceSetBlendState || memcmp(&blendColor, &mCurBlendColor, sizeof(gl::Color)) != 0;
bool sampleMaskChanged = mForceSetBlendState || sampleMask != mCurSampleMask;
if (blendStateChanged || blendColorChanged)
{
if (blendState.blend)
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (blendState.sourceBlendRGB != GL_CONSTANT_ALPHA && blendState.sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
blendState.destBlendRGB != GL_CONSTANT_ALPHA && blendState.destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, gl_d3d9::ConvertColor(blendColor));
}
else
{
mDevice->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha),
gl::unorm<8>(blendColor.alpha)));
}
mDevice->SetRenderState(D3DRS_SRCBLEND, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendRGB));
mDevice->SetRenderState(D3DRS_DESTBLEND, gl_d3d9::ConvertBlendFunc(blendState.destBlendRGB));
mDevice->SetRenderState(D3DRS_BLENDOP, gl_d3d9::ConvertBlendOp(blendState.blendEquationRGB));
if (blendState.sourceBlendRGB != blendState.sourceBlendAlpha ||
blendState.destBlendRGB != blendState.destBlendAlpha ||
blendState.blendEquationRGB != blendState.blendEquationAlpha)
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.sourceBlendAlpha));
mDevice->SetRenderState(D3DRS_DESTBLENDALPHA, gl_d3d9::ConvertBlendFunc(blendState.destBlendAlpha));
mDevice->SetRenderState(D3DRS_BLENDOPALPHA, gl_d3d9::ConvertBlendOp(blendState.blendEquationAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE);
}
}
else
{
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
if (blendState.sampleAlphaToCoverage)
{
FIXME("Sample alpha to coverage is unimplemented.");
}
// Set the color mask
bool zeroColorMaskAllowed = getAdapterVendor() != VENDOR_ID_AMD;
// Apparently some ATI cards have a bug where a draw with a zero color
// write mask can cause later draws to have incorrect results. Instead,
// set a nonzero color write mask but modify the blend state so that no
// drawing is done.
// http://code.google.com/p/angleproject/issues/detail?id=169
DWORD colorMask = gl_d3d9::ConvertColorMask(blendState.colorMaskRed, blendState.colorMaskGreen,
blendState.colorMaskBlue, blendState.colorMaskAlpha);
if (colorMask == 0 && !zeroColorMaskAllowed)
{
// Enable green channel, but set blending so nothing will be drawn.
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, D3DCOLORWRITEENABLE_GREEN);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
mDevice->SetRenderState(D3DRS_SRCBLEND, D3DBLEND_ZERO);
mDevice->SetRenderState(D3DRS_DESTBLEND, D3DBLEND_ONE);
mDevice->SetRenderState(D3DRS_BLENDOP, D3DBLENDOP_ADD);
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, colorMask);
}
mDevice->SetRenderState(D3DRS_DITHERENABLE, blendState.dither ? TRUE : FALSE);
mCurBlendState = blendState;
mCurBlendColor = blendColor;
}
if (sampleMaskChanged)
{
// Set the multisample mask
mDevice->SetRenderState(D3DRS_MULTISAMPLEANTIALIAS, TRUE);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, static_cast<DWORD>(sampleMask));
mCurSampleMask = sampleMask;
}
mForceSetBlendState = false;
}
void Renderer9::setDepthStencilState(const gl::DepthStencilState &depthStencilState, int stencilRef,
int stencilBackRef, bool frontFaceCCW)
{
bool depthStencilStateChanged = mForceSetDepthStencilState ||
memcmp(&depthStencilState, &mCurDepthStencilState, sizeof(gl::DepthStencilState)) != 0;
bool stencilRefChanged = mForceSetDepthStencilState || stencilRef != mCurStencilRef ||
stencilBackRef != mCurStencilBackRef;
bool frontFaceCCWChanged = mForceSetDepthStencilState || frontFaceCCW != mCurFrontFaceCCW;
if (depthStencilStateChanged)
{
if (depthStencilState.depthTest)
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
mDevice->SetRenderState(D3DRS_ZFUNC, gl_d3d9::ConvertComparison(depthStencilState.depthFunc));
}
else
{
mDevice->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
mCurDepthStencilState = depthStencilState;
}
if (depthStencilStateChanged || stencilRefChanged || frontFaceCCWChanged)
{
if (depthStencilState.stencilTest && mCurStencilSize > 0)
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);
// FIXME: Unsupported by D3D9
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK;
if (depthStencilState.stencilWritemask != depthStencilState.stencilBackWritemask ||
stencilRef != stencilBackRef ||
depthStencilState.stencilMask != depthStencilState.stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return gl::error(GL_INVALID_OPERATION);
}
// get the maximum size of the stencil ref
unsigned int maxStencil = (1 << mCurStencilSize) - 1;
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK,
depthStencilState.stencilWritemask);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
gl_d3d9::ConvertComparison(depthStencilState.stencilFunc));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF,
(stencilRef < (int)maxStencil) ? stencilRef : maxStencil);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK,
depthStencilState.stencilMask);
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilFail));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthFail));
mDevice->SetRenderState(frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilPassDepthPass));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK,
depthStencilState.stencilBackWritemask);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC,
gl_d3d9::ConvertComparison(depthStencilState.stencilBackFunc));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF,
(stencilBackRef < (int)maxStencil) ? stencilBackRef : maxStencil);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK,
depthStencilState.stencilBackMask);
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackFail));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthFail));
mDevice->SetRenderState(!frontFaceCCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS,
gl_d3d9::ConvertStencilOp(depthStencilState.stencilBackPassDepthPass));
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, depthStencilState.depthMask ? TRUE : FALSE);
mCurStencilRef = stencilRef;
mCurStencilBackRef = stencilBackRef;
mCurFrontFaceCCW = frontFaceCCW;
}
mForceSetDepthStencilState = false;
}
void Renderer9::setScissorRectangle(const gl::Rectangle &scissor, bool enabled)
{
bool scissorChanged = mForceSetScissor ||
memcmp(&scissor, &mCurScissor, sizeof(gl::Rectangle)) != 0 ||
enabled != mScissorEnabled;
if (scissorChanged)
{
if (enabled)
{
RECT rect;
rect.left = gl::clamp(scissor.x, 0, static_cast<int>(mRenderTargetDesc.width));
rect.top = gl::clamp(scissor.y, 0, static_cast<int>(mRenderTargetDesc.height));
rect.right = gl::clamp(scissor.x + scissor.width, 0, static_cast<int>(mRenderTargetDesc.width));
rect.bottom = gl::clamp(scissor.y + scissor.height, 0, static_cast<int>(mRenderTargetDesc.height));
mDevice->SetScissorRect(&rect);
}
mDevice->SetRenderState(D3DRS_SCISSORTESTENABLE, enabled ? TRUE : FALSE);
mScissorEnabled = enabled;
mCurScissor = scissor;
}
mForceSetScissor = false;
}
bool Renderer9::setViewport(const gl::Rectangle &viewport, float zNear, float zFar, GLenum drawMode, GLenum frontFace,
bool ignoreViewport)
{
gl::Rectangle actualViewport = viewport;
float actualZNear = gl::clamp01(zNear);
float actualZFar = gl::clamp01(zFar);
if (ignoreViewport)
{
actualViewport.x = 0;
actualViewport.y = 0;
actualViewport.width = mRenderTargetDesc.width;
actualViewport.height = mRenderTargetDesc.height;
actualZNear = 0.0f;
