blob: 5c091df2b41c519674431d305959cb3e04bd5221 [file] [log] [blame]
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
* vim: set ts=8 sts=4 et sw=4 tw=99:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "jsarray.h"
#include "mozilla/DebugOnly.h"
#include "mozilla/FloatingPoint.h"
#include "mozilla/MathAlgorithms.h"
#include "mozilla/Util.h"
#include "jsapi.h"
#include "jsatom.h"
#include "jscntxt.h"
#include "jsfriendapi.h"
#include "jsfun.h"
#include "jsiter.h"
#include "jsnum.h"
#include "jsobj.h"
#include "jstypes.h"
#include "jsutil.h"
#include "ds/Sort.h"
#include "vm/ArgumentsObject.h"
#include "vm/ForkJoin.h"
#include "vm/Interpreter.h"
#include "vm/NumericConversions.h"
#include "vm/Shape.h"
#include "vm/StringBuffer.h"
#include "jsatominlines.h"
#include "jscntxtinlines.h"
#include "jsstrinlines.h"
#include "vm/ArgumentsObject-inl.h"
#include "vm/Interpreter-inl.h"
#include "vm/ObjectImpl-inl.h"
#include "nb/memory_scope.h"
using namespace js;
using namespace js::gc;
using namespace js::types;
using mozilla::Abs;
using mozilla::ArrayLength;
using mozilla::DebugOnly;
using mozilla::IsNaN;
using mozilla::PointerRangeSize;
JSBool
js::GetLengthProperty(JSContext *cx, HandleObject obj, uint32_t *lengthp)
{
if (obj->isArray()) {
*lengthp = obj->getArrayLength();
return true;
}
if (obj->is<ArgumentsObject>()) {
ArgumentsObject &argsobj = obj->as<ArgumentsObject>();
if (!argsobj.hasOverriddenLength()) {
*lengthp = argsobj.initialLength();
return true;
}
}
RootedValue value(cx);
if (!JSObject::getProperty(cx, obj, obj, cx->names().length, &value))
return false;
if (value.isInt32()) {
*lengthp = uint32_t(value.toInt32()); // uint32_t cast does ToUint32
return true;
}
return ToUint32(cx, value, lengthp);
}
/*
* Determine if the id represents an array index.
*
* An id is an array index according to ECMA by (15.4):
*
* "Array objects give special treatment to a certain class of property names.
* A property name P (in the form of a string value) is an array index if and
* only if ToString(ToUint32(P)) is equal to P and ToUint32(P) is not equal
* to 2^32-1."
*
* This means the largest allowed index is actually 2^32-2 (4294967294).
*
* In our implementation, it would be sufficient to check for JSVAL_IS_INT(id)
* except that by using signed 31-bit integers we miss the top half of the
* valid range. This function checks the string representation itself; note
* that calling a standard conversion routine might allow strings such as
* "08" or "4.0" as array indices, which they are not.
*
*/
JS_FRIEND_API(bool)
js::StringIsArrayIndex(JSLinearString *str, uint32_t *indexp)
{
const jschar *s = str->chars();
uint32_t length = str->length();
const jschar *end = s + length;
if (length == 0 || length > (sizeof("4294967294") - 1) || !JS7_ISDEC(*s))
return false;
uint32_t c = 0, previous = 0;
uint32_t index = JS7_UNDEC(*s++);
/* Don't allow leading zeros. */
if (index == 0 && s != end)
return false;
for (; s < end; s++) {
if (!JS7_ISDEC(*s))
return false;
previous = index;
c = JS7_UNDEC(*s);
index = 10 * index + c;
}
/* Make sure we didn't overflow. */
if (previous < (MAX_ARRAY_INDEX / 10) || (previous == (MAX_ARRAY_INDEX / 10) &&
c <= (MAX_ARRAY_INDEX % 10))) {
JS_ASSERT(index <= MAX_ARRAY_INDEX);
*indexp = index;
return true;
}
return false;
}
bool
DoubleIndexToId(JSContext *cx, double index, MutableHandleId id)
{
if (index == uint32_t(index))
return IndexToId(cx, uint32_t(index), id);
Value tmp = DoubleValue(index);
return ValueToId<CanGC>(cx, HandleValue::fromMarkedLocation(&tmp), id);
}
/*
* If the property at the given index exists, get its value into location
* pointed by vp and set *hole to false. Otherwise set *hole to true and *vp
* to JSVAL_VOID. This function assumes that the location pointed by vp is
* properly rooted and can be used as GC-protected storage for temporaries.