actualZFar = 1.0f;
}
D3DVIEWPORT9 dxViewport;
dxViewport.X = gl::clamp(actualViewport.x, 0, static_cast<int>(mRenderTargetDesc.width));
dxViewport.Y = gl::clamp(actualViewport.y, 0, static_cast<int>(mRenderTargetDesc.height));
dxViewport.Width = gl::clamp(actualViewport.width, 0, static_cast<int>(mRenderTargetDesc.width) - static_cast<int>(dxViewport.X));
dxViewport.Height = gl::clamp(actualViewport.height, 0, static_cast<int>(mRenderTargetDesc.height) - static_cast<int>(dxViewport.Y));
dxViewport.MinZ = actualZNear;
dxViewport.MaxZ = actualZFar;
if (dxViewport.Width <= 0 || dxViewport.Height <= 0)
{
return false; // Nothing to render
}
bool viewportChanged = mForceSetViewport || memcmp(&actualViewport, &mCurViewport, sizeof(gl::Rectangle)) != 0 ||
actualZNear != mCurNear || actualZFar != mCurFar;
if (viewportChanged)
{
mDevice->SetViewport(&dxViewport);
mCurViewport = actualViewport;
mCurNear = actualZNear;
mCurFar = actualZFar;
dx_VertexConstants vc = {0};
dx_PixelConstants pc = {0};
vc.viewAdjust[0] = (float)((actualViewport.width - (int)dxViewport.Width) + 2 * (actualViewport.x - (int)dxViewport.X) - 1) / dxViewport.Width;
vc.viewAdjust[1] = (float)((actualViewport.height - (int)dxViewport.Height) + 2 * (actualViewport.y - (int)dxViewport.Y) - 1) / dxViewport.Height;
vc.viewAdjust[2] = (float)actualViewport.width / dxViewport.Width;
vc.viewAdjust[3] = (float)actualViewport.height / dxViewport.Height;
pc.viewCoords[0] = actualViewport.width * 0.5f;
pc.viewCoords[1] = actualViewport.height * 0.5f;
pc.viewCoords[2] = actualViewport.x + (actualViewport.width * 0.5f);
pc.viewCoords[3] = actualViewport.y + (actualViewport.height * 0.5f);
pc.depthFront[0] = (actualZFar - actualZNear) * 0.5f;
pc.depthFront[1] = (actualZNear + actualZFar) * 0.5f;
pc.depthFront[2] = !gl::IsTriangleMode(drawMode) ? 0.0f : (frontFace == GL_CCW ? 1.0f : -1.0f);;
vc.depthRange[0] = actualZNear;
vc.depthRange[1] = actualZFar;
vc.depthRange[2] = actualZFar - actualZNear;
pc.depthRange[0] = actualZNear;
pc.depthRange[1] = actualZFar;
pc.depthRange[2] = actualZFar - actualZNear;
if (memcmp(&vc, &mVertexConstants, sizeof(dx_VertexConstants)) != 0)
{
mVertexConstants = vc;
mDxUniformsDirty = true;
}
if (memcmp(&pc, &mPixelConstants, sizeof(dx_PixelConstants)) != 0)
{
mPixelConstants = pc;
mDxUniformsDirty = true;
}
}
mForceSetViewport = false;
return true;
}
bool Renderer9::applyPrimitiveType(GLenum mode, GLsizei count)
{
switch (mode)
{
case GL_POINTS:
mPrimitiveType = D3DPT_POINTLIST;
mPrimitiveCount = count;
break;
case GL_LINES:
mPrimitiveType = D3DPT_LINELIST;
mPrimitiveCount = count / 2;
break;
case GL_LINE_LOOP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount = count - 1; // D3D doesn't support line loops, so we draw the last line separately
break;
case GL_LINE_STRIP:
mPrimitiveType = D3DPT_LINESTRIP;
mPrimitiveCount = count - 1;
break;
case GL_TRIANGLES:
mPrimitiveType = D3DPT_TRIANGLELIST;
mPrimitiveCount = count / 3;
break;
case GL_TRIANGLE_STRIP:
mPrimitiveType = D3DPT_TRIANGLESTRIP;
mPrimitiveCount = count - 2;
break;
case GL_TRIANGLE_FAN:
mPrimitiveType = D3DPT_TRIANGLEFAN;
mPrimitiveCount = count - 2;
break;
default:
return gl::error(GL_INVALID_ENUM, false);
}
return mPrimitiveCount > 0;
}
gl::Renderbuffer *Renderer9::getNullColorbuffer(gl::Renderbuffer *depthbuffer)
{
if (!depthbuffer)
{
ERR("Unexpected null depthbuffer for depth-only FBO.");
return NULL;
}
GLsizei width = depthbuffer->getWidth();
GLsizei height = depthbuffer->getHeight();
// search cached nullcolorbuffers
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].buffer != NULL &&
mNullColorbufferCache[i].width == width &&
mNullColorbufferCache[i].height == height)
{
mNullColorbufferCache[i].lruCount = ++mMaxNullColorbufferLRU;
return mNullColorbufferCache[i].buffer;
}
}
gl::Renderbuffer *nullbuffer = new gl::Renderbuffer(this, 0, new gl::Colorbuffer(this, width, height, GL_NONE, 0));
// add nullbuffer to the cache
NullColorbufferCacheEntry *oldest = &mNullColorbufferCache[0];
for (int i = 1; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
if (mNullColorbufferCache[i].lruCount < oldest->lruCount)
{
oldest = &mNullColorbufferCache[i];
}
}
delete oldest->buffer;
oldest->buffer = nullbuffer;
oldest->lruCount = ++mMaxNullColorbufferLRU;
oldest->width = width;
oldest->height = height;
return nullbuffer;
}
bool Renderer9::applyRenderTarget(gl::Framebuffer *framebuffer)
{
// if there is no color attachment we must synthesize a NULL colorattachment
// to keep the D3D runtime happy. This should only be possible if depth texturing.
gl::Renderbuffer *renderbufferObject = NULL;
if (framebuffer->getColorbufferType(0) != GL_NONE)
{
renderbufferObject = framebuffer->getColorbuffer(0);
}
else
{
renderbufferObject = getNullColorbuffer(framebuffer->getDepthbuffer());
}
if (!renderbufferObject)
{
ERR("unable to locate renderbuffer for FBO.");
return false;
}
bool renderTargetChanged = false;
unsigned int renderTargetSerial = renderbufferObject->getSerial();
if (renderTargetSerial != mAppliedRenderTargetSerial)
{
// Apply the render target on the device
IDirect3DSurface9 *renderTargetSurface = NULL;
RenderTarget *renderTarget = renderbufferObject->getRenderTarget();
if (renderTarget)
{
renderTargetSurface = RenderTarget9::makeRenderTarget9(renderTarget)->getSurface();
}
if (!renderTargetSurface)
{
ERR("render target pointer unexpectedly null.");
return false; // Context must be lost
}
mDevice->SetRenderTarget(0, renderTargetSurface);
renderTargetSurface->Release();
mAppliedRenderTargetSerial = renderTargetSerial;
renderTargetChanged = true;
}
gl::Renderbuffer *depthStencil = NULL;
unsigned int depthbufferSerial = 0;
unsigned int stencilbufferSerial = 0;
if (framebuffer->getDepthbufferType() != GL_NONE)
{
depthStencil = framebuffer->getDepthbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
depthbufferSerial = depthStencil->getSerial();
}
else if (framebuffer->getStencilbufferType() != GL_NONE)
{
depthStencil = framebuffer->getStencilbuffer();
if (!depthStencil)
{
ERR("Depth stencil pointer unexpectedly null.");
return false;
}
stencilbufferSerial = depthStencil->getSerial();
}
if (depthbufferSerial != mAppliedDepthbufferSerial ||
stencilbufferSerial != mAppliedStencilbufferSerial ||
!mDepthStencilInitialized)
{
unsigned int depthSize = 0;
unsigned int stencilSize = 0;
// Apply the depth stencil on the device
if (depthStencil)
{
IDirect3DSurface9 *depthStencilSurface = NULL;
RenderTarget *depthStencilRenderTarget = depthStencil->getDepthStencil();
if (depthStencilRenderTarget)
{
depthStencilSurface = RenderTarget9::makeRenderTarget9(depthStencilRenderTarget)->getSurface();
}
if (!depthStencilSurface)
{
ERR("depth stencil pointer unexpectedly null.");
return false; // Context must be lost
}
mDevice->SetDepthStencilSurface(depthStencilSurface);
depthStencilSurface->Release();
depthSize = depthStencil->getDepthSize();
stencilSize = depthStencil->getStencilSize();
}
else
{
mDevice->SetDepthStencilSurface(NULL);
}
if (!mDepthStencilInitialized || depthSize != mCurDepthSize)
{
mCurDepthSize = depthSize;
mForceSetRasterState = true;
}
if (!mDepthStencilInitialized || stencilSize != mCurStencilSize)
{
mCurStencilSize = stencilSize;
mForceSetDepthStencilState = true;
}
mAppliedDepthbufferSerial = depthbufferSerial;
mAppliedStencilbufferSerial = stencilbufferSerial;
mDepthStencilInitialized = true;
}
if (renderTargetChanged || !mRenderTargetDescInitialized)
{
mForceSetScissor = true;
mForceSetViewport = true;
mRenderTargetDesc.width = renderbufferObject->getWidth();
mRenderTargetDesc.height = renderbufferObject->getHeight();
mRenderTargetDesc.format = renderbufferObject->getActualFormat();
mRenderTargetDescInitialized = true;
}
return true;
}
GLenum Renderer9::applyVertexBuffer(gl::ProgramBinary *programBinary, gl::VertexAttribute vertexAttributes[], GLint first, GLsizei count, GLsizei instances)
{
TranslatedAttribute attributes[gl::MAX_VERTEX_ATTRIBS];
GLenum err = mVertexDataManager->prepareVertexData(vertexAttributes, programBinary, first, count, attributes, instances);
if (err != GL_NO_ERROR)
{
return err;
}
return mVertexDeclarationCache.applyDeclaration(mDevice, attributes, programBinary, instances, &mRepeatDraw);
}
// Applies the indices and element array bindings to the Direct3D 9 device
GLenum Renderer9::applyIndexBuffer(const GLvoid *indices, gl::Buffer *elementArrayBuffer, GLsizei count, GLenum mode, GLenum type, TranslatedIndexData *indexInfo)
{
GLenum err = mIndexDataManager->prepareIndexData(type, count, elementArrayBuffer, indices, indexInfo);
if (err == GL_NO_ERROR)
{
// Directly binding the storage buffer is not supported for d3d9
ASSERT(indexInfo->storage == NULL);
if (indexInfo->serial != mAppliedIBSerial)
{
IndexBuffer9* indexBuffer = IndexBuffer9::makeIndexBuffer9(indexInfo->indexBuffer);
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = indexInfo->serial;
}
}
return err;
}
void Renderer9::drawArrays(GLenum mode, GLsizei count, GLsizei instances)
{
startScene();
if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, GL_NONE, NULL, 0, NULL);
}
else if (instances > 0)
{
StaticIndexBufferInterface *countingIB = mIndexDataManager->getCountingIndices(count);
if (countingIB)
{
if (mAppliedIBSerial != countingIB->getSerial())
{
IndexBuffer9 *indexBuffer = IndexBuffer9::makeIndexBuffer9(countingIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = countingIB->getSerial();
}
for (int i = 0; i < mRepeatDraw; i++)
{
mDevice->DrawIndexedPrimitive(mPrimitiveType, 0, 0, count, 0, mPrimitiveCount);
}
}
else
{
ERR("Could not create a counting index buffer for glDrawArraysInstanced.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
else // Regular case
{
mDevice->DrawPrimitive(mPrimitiveType, 0, mPrimitiveCount);
}
}
void Renderer9::drawElements(GLenum mode, GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer, const TranslatedIndexData &indexInfo, GLsizei /*instances*/)
{
startScene();
if (mode == GL_POINTS)
{
drawIndexedPoints(count, type, indices, elementArrayBuffer);
}
else if (mode == GL_LINE_LOOP)
{
drawLineLoop(count, type, indices, indexInfo.minIndex, elementArrayBuffer);
}
else
{
for (int i = 0; i < mRepeatDraw; i++)
{
GLsizei vertexCount = indexInfo.maxIndex - indexInfo.minIndex + 1;
mDevice->DrawIndexedPrimitive(mPrimitiveType, -(INT)indexInfo.minIndex, indexInfo.minIndex, vertexCount, indexInfo.startIndex, mPrimitiveCount);
}
}
}
void Renderer9::drawLineLoop(GLsizei count, GLenum type, const GLvoid *indices, int minIndex, gl::Buffer *elementArrayBuffer)
{
// Get the raw indices for an indexed draw
if (type != GL_NONE && elementArrayBuffer)
{
gl::Buffer *indexBuffer = elementArrayBuffer;
BufferStorage *storage = indexBuffer->getStorage();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(storage->getData()) + offset;
}
UINT startIndex = 0;
if (get32BitIndexSupport())
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_INT))
{
delete mLineLoopIB;
mLineLoopIB = NULL;
ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
if (static_cast<unsigned int>(count + 1) > (std::numeric_limits<unsigned int>::max() / sizeof(unsigned int)))
{
ERR("Could not create a 32-bit looping index buffer for GL_LINE_LOOP, too many indices required.");
return gl::error(GL_OUT_OF_MEMORY);
}
const unsigned int spaceNeeded = (count + 1) * sizeof(unsigned int);
if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_INT))
{
ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
void* mappedMemory = NULL;
int offset = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory);
if (offset == -1 || mappedMemory == NULL)
{
ERR("Could not map index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
startIndex = static_cast<UINT>(offset) / 4;
unsigned int *data = reinterpret_cast<unsigned int*>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
if (!mLineLoopIB->unmapBuffer())
{
ERR("Could not unmap index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
else
{
if (!mLineLoopIB)
{
mLineLoopIB = new StreamingIndexBufferInterface(this);
if (!mLineLoopIB->reserveBufferSpace(INITIAL_INDEX_BUFFER_SIZE, GL_UNSIGNED_SHORT))
{
delete mLineLoopIB;
mLineLoopIB = NULL;
ERR("Could not create a 16-bit looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
if (static_cast<unsigned int>(count + 1) > (std::numeric_limits<unsigned short>::max() / sizeof(unsigned short)))
{
ERR("Could not create a 16-bit looping index buffer for GL_LINE_LOOP, too many indices required.");
return gl::error(GL_OUT_OF_MEMORY);
}
const int spaceNeeded = (count + 1) * sizeof(unsigned short);
if (!mLineLoopIB->reserveBufferSpace(spaceNeeded, GL_UNSIGNED_SHORT))
{
ERR("Could not reserve enough space in looping index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
void* mappedMemory = NULL;
int offset = mLineLoopIB->mapBuffer(spaceNeeded, &mappedMemory);
if (offset == -1 || mappedMemory == NULL)
{
ERR("Could not map index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
startIndex = static_cast<UINT>(offset) / 2;
unsigned short *data = reinterpret_cast<unsigned short*>(mappedMemory);
switch (type)
{
case GL_NONE: // Non-indexed draw
for (int i = 0; i < count; i++)
{
data[i] = i;
}
data[count] = 0;
break;
case GL_UNSIGNED_BYTE:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLubyte*>(indices)[i];
}
data[count] = static_cast<const GLubyte*>(indices)[0];
break;
case GL_UNSIGNED_SHORT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLushort*>(indices)[i];
}
data[count] = static_cast<const GLushort*>(indices)[0];
break;
case GL_UNSIGNED_INT:
for (int i = 0; i < count; i++)
{
data[i] = static_cast<const GLuint*>(indices)[i];
}
data[count] = static_cast<const GLuint*>(indices)[0];
break;
default: UNREACHABLE();
}
if (!mLineLoopIB->unmapBuffer())
{
ERR("Could not unmap index buffer for GL_LINE_LOOP.");
return gl::error(GL_OUT_OF_MEMORY);
}
}
if (mAppliedIBSerial != mLineLoopIB->getSerial())
{
IndexBuffer9 *indexBuffer = IndexBuffer9::makeIndexBuffer9(mLineLoopIB->getIndexBuffer());
mDevice->SetIndices(indexBuffer->getBuffer());
mAppliedIBSerial = mLineLoopIB->getSerial();
}
mDevice->DrawIndexedPrimitive(D3DPT_LINESTRIP, -minIndex, minIndex, count, startIndex, count);
}
template <typename T>
static void drawPoints(IDirect3DDevice9* device, GLsizei count, const GLvoid *indices)
{
for (int i = 0; i < count; i++)
{
unsigned int indexValue = static_cast<unsigned int>(static_cast<const T*>(indices)[i]);
device->DrawPrimitive(D3DPT_POINTLIST, indexValue, 1);
}
}
void Renderer9::drawIndexedPoints(GLsizei count, GLenum type, const GLvoid *indices, gl::Buffer *elementArrayBuffer)
{
// Drawing index point lists is unsupported in d3d9, fall back to a regular DrawPrimitive call
// for each individual point. This call is not expected to happen often.