*/
static inline bool
DoGetElement(JSContext *cx, HandleObject obj, double index, JSBool *hole, MutableHandleValue vp)
{
RootedId id(cx);
if (!DoubleIndexToId(cx, index, &id))
return false;
RootedObject obj2(cx);
RootedShape prop(cx);
if (!JSObject::lookupGeneric(cx, obj, id, &obj2, &prop))
return false;
if (!prop) {
vp.setUndefined();
*hole = true;
} else {
if (!JSObject::getGeneric(cx, obj, obj, id, vp))
return false;
*hole = false;
}
return true;
}
static inline bool
DoGetElement(JSContext *cx, HandleObject obj, uint32_t index, JSBool *hole, MutableHandleValue vp)
{
bool present;
if (!JSObject::getElementIfPresent(cx, obj, obj, index, vp, &present))
return false;
*hole = !present;
if (*hole)
vp.setUndefined();
return true;
}
template<typename IndexType>
static void
AssertGreaterThanZero(IndexType index)
{
JS_ASSERT(index >= 0);
JS_ASSERT(index == floor(index));
}
template<>
void
AssertGreaterThanZero(uint32_t index)
{
}
template<typename IndexType>
static JSBool
GetElement(JSContext *cx, HandleObject obj, IndexType index, JSBool *hole, MutableHandleValue vp)
{
AssertGreaterThanZero(index);
if (obj->isNative() && index < obj->getDenseInitializedLength()) {
vp.set(obj->getDenseElement(uint32_t(index)));
if (!vp.isMagic(JS_ELEMENTS_HOLE)) {
*hole = false;
return true;
}
}
if (obj->is<ArgumentsObject>()) {
if (obj->as<ArgumentsObject>().maybeGetElement(uint32_t(index), vp)) {
*hole = false;
return true;
}
}
return DoGetElement(cx, obj, index, hole, vp);
}
static bool
GetElementsSlow(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
{
for (uint32_t i = 0; i < length; i++) {
if (!JSObject::getElement(cx, aobj, aobj, i, MutableHandleValue::fromMarkedLocation(&vp[i])))
return false;
}
return true;
}
bool
js::GetElements(JSContext *cx, HandleObject aobj, uint32_t length, Value *vp)
{
if (aobj->isArray() && length <= aobj->getDenseInitializedLength() &&
!ObjectMayHaveExtraIndexedProperties(aobj))
{
/* No other indexed properties so hole = undefined */
const Value *srcbeg = aobj->getDenseElements();
const Value *srcend = srcbeg + length;
const Value *src = srcbeg;
for (Value *dst = vp; src < srcend; ++dst, ++src)
*dst = src->isMagic(JS_ELEMENTS_HOLE) ? UndefinedValue() : *src;
return true;
}
if (aobj->is<ArgumentsObject>()) {
ArgumentsObject &argsobj = aobj->as<ArgumentsObject>();
if (!argsobj.hasOverriddenLength()) {
if (argsobj.maybeGetElements(0, length, vp))
return true;
}
}
return GetElementsSlow(cx, aobj, length, vp);
}
/*
* Set the value of the property at the given index to v assuming v is rooted.
*/
static JSBool
SetArrayElement(JSContext *cx, HandleObject obj, double index, HandleValue v)
{
JS_ASSERT(index >= 0);
if (obj->isArray() && !obj->isIndexed()) {
/* Predicted/prefetched code should favor the remains-dense case. */
JSObject::EnsureDenseResult result = JSObject::ED_SPARSE;
do {
if (index > uint32_t(-1))
break;
uint32_t idx = uint32_t(index);
if (idx >= obj->getArrayLength() && !obj->arrayLengthIsWritable()) {
JS_ReportErrorFlagsAndNumber(cx, JSREPORT_ERROR, js_GetErrorMessage, NULL,
JSMSG_CANT_REDEFINE_ARRAY_LENGTH);
return false;
}
result = obj->ensureDenseElements(cx, idx, 1);
if (result != JSObject::ED_OK)
break;
if (idx >= obj->getArrayLength())
obj->setArrayLengthInt32(idx + 1);
JSObject::setDenseElementWithType(cx, obj, idx, v);
return true;
} while (false);
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
}
RootedId id(cx);
if (!DoubleIndexToId(cx, index, &id))
return false;
RootedValue tmp(cx, v);
return JSObject::setGeneric(cx, obj, obj, id, &tmp, true);
}
/*
* Attempt to delete the element |index| from |obj| as if by
* |obj.[[Delete]](index)|.