if (elementArrayBuffer)
{
BufferStorage *storage = elementArrayBuffer->getStorage();
intptr_t offset = reinterpret_cast<intptr_t>(indices);
indices = static_cast<const GLubyte*>(storage->getData()) + offset;
}
switch (type)
{
case GL_UNSIGNED_BYTE: drawPoints<GLubyte>(mDevice, count, indices); break;
case GL_UNSIGNED_SHORT: drawPoints<GLushort>(mDevice, count, indices); break;
case GL_UNSIGNED_INT: drawPoints<GLuint>(mDevice, count, indices); break;
default: UNREACHABLE();
}
}
void Renderer9::applyShaders(gl::ProgramBinary *programBinary)
{
unsigned int programBinarySerial = programBinary->getSerial();
if (programBinarySerial != mAppliedProgramBinarySerial)
{
ShaderExecutable *vertexExe = programBinary->getVertexExecutable();
ShaderExecutable *pixelExe = programBinary->getPixelExecutable();
IDirect3DVertexShader9 *vertexShader = NULL;
if (vertexExe) vertexShader = ShaderExecutable9::makeShaderExecutable9(vertexExe)->getVertexShader();
IDirect3DPixelShader9 *pixelShader = NULL;
if (pixelExe) pixelShader = ShaderExecutable9::makeShaderExecutable9(pixelExe)->getPixelShader();
mDevice->SetPixelShader(pixelShader);
mDevice->SetVertexShader(vertexShader);
programBinary->dirtyAllUniforms();
mDxUniformsDirty = true;
mAppliedProgramBinarySerial = programBinarySerial;
}
}
void Renderer9::applyUniforms(gl::ProgramBinary *programBinary, gl::UniformArray *uniformArray)
{
for (std::vector<gl::Uniform*>::const_iterator ub = uniformArray->begin(), ue = uniformArray->end(); ub != ue; ++ub)
{
gl::Uniform *targetUniform = *ub;
if (targetUniform->dirty)
{
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
switch (targetUniform->type)
{
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
break;
case GL_BOOL:
case GL_BOOL_VEC2:
case GL_BOOL_VEC3:
case GL_BOOL_VEC4:
applyUniformnbv(targetUniform, i);
break;
case GL_FLOAT:
case GL_FLOAT_VEC2:
case GL_FLOAT_VEC3:
case GL_FLOAT_VEC4:
case GL_FLOAT_MAT2:
case GL_FLOAT_MAT3:
case GL_FLOAT_MAT4:
applyUniformnfv(targetUniform, f);
break;
case GL_INT:
case GL_INT_VEC2:
case GL_INT_VEC3:
case GL_INT_VEC4:
applyUniformniv(targetUniform, i);
break;
default:
UNREACHABLE();
}
targetUniform->dirty = false;
}
}
// Driver uniforms
if (mDxUniformsDirty)
{
mDevice->SetVertexShaderConstantF(0, (float*)&mVertexConstants, sizeof(dx_VertexConstants) / sizeof(float[4]));
mDevice->SetPixelShaderConstantF(0, (float*)&mPixelConstants, sizeof(dx_PixelConstants) / sizeof(float[4]));
mDxUniformsDirty = false;
}
}
void Renderer9::applyUniformnfv(gl::Uniform *targetUniform, const GLfloat *v)
{
if (targetUniform->psRegisterIndex >= 0)
{
mDevice->SetPixelShaderConstantF(targetUniform->psRegisterIndex, v, targetUniform->registerCount);
}
if (targetUniform->vsRegisterIndex >= 0)
{
mDevice->SetVertexShaderConstantF(targetUniform->vsRegisterIndex, v, targetUniform->registerCount);
}
}
void Renderer9::applyUniformniv(gl::Uniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (GLfloat)v[4 * i + 0];
vector[i][1] = (GLfloat)v[4 * i + 1];
vector[i][2] = (GLfloat)v[4 * i + 2];
vector[i][3] = (GLfloat)v[4 * i + 3];
}
applyUniformnfv(targetUniform, (GLfloat*)vector);
}
void Renderer9::applyUniformnbv(gl::Uniform *targetUniform, const GLint *v)
{
ASSERT(targetUniform->registerCount <= MAX_VERTEX_CONSTANT_VECTORS_D3D9);
GLfloat vector[MAX_VERTEX_CONSTANT_VECTORS_D3D9][4];
for (unsigned int i = 0; i < targetUniform->registerCount; i++)
{
vector[i][0] = (v[4 * i + 0] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][1] = (v[4 * i + 1] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][2] = (v[4 * i + 2] == GL_FALSE) ? 0.0f : 1.0f;
vector[i][3] = (v[4 * i + 3] == GL_FALSE) ? 0.0f : 1.0f;
}
applyUniformnfv(targetUniform, (GLfloat*)vector);
}
void Renderer9::clear(const gl::ClearParameters &clearParams, gl::Framebuffer *frameBuffer)
{
D3DCOLOR color = D3DCOLOR_ARGB(gl::unorm<8>(clearParams.colorClearValue.alpha),
gl::unorm<8>(clearParams.colorClearValue.red),
gl::unorm<8>(clearParams.colorClearValue.green),
gl::unorm<8>(clearParams.colorClearValue.blue));
float depth = gl::clamp01(clearParams.depthClearValue);
int stencil = clearParams.stencilClearValue & 0x000000FF;
unsigned int stencilUnmasked = 0x0;
if ((clearParams.mask & GL_STENCIL_BUFFER_BIT) && frameBuffer->hasStencil())
{
unsigned int stencilSize = gl::GetStencilSize(frameBuffer->getStencilbuffer()->getActualFormat());
stencilUnmasked = (0x1 << stencilSize) - 1;
}
bool alphaUnmasked = (gl::GetAlphaSize(mRenderTargetDesc.format) == 0) || clearParams.colorMaskAlpha;
const bool needMaskedStencilClear = (clearParams.mask & GL_STENCIL_BUFFER_BIT) &&
(clearParams.stencilWriteMask & stencilUnmasked) != stencilUnmasked;
const bool needMaskedColorClear = (clearParams.mask & GL_COLOR_BUFFER_BIT) &&
!(clearParams.colorMaskRed && clearParams.colorMaskGreen &&
clearParams.colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear || needMaskedStencilClear)
{
// State which is altered in all paths from this point to the clear call is saved.
// State which is altered in only some paths will be flagged dirty in the case that
// that path is taken.
HRESULT hr;
if (mMaskedClearSavedState == NULL)
{
hr = mDevice->BeginStateBlock();
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
mDevice->SetStreamSource(0, NULL, 0, 0);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
hr = mDevice->EndStateBlock(&mMaskedClearSavedState);
ASSERT(SUCCEEDED(hr) || hr == D3DERR_OUTOFVIDEOMEMORY || hr == E_OUTOFMEMORY);
}
ASSERT(mMaskedClearSavedState != NULL);
if (mMaskedClearSavedState != NULL)
{
hr = mMaskedClearSavedState->Capture();
ASSERT(SUCCEEDED(hr));
}
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_ZENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
mDevice->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
mDevice->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
mDevice->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
mDevice->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (clearParams.mask & GL_COLOR_BUFFER_BIT)
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE,
gl_d3d9::ConvertColorMask(clearParams.colorMaskRed,
clearParams.colorMaskGreen,
clearParams.colorMaskBlue,
clearParams.colorMaskAlpha));
}
else
{
mDevice->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && (clearParams.mask & GL_STENCIL_BUFFER_BIT))
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, TRUE);
mDevice->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
mDevice->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
mDevice->SetRenderState(D3DRS_STENCILREF, stencil);
mDevice->SetRenderState(D3DRS_STENCILWRITEMASK, clearParams.stencilWriteMask);
mDevice->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
mDevice->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
}
else
{
mDevice->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
mDevice->SetPixelShader(NULL);
mDevice->SetVertexShader(NULL);
mDevice->SetFVF(D3DFVF_XYZRHW);
mDevice->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
mDevice->SetTextureStageState(0, D3DTSS_COLOROP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_COLORARG1, D3DTA_TFACTOR);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAOP, D3DTOP_SELECTARG1);
mDevice->SetTextureStageState(0, D3DTSS_ALPHAARG1, D3DTA_TFACTOR);
mDevice->SetRenderState(D3DRS_TEXTUREFACTOR, color);
mDevice->SetRenderState(D3DRS_MULTISAMPLEMASK, 0xFFFFFFFF);
for(int i = 0; i < gl::MAX_VERTEX_ATTRIBS; i++)
{
mDevice->SetStreamSourceFreq(i, 1);
}
float quad[4][4]; // A quadrilateral covering the target, aligned to match the edges
quad[0][0] = -0.5f;
quad[0][1] = mRenderTargetDesc.height - 0.5f;
quad[0][2] = 0.0f;
quad[0][3] = 1.0f;
quad[1][0] = mRenderTargetDesc.width - 0.5f;
quad[1][1] = mRenderTargetDesc.height - 0.5f;
quad[1][2] = 0.0f;
quad[1][3] = 1.0f;
quad[2][0] = -0.5f;
quad[2][1] = -0.5f;
quad[2][2] = 0.0f;
quad[2][3] = 1.0f;
quad[3][0] = mRenderTargetDesc.width - 0.5f;
quad[3][1] = -0.5f;
quad[3][2] = 0.0f;
quad[3][3] = 1.0f;
startScene();
mDevice->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(float[4]));
if (clearParams.mask & GL_DEPTH_BUFFER_BIT)
{
mDevice->SetRenderState(D3DRS_ZENABLE, TRUE);
mDevice->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
mDevice->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
if (mMaskedClearSavedState != NULL)
{
mMaskedClearSavedState->Apply();
}
}
else if (clearParams.mask)
{
DWORD dxClearFlags = 0;
if (clearParams.mask & GL_COLOR_BUFFER_BIT)
{
dxClearFlags |= D3DCLEAR_TARGET;
}
if (clearParams.mask & GL_DEPTH_BUFFER_BIT)
{
dxClearFlags |= D3DCLEAR_ZBUFFER;
}
if (clearParams.mask & GL_STENCIL_BUFFER_BIT)
{
dxClearFlags |= D3DCLEAR_STENCIL;
}
mDevice->Clear(0, NULL, dxClearFlags, color, depth, stencil);
}
}
void Renderer9::markAllStateDirty()
{
mAppliedRenderTargetSerial = 0;
mAppliedDepthbufferSerial = 0;
mAppliedStencilbufferSerial = 0;
mDepthStencilInitialized = false;
mRenderTargetDescInitialized = false;
mForceSetDepthStencilState = true;
mForceSetRasterState = true;
mForceSetScissor = true;
mForceSetViewport = true;
mForceSetBlendState = true;
for (unsigned int i = 0; i < gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS; i++)
{
mForceSetVertexSamplerStates[i] = true;
mCurVertexTextureSerials[i] = 0;
}
for (unsigned int i = 0; i < gl::MAX_TEXTURE_IMAGE_UNITS; i++)
{
mForceSetPixelSamplerStates[i] = true;
mCurPixelTextureSerials[i] = 0;
}
mAppliedIBSerial = 0;
mAppliedProgramBinarySerial = 0;
mDxUniformsDirty = true;
mVertexDeclarationCache.markStateDirty();
}
void Renderer9::releaseDeviceResources()
{
while (!mEventQueryPool.empty())
{
mEventQueryPool.back()->Release();
mEventQueryPool.pop_back();
}
if (mMaskedClearSavedState)
{
mMaskedClearSavedState->Release();
mMaskedClearSavedState = NULL;
}
mVertexShaderCache.clear();
mPixelShaderCache.clear();
delete mBlit;
mBlit = NULL;
delete mVertexDataManager;
mVertexDataManager = NULL;
delete mIndexDataManager;
mIndexDataManager = NULL;
delete mLineLoopIB;
mLineLoopIB = NULL;
for (int i = 0; i < NUM_NULL_COLORBUFFER_CACHE_ENTRIES; i++)
{
delete mNullColorbufferCache[i].buffer;
mNullColorbufferCache[i].buffer = NULL;
}
}
void Renderer9::notifyDeviceLost()
{
mDeviceLost = true;
mDisplay->notifyDeviceLost();
}
bool Renderer9::isDeviceLost()
{
return mDeviceLost;
}
// set notify to true to broadcast a message to all contexts of the device loss
bool Renderer9::testDeviceLost(bool notify)
{
HRESULT status = S_OK;
if (mDeviceEx)
{
status = mDeviceEx->CheckDeviceState(NULL);
}
else if (mDevice)
{
status = mDevice->TestCooperativeLevel();
}
else
{
// No device yet, so no reset required
}
bool isLost = FAILED(status) || d3d9::isDeviceLostError(status);
if (isLost)
{
// ensure we note the device loss --
// we'll probably get this done again by notifyDeviceLost
// but best to remember it!
// Note that we don't want to clear the device loss status here
// -- this needs to be done by resetDevice
mDeviceLost = true;
if (notify)
{
notifyDeviceLost();
}
}
return isLost;
}
bool Renderer9::testDeviceResettable()
{
HRESULT status = D3D_OK;
if (mDeviceEx)
{
status = mDeviceEx->CheckDeviceState(NULL);
}
else if (mDevice)
{
status = mDevice->TestCooperativeLevel();
}
// On D3D9Ex, DEVICELOST represents a hung device that needs to be restarted
// DEVICEREMOVED indicates the device has been stopped and must be recreated
switch (status)
{
case D3DERR_DEVICENOTRESET:
case D3DERR_DEVICEHUNG:
return true;
case D3DERR_DEVICELOST:
return (mDeviceEx != NULL);
case D3DERR_DEVICEREMOVED:
UNIMPLEMENTED();
return false;
default:
return false;
}
}
bool Renderer9::resetDevice()
{
releaseDeviceResources();
D3DPRESENT_PARAMETERS presentParameters = getDefaultPresentParameters();
HRESULT result = D3D_OK;
bool lost = testDeviceLost(false);
int attempts = 3;
while (lost && attempts > 0)
{
if (mDeviceEx)
{
Sleep(500); // Give the graphics driver some CPU time
result = mDeviceEx->ResetEx(&presentParameters, NULL);
}
else
{
result = mDevice->TestCooperativeLevel();
while (result == D3DERR_DEVICELOST)
{
Sleep(100); // Give the graphics driver some CPU time
result = mDevice->TestCooperativeLevel();
}
if (result == D3DERR_DEVICENOTRESET)
{
result = mDevice->Reset(&presentParameters);
}
}
lost = testDeviceLost(false);
attempts --;
}
if (FAILED(result))
{
ERR("Reset/ResetEx failed multiple times: 0x%08X", result);
return false;
}
// reset device defaults
initializeDevice();
mDeviceLost = false;
return true;
}
void *Renderer9::getDeviceRaw()
{
EVENT("()");
UNIMPLEMENTED();
return NULL;
}
DWORD Renderer9::getAdapterVendor() const
{
return mAdapterIdentifier.VendorId;
}
std::string Renderer9::getRendererDescription() const
{
std::ostringstream rendererString;
rendererString << mAdapterIdentifier.Description;
if (getShareHandleSupport())
{
rendererString << " Direct3D9Ex";
}
else
{
rendererString << " Direct3D9";
}
rendererString << " vs_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.VertexShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.VertexShaderVersion);
rendererString << " ps_" << D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion) << "_" << D3DSHADER_VERSION_MINOR(mDeviceCaps.PixelShaderVersion);
return rendererString.str();
}
GUID Renderer9::getAdapterIdentifier() const
{
return mAdapterIdentifier.DeviceIdentifier;
}
void Renderer9::getMultiSampleSupport(D3DFORMAT format, bool *multiSampleArray)
{
for (int multiSampleIndex = 0; multiSampleIndex <= D3DMULTISAMPLE_16_SAMPLES; multiSampleIndex++)
{
HRESULT result = mD3d9->CheckDeviceMultiSampleType(mAdapter, mDeviceType, format,
TRUE, (D3DMULTISAMPLE_TYPE)multiSampleIndex, NULL);
multiSampleArray[multiSampleIndex] = SUCCEEDED(result);
}
}
bool Renderer9::getBGRATextureSupport() const
{
// DirectX 9 always supports BGRA
return true;
}
bool Renderer9::getDXT1TextureSupport()
{
return mDXT1TextureSupport;
}
bool Renderer9::getDXT3TextureSupport()
{
return mDXT3TextureSupport;
}
bool Renderer9::getDXT5TextureSupport()
{
return mDXT5TextureSupport;
}
bool Renderer9::getDepthTextureSupport() const
{
return mDepthTextureSupport;
}
bool Renderer9::getFloat32TextureSupport(bool *filtering, bool *renderable)
{
*filtering = mFloat32FilterSupport;
*renderable = mFloat32RenderSupport;
return mFloat32TextureSupport;
}
bool Renderer9::getFloat16TextureSupport(bool *filtering, bool *renderable)
{
*filtering = mFloat16FilterSupport;
*renderable = mFloat16RenderSupport;
return mFloat16TextureSupport;
}
bool Renderer9::getLuminanceTextureSupport()
{
return mLuminanceTextureSupport;
}
bool Renderer9::getLuminanceAlphaTextureSupport()
{
return mLuminanceAlphaTextureSupport;
}
bool Renderer9::getTextureFilterAnisotropySupport() const
{
return mSupportsTextureFilterAnisotropy;
}
float Renderer9::getTextureMaxAnisotropy() const
{
if (mSupportsTextureFilterAnisotropy)
{
return static_cast<float>(mDeviceCaps.MaxAnisotropy);
}
return 1.0f;
}
bool Renderer9::getEventQuerySupport()
{
return mEventQuerySupport;
}
unsigned int Renderer9::getMaxVertexTextureImageUnits() const
{
META_ASSERT(MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 <= gl::IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS);
return mVertexTextureSupport ? MAX_TEXTURE_IMAGE_UNITS_VTF_SM3 : 0;
}
unsigned int Renderer9::getMaxCombinedTextureImageUnits() const
{
return gl::MAX_TEXTURE_IMAGE_UNITS + getMaxVertexTextureImageUnits();
}
unsigned int Renderer9::getReservedVertexUniformVectors() const
{
return 2; // dx_ViewAdjust and dx_DepthRange.
}
unsigned int Renderer9::getReservedFragmentUniformVectors() const
{
return 3; // dx_ViewCoords, dx_DepthFront and dx_DepthRange.
}
unsigned int Renderer9::getMaxVertexUniformVectors() const
{
return MAX_VERTEX_CONSTANT_VECTORS_D3D9 - getReservedVertexUniformVectors();
}
unsigned int Renderer9::getMaxFragmentUniformVectors() const
{
const int maxPixelConstantVectors = (getMajorShaderModel() >= 3) ? MAX_PIXEL_CONSTANT_VECTORS_SM3 : MAX_PIXEL_CONSTANT_VECTORS_SM2;
return maxPixelConstantVectors - getReservedFragmentUniformVectors();
}
unsigned int Renderer9::getMaxVaryingVectors() const
{
return (getMajorShaderModel() >= 3) ? MAX_VARYING_VECTORS_SM3 : MAX_VARYING_VECTORS_SM2;
}
bool Renderer9::getNonPower2TextureSupport() const
{
return mSupportsNonPower2Textures;
}
bool Renderer9::getOcclusionQuerySupport() const
{
return mOcclusionQuerySupport;
}
bool Renderer9::getInstancingSupport() const
{
return mDeviceCaps.PixelShaderVersion >= D3DPS_VERSION(3, 0);
}
bool Renderer9::getShareHandleSupport() const
{
// PIX doesn't seem to support using share handles, so disable them.
return (mD3d9Ex != NULL) && !gl::perfActive();
}
bool Renderer9::getDerivativeInstructionSupport() const
{
return (mDeviceCaps.PS20Caps.Caps & D3DPS20CAPS_GRADIENTINSTRUCTIONS) != 0;
}
bool Renderer9::getPostSubBufferSupport() const
{
return true;
}
int Renderer9::getMajorShaderModel() const
{
return D3DSHADER_VERSION_MAJOR(mDeviceCaps.PixelShaderVersion);
}
float Renderer9::getMaxPointSize() const
{
// Point size clamped at 1.0f for SM2
return getMajorShaderModel() == 3 ? mDeviceCaps.MaxPointSize : 1.0f;
}
int Renderer9::getMaxViewportDimension() const
{
int maxTextureDimension = std::min(std::min(getMaxTextureWidth(), getMaxTextureHeight()),
(int)gl::IMPLEMENTATION_MAX_TEXTURE_SIZE);
return maxTextureDimension;
}
int Renderer9::getMaxTextureWidth() const
{
return (int)mDeviceCaps.MaxTextureWidth;
}
int Renderer9::getMaxTextureHeight() const
{
return (int)mDeviceCaps.MaxTextureHeight;
}
bool Renderer9::get32BitIndexSupport() const
{
return mDeviceCaps.MaxVertexIndex >= (1 << 16);
}
DWORD Renderer9::getCapsDeclTypes() const
{
return mDeviceCaps.DeclTypes;
}
int Renderer9::getMinSwapInterval() const
{
return mMinSwapInterval;
}
int Renderer9::getMaxSwapInterval() const
{
return mMaxSwapInterval;
}
int Renderer9::getMaxSupportedSamples() const
{
return mMaxSupportedSamples;
}
int Renderer9::getNearestSupportedSamples(D3DFORMAT format, int requested) const
{
if (requested == 0)
{
return requested;
}
std::map<D3DFORMAT, bool *>::const_iterator itr = mMultiSampleSupport.find(format);
if (itr == mMultiSampleSupport.end())
{
if (format == D3DFMT_UNKNOWN)
return 0;
return -1;
}
for (int i = requested; i <= D3DMULTISAMPLE_16_SAMPLES; ++i)
{
if (itr->second[i] && i != D3DMULTISAMPLE_NONMASKABLE)
{
return i;
}
}
return -1;
}
unsigned int Renderer9::getMaxRenderTargets() const
{
// we do not support MRT in d3d9
return 1;
}
D3DFORMAT Renderer9::ConvertTextureInternalFormat(GLint internalformat)
{
switch (internalformat)
{
case GL_DEPTH_COMPONENT16:
case GL_DEPTH_COMPONENT32_OES:
case GL_DEPTH24_STENCIL8_OES:
return D3DFMT_INTZ;
case GL_COMPRESSED_RGB_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
return D3DFMT_DXT1;
case GL_COMPRESSED_RGBA_S3TC_DXT3_ANGLE:
return D3DFMT_DXT3;
case GL_COMPRESSED_RGBA_S3TC_DXT5_ANGLE:
return D3DFMT_DXT5;
case GL_RGBA32F_EXT:
case GL_RGB32F_EXT:
case GL_ALPHA32F_EXT:
case GL_LUMINANCE32F_EXT:
case GL_LUMINANCE_ALPHA32F_EXT:
return D3DFMT_A32B32G32R32F;
case GL_RGBA16F_EXT:
case GL_RGB16F_EXT:
case GL_ALPHA16F_EXT:
case GL_LUMINANCE16F_EXT:
case GL_LUMINANCE_ALPHA16F_EXT:
return D3DFMT_A16B16G16R16F;
case GL_LUMINANCE8_EXT:
if (getLuminanceTextureSupport())
{
return D3DFMT_L8;
}
break;
case GL_LUMINANCE8_ALPHA8_EXT:
if (getLuminanceAlphaTextureSupport())
{
return D3DFMT_A8L8;
}
break;
case GL_RGB8_OES:
case GL_RGB565:
return D3DFMT_X8R8G8B8;
}
return D3DFMT_A8R8G8B8;
}
bool Renderer9::copyToRenderTarget(TextureStorageInterface2D *dest, TextureStorageInterface2D *source)
{
bool result = false;
if (source && dest)
{
TextureStorage9_2D *source9 = TextureStorage9_2D::makeTextureStorage9_2D(source->getStorageInstance());
TextureStorage9_2D *dest9 = TextureStorage9_2D::makeTextureStorage9_2D(dest->getStorageInstance());
int levels = source9->levelCount();
for (int i = 0; i < levels; ++i)
{
IDirect3DSurface9 *srcSurf = source9->getSurfaceLevel(i, false);
IDirect3DSurface9 *dstSurf = dest9->getSurfaceLevel(i, false);
result = copyToRenderTarget(dstSurf, srcSurf, source9->isManaged());
if (srcSurf) srcSurf->Release();
if (dstSurf) dstSurf->Release();
if (!result)
return false;
}
}
return result;
}
bool Renderer9::copyToRenderTarget(TextureStorageInterfaceCube *dest, TextureStorageInterfaceCube *source)
{
bool result = false;
if (source && dest)
{
TextureStorage9_Cube *source9 = TextureStorage9_Cube::makeTextureStorage9_Cube(source->getStorageInstance());
TextureStorage9_Cube *dest9 = TextureStorage9_Cube::makeTextureStorage9_Cube(dest->getStorageInstance());
int levels = source9->levelCount();
for (int f = 0; f < 6; f++)
{
for (int i = 0; i < levels; i++)
{
IDirect3DSurface9 *srcSurf = source9->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, false);
IDirect3DSurface9 *dstSurf = dest9->getCubeMapSurface(GL_TEXTURE_CUBE_MAP_POSITIVE_X + f, i, true);
result = copyToRenderTarget(dstSurf, srcSurf, source9->isManaged());
if (srcSurf) srcSurf->Release();
if (dstSurf) dstSurf->Release();
if (!result)
return false;
}
}
}
return result;
}
D3DPOOL Renderer9::getBufferPool(DWORD usage) const
{
if (mD3d9Ex != NULL)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & D3DUSAGE_DYNAMIC))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterface2D *storage, GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copy(framebuffer, rect, destFormat, xoffset, yoffset, storage, level);
}
bool Renderer9::copyImage(gl::Framebuffer *framebuffer, const gl::Rectangle &sourceRect, GLenum destFormat,
GLint xoffset, GLint yoffset, TextureStorageInterfaceCube *storage, GLenum target, GLint level)
{
RECT rect;
rect.left = sourceRect.x;
rect.top = sourceRect.y;
rect.right = sourceRect.x + sourceRect.width;
rect.bottom = sourceRect.y + sourceRect.height;
return mBlit->copy(framebuffer, rect, destFormat, xoffset, yoffset, storage, target, level);
}
bool Renderer9::blitRect(gl::Framebuffer *readFramebuffer, const gl::Rectangle &readRect, gl::Framebuffer *drawFramebuffer, const gl::Rectangle &drawRect,
bool blitRenderTarget, bool blitDepthStencil)
{
endScene();
if (blitRenderTarget)
{
gl::Renderbuffer *readBuffer = readFramebuffer->getColorbuffer(0);
gl::Renderbuffer *drawBuffer = drawFramebuffer->getColorbuffer(0);
RenderTarget9 *readRenderTarget = NULL;
RenderTarget9 *drawRenderTarget = NULL;
IDirect3DSurface9* readSurface = NULL;
IDirect3DSurface9* drawSurface = NULL;
if (readBuffer)
{
readRenderTarget = RenderTarget9::makeRenderTarget9(readBuffer->getRenderTarget());
}
if (drawBuffer)
{
drawRenderTarget = RenderTarget9::makeRenderTarget9(drawBuffer->getRenderTarget());
}
if (readRenderTarget)
{
readSurface = readRenderTarget->getSurface();
}
if (drawRenderTarget)
{
drawSurface = drawRenderTarget->getSurface();
}
if (!readSurface || !drawSurface)
{
ERR("Failed to retrieve the render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
RECT srcRect;
srcRect.left = readRect.x;
srcRect.right = readRect.x + readRect.width;
srcRect.top = readRect.y;
srcRect.bottom = readRect.y + readRect.height;
RECT dstRect;
dstRect.left = drawRect.x;
dstRect.right = drawRect.x + drawRect.width;
dstRect.top = drawRect.y;
dstRect.bottom = drawRect.y + drawRect.height;
HRESULT result = mDevice->StretchRect(readSurface, &srcRect, drawSurface, &dstRect, D3DTEXF_NONE);
readSurface->Release();
drawSurface->Release();
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return false;
}
}
if (blitDepthStencil)
{
gl::Renderbuffer *readBuffer = readFramebuffer->getDepthOrStencilbuffer();
gl::Renderbuffer *drawBuffer = drawFramebuffer->getDepthOrStencilbuffer();
RenderTarget9 *readDepthStencil = NULL;
RenderTarget9 *drawDepthStencil = NULL;
IDirect3DSurface9* readSurface = NULL;
IDirect3DSurface9* drawSurface = NULL;
if (readBuffer)
{
readDepthStencil = RenderTarget9::makeRenderTarget9(readBuffer->getDepthStencil());
}
if (drawBuffer)
{
drawDepthStencil = RenderTarget9::makeRenderTarget9(drawBuffer->getDepthStencil());
}
if (readDepthStencil)
{
readSurface = readDepthStencil->getSurface();
}
if (drawDepthStencil)
{
drawSurface = drawDepthStencil->getSurface();
}
if (!readSurface || !drawSurface)
{
ERR("Failed to retrieve the render target.");
return gl::error(GL_OUT_OF_MEMORY, false);
}
HRESULT result = mDevice->StretchRect(readSurface, NULL, drawSurface, NULL, D3DTEXF_NONE);
readSurface->Release();
drawSurface->Release();
if (FAILED(result))
{
ERR("BlitFramebufferANGLE failed: StretchRect returned %x.", result);
return false;
}
}
return true;
}
void Renderer9::readPixels(gl::Framebuffer *framebuffer, GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type,
GLsizei outputPitch, bool packReverseRowOrder, GLint packAlignment, void* pixels)
{
RenderTarget9 *renderTarget = NULL;
IDirect3DSurface9 *surface = NULL;
gl::Renderbuffer *colorbuffer = framebuffer->getColorbuffer(0);
if (colorbuffer)
{
renderTarget = RenderTarget9::makeRenderTarget9(colorbuffer->getRenderTarget());
}
if (renderTarget)
{
surface = renderTarget->getSurface();
}
if (!surface)
{
// context must be lost
return;
}
D3DSURFACE_DESC desc;
surface->GetDesc(&desc);
if (desc.MultiSampleType != D3DMULTISAMPLE_NONE)
{
UNIMPLEMENTED(); // FIXME: Requires resolve using StretchRect into non-multisampled render target
surface->Release();
return gl::error(GL_OUT_OF_MEMORY);
}
HRESULT result;
IDirect3DSurface9 *systemSurface = NULL;
bool directToPixels = !packReverseRowOrder && packAlignment <= 4 && getShareHandleSupport() &&
x == 0 && y == 0 && UINT(width) == desc.Width && UINT(height) == desc.Height &&
desc.Format == D3DFMT_A8R8G8B8 && format == GL_BGRA_EXT && type == GL_UNSIGNED_BYTE;
if (directToPixels)
{
// Use the pixels ptr as a shared handle to write directly into client's memory
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format,
D3DPOOL_SYSTEMMEM, &systemSurface, &pixels);
if (FAILED(result))
{
// Try again without the shared handle
directToPixels = false;
}
}
if (!directToPixels)
{
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format,
D3DPOOL_SYSTEMMEM, &systemSurface, NULL);
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
surface->Release();
return gl::error(GL_OUT_OF_MEMORY);
}
}
result = mDevice->GetRenderTargetData(surface, systemSurface);
surface->Release();
surface = NULL;
if (FAILED(result))
{
systemSurface->Release();
// It turns out that D3D will sometimes produce more error
// codes than those documented.
if (d3d9::isDeviceLostError(result))
{
notifyDeviceLost();
return gl::error(GL_OUT_OF_MEMORY);
}
else
{
UNREACHABLE();
return;
}
}
if (directToPixels)
{
systemSurface->Release();
return;
}
RECT rect;
rect.left = gl::clamp(x, 0L, static_cast<LONG>(desc.Width));
rect.top = gl::clamp(y, 0L, static_cast<LONG>(desc.Height));
rect.right = gl::clamp(x + width, 0L, static_cast<LONG>(desc.Width));
rect.bottom = gl::clamp(y + height, 0L, static_cast<LONG>(desc.Height));
D3DLOCKED_RECT lock;
result = systemSurface->LockRect(&lock, &rect, D3DLOCK_READONLY);
if (FAILED(result))
{
UNREACHABLE();
systemSurface->Release();
return; // No sensible error to generate
}
unsigned char *dest = (unsigned char*)pixels;
unsigned short *dest16 = (unsigned short*)pixels;
unsigned char *source;
int inputPitch;
if (packReverseRowOrder)
{
source = ((unsigned char*)lock.pBits) + lock.Pitch * (rect.bottom - rect.top - 1);
inputPitch = -lock.Pitch;
}
else
{
source = (unsigned char*)lock.pBits;
inputPitch = lock.Pitch;
}
unsigned int fastPixelSize = 0;
if (desc.Format == D3DFMT_A8R8G8B8 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_BYTE)
{
fastPixelSize = 4;
}
else if ((desc.Format == D3DFMT_A4R4G4B4 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT) ||
(desc.Format == D3DFMT_A1R5G5B5 &&
format == GL_BGRA_EXT &&
type == GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT))
{
fastPixelSize = 2;
}
else if (desc.Format == D3DFMT_A16B16G16R16F &&
format == GL_RGBA &&
type == GL_HALF_FLOAT_OES)
{
fastPixelSize = 8;
}
else if (desc.Format == D3DFMT_A32B32G32R32F &&
format == GL_RGBA &&
type == GL_FLOAT)
{
fastPixelSize = 16;
}
for (int j = 0; j < rect.bottom - rect.top; j++)
{
if (fastPixelSize != 0)
{
// Fast path for formats which require no translation:
// D3DFMT_A8R8G8B8 to BGRA/UNSIGNED_BYTE
// D3DFMT_A4R4G4B4 to BGRA/UNSIGNED_SHORT_4_4_4_4_REV_EXT
// D3DFMT_A1R5G5B5 to BGRA/UNSIGNED_SHORT_1_5_5_5_REV_EXT
// D3DFMT_A16B16G16R16F to RGBA/HALF_FLOAT_OES
// D3DFMT_A32B32G32R32F to RGBA/FLOAT
//
// Note that buffers with no alpha go through the slow path below.
memcpy(dest + j * outputPitch,
source + j * inputPitch,
(rect.right - rect.left) * fastPixelSize);
continue;
}
else if (desc.Format == D3DFMT_A8R8G8B8 &&
format == GL_RGBA &&
type == GL_UNSIGNED_BYTE)
{
// Fast path for swapping red with blue
for (int i = 0; i < rect.right - rect.left; i++)
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
*(unsigned int*)(dest + 4 * i + j * outputPitch) =
(argb & 0xFF00FF00) | // Keep alpha and green
(argb & 0x00FF0000) >> 16 | // Move red to blue
(argb & 0x000000FF) << 16; // Move blue to red
}
continue;
}
for (int i = 0; i < rect.right - rect.left; i++)
{
float r;
float g;
float b;
float a;
switch (desc.Format)
{
case D3DFMT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case D3DFMT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i + j * inputPitch);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case D3DFMT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * inputPitch);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
case D3DFMT_A32B32G32R32F:
{
// float formats in D3D are stored rgba, rather than the other way round
r = *((float*)(source + 16 * i + j * inputPitch) + 0);
g = *((float*)(source + 16 * i + j * inputPitch) + 1);
b = *((float*)(source + 16 * i + j * inputPitch) + 2);
a = *((float*)(source + 16 * i + j * inputPitch) + 3);
}
break;
case D3DFMT_A16B16G16R16F:
{
// float formats in D3D are stored rgba, rather than the other way round
r = gl::float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 0));
g = gl::float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 1));
b = gl::float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 2));
a = gl::float16ToFloat32(*((unsigned short*)(source + 8 * i + j * inputPitch) + 3));
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
return;
}
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE();
}
break;
case GL_BGRA_EXT:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * i + j * outputPitch + 0] = (unsigned char)(255 * b + 0.5f);
dest[4 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * i + j * outputPitch + 2] = (unsigned char)(255 * r + 0.5f);
dest[4 * i + j * outputPitch + 3] = (unsigned char)(255 * a + 0.5f);
break;
case GL_UNSIGNED_SHORT_4_4_4_4_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(15 * a + 0.5f) << 12)|
((unsigned short)(15 * r + 0.5f) << 8) |
((unsigned short)(15 * g + 0.5f) << 4) |
((unsigned short)(15 * b + 0.5f) << 0);
break;
case GL_UNSIGNED_SHORT_1_5_5_5_REV_EXT:
// According to the desktop GL spec in the "Transfer of Pixel Rectangles" section
// this type is packed as follows:
// 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
// --------------------------------------------------------------------------------
// | 4th | 3rd | 2nd | 1st component |
// --------------------------------------------------------------------------------
// in the case of BGRA_EXT, B is the first component, G the second, and so forth.
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)( a + 0.5f) << 15) |
((unsigned short)(31 * r + 0.5f) << 10) |
((unsigned short)(31 * g + 0.5f) << 5) |
((unsigned short)(31 * b + 0.5f) << 0);
break;
default: UNREACHABLE();
}
break;
case GL_RGB:
switch (type)
{
case GL_UNSIGNED_SHORT_5_6_5:
dest16[i + j * outputPitch / sizeof(unsigned short)] =
((unsigned short)(31 * b + 0.5f) << 0) |
((unsigned short)(63 * g + 0.5f) << 5) |
((unsigned short)(31 * r + 0.5f) << 11);
break;
case GL_UNSIGNED_BYTE:
dest[3 * i + j * outputPitch + 0] = (unsigned char)(255 * r + 0.5f);
dest[3 * i + j * outputPitch + 1] = (unsigned char)(255 * g + 0.5f);
dest[3 * i + j * outputPitch + 2] = (unsigned char)(255 * b + 0.5f);
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
}
systemSurface->UnlockRect();
systemSurface->Release();
}
RenderTarget *Renderer9::createRenderTarget(SwapChain *swapChain, bool depth)
{
SwapChain9 *swapChain9 = SwapChain9::makeSwapChain9(swapChain);
IDirect3DSurface9 *surface = NULL;
if (depth)
{
surface = swapChain9->getDepthStencil();
}
else
{
surface = swapChain9->getRenderTarget();
}
RenderTarget9 *renderTarget = new RenderTarget9(this, surface);
return renderTarget;
}
RenderTarget *Renderer9::createRenderTarget(int width, int height, GLenum format, GLsizei samples, bool depth)
{
RenderTarget9 *renderTarget = new RenderTarget9(this, width, height, format, samples);
return renderTarget;
}
ShaderExecutable *Renderer9::loadExecutable(const void *function, size_t length, rx::ShaderType type)
{
ShaderExecutable9 *executable = NULL;
switch (type)
{
case rx::SHADER_VERTEX:
{
IDirect3DVertexShader9 *vshader = createVertexShader((DWORD*)function, length);
if (vshader)
{
executable = new ShaderExecutable9(function, length, vshader);
}
}
break;
case rx::SHADER_PIXEL:
{
IDirect3DPixelShader9 *pshader = createPixelShader((DWORD*)function, length);
if (pshader)
{
executable = new ShaderExecutable9(function, length, pshader);
}
}
break;
default:
UNREACHABLE();
break;
}
return executable;
}
ShaderExecutable *Renderer9::compileToExecutable(gl::InfoLog &infoLog, const char *shaderHLSL, rx::ShaderType type)
{
const char *profile = NULL;
switch (type)
{
case rx::SHADER_VERTEX:
profile = getMajorShaderModel() >= 3 ? "vs_3_0" : "vs_2_0";
break;
case rx::SHADER_PIXEL:
profile = getMajorShaderModel() >= 3 ? "ps_3_0" : "ps_2_0";
break;
default:
UNREACHABLE();
return NULL;
}
ID3DBlob *binary = (ID3DBlob*)compileToBinary(infoLog, shaderHLSL, profile, ANGLE_COMPILE_OPTIMIZATION_LEVEL, true);
if (!binary)
return NULL;
ShaderExecutable *executable = loadExecutable(binary->GetBufferPointer(), binary->GetBufferSize(), type);
binary->Release();
return executable;
}
bool Renderer9::boxFilter(IDirect3DSurface9 *source, IDirect3DSurface9 *dest)
{
return mBlit->boxFilter(source, dest);
}
D3DPOOL Renderer9::getTexturePool(DWORD usage) const
{
if (mD3d9Ex != NULL)
{
return D3DPOOL_DEFAULT;
}
else
{
if (!(usage & (D3DUSAGE_DEPTHSTENCIL | D3DUSAGE_RENDERTARGET)))
{
return D3DPOOL_MANAGED;
}
}
return D3DPOOL_DEFAULT;
}
bool Renderer9::copyToRenderTarget(IDirect3DSurface9 *dest, IDirect3DSurface9 *source, bool fromManaged)
{
if (source && dest)
{
HRESULT result = D3DERR_OUTOFVIDEOMEMORY;
if (fromManaged)
{
D3DSURFACE_DESC desc;
source->GetDesc(&desc);
IDirect3DSurface9 *surf = 0;
result = mDevice->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &surf, NULL);
if (SUCCEEDED(result))
{
Image9::copyLockableSurfaces(surf, source);
result = mDevice->UpdateSurface(surf, NULL, dest, NULL);
surf->Release();
}
}
else
{
endScene();
result = mDevice->StretchRect(source, NULL, dest, NULL, D3DTEXF_NONE);
}
if (FAILED(result))
{
ASSERT(result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY);
return false;
}
}
return true;
}
Image *Renderer9::createImage()
{
return new Image9();
}
void Renderer9::generateMipmap(Image *dest, Image *src)
{
Image9 *src9 = Image9::makeImage9(src);
Image9 *dst9 = Image9::makeImage9(dest);
Image9::generateMipmap(dst9, src9);
}
TextureStorage *Renderer9::createTextureStorage2D(SwapChain *swapChain)
{
SwapChain9 *swapChain9 = SwapChain9::makeSwapChain9(swapChain);
return new TextureStorage9_2D(this, swapChain9);
}
TextureStorage *Renderer9::createTextureStorage2D(int levels, GLenum internalformat, GLenum usage, bool forceRenderable, GLsizei width, GLsizei height)
{
return new TextureStorage9_2D(this, levels, internalformat, usage, forceRenderable, width, height);
}
TextureStorage *Renderer9::createTextureStorageCube(int levels, GLenum internalformat, GLenum usage, bool forceRenderable, int size)
{
return new TextureStorage9_Cube(this, levels, internalformat, usage, forceRenderable, size);
}
bool Renderer9::getLUID(LUID *adapterLuid) const
{
adapterLuid->HighPart = 0;
adapterLuid->LowPart = 0;
if (mD3d9Ex)
{
mD3d9Ex->GetAdapterLUID(mAdapter, adapterLuid);
return true;
}
return false;
}
}