*
* If an error occurs while attempting to delete the element (that is, the call
* to [[Delete]] threw), return false.
*
* Otherwise set *succeeded to indicate whether the deletion attempt succeeded
* (that is, whether the call to [[Delete]] returned true or false). (Deletes
* generally fail only when the property is non-configurable, but proxies may
* implement different semantics.)
*/
static bool
DeleteArrayElement(JSContext *cx, HandleObject obj, double index, JSBool *succeeded)
{
JS_ASSERT(index >= 0);
JS_ASSERT(floor(index) == index);
if (obj->isArray() && !obj->isIndexed()) {
if (index <= UINT32_MAX) {
uint32_t idx = uint32_t(index);
if (idx < obj->getDenseInitializedLength()) {
obj->markDenseElementsNotPacked(cx);
obj->setDenseElement(idx, MagicValue(JS_ELEMENTS_HOLE));
if (!js_SuppressDeletedElement(cx, obj, idx))
return false;
}
}
*succeeded = true;
return true;
}
if (index <= UINT32_MAX)
return JSObject::deleteElement(cx, obj, uint32_t(index), succeeded);
return JSObject::deleteByValue(cx, obj, DoubleValue(index), succeeded);
}
/* ES6 20130308 draft 9.3.5 */
static bool
DeletePropertyOrThrow(JSContext *cx, HandleObject obj, double index)
{
JSBool succeeded;
if (!DeleteArrayElement(cx, obj, index, &succeeded))
return false;
if (succeeded)
return true;
RootedId id(cx);
RootedValue indexv(cx, NumberValue(index));
if (!ValueToId<CanGC>(cx, indexv, &id))
return false;
return obj->reportNotConfigurable(cx, id, JSREPORT_ERROR);
}
JSBool
js::SetLengthProperty(JSContext *cx, HandleObject obj, double length)
{
RootedValue v(cx, NumberValue(length));
return JSObject::setProperty(cx, obj, obj, cx->names().length, &v, true);
}
/*
* Since SpiderMonkey supports cross-class prototype-based delegation, we have
* to be careful about the length getter and setter being called on an object
* not of Array class. For the getter, we search obj's prototype chain for the
* array that caused this getter to be invoked. In the setter case to overcome
* the JSPROP_SHARED attribute, we must define a shadowing length property.
*/
static JSBool
array_length_getter(JSContext *cx, HandleObject obj_, HandleId id, MutableHandleValue vp)
{
RootedObject obj(cx, obj_);
do {
if (obj->isArray()) {
vp.setNumber(obj->getArrayLength());
return true;
}
if (!JSObject::getProto(cx, obj, &obj))
return false;
} while (obj);
return true;
}
static JSBool
array_length_setter(JSContext *cx, HandleObject obj, HandleId id, JSBool strict, MutableHandleValue vp)
{
if (!obj->isArray()) {
return JSObject::defineProperty(cx, obj, cx->names().length, vp,
NULL, NULL, JSPROP_ENUMERATE);
}
MOZ_ASSERT(obj->arrayLengthIsWritable(),
"setter shouldn't be called if property is non-writable");
return ArraySetLength(cx, obj, id, JSPROP_PERMANENT, vp, strict);
}
struct ReverseIndexComparator
{
bool operator()(const uint32_t& a, const uint32_t& b, bool *lessOrEqualp) {
MOZ_ASSERT(a != b, "how'd we get duplicate indexes?");
*lessOrEqualp = b <= a;
return true;
}
};
bool
js::CanonicalizeArrayLengthValue(JSContext *cx, HandleValue v, uint32_t *newLen)
{
if (!ToUint32(cx, v, newLen))
return false;
double d;
if (!ToNumber(cx, v, &d))
return false;
if (d == *newLen)
return true;
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
/* ES6 20130308 draft 8.4.2.4 ArraySetLength */
bool
js::ArraySetLength(JSContext *cx, HandleObject obj, HandleId id, unsigned attrs,
HandleValue value, bool setterIsStrict)
{
TRACK_MEMORY_SCOPE("Javascript");
MOZ_ASSERT(obj->isArray());
MOZ_ASSERT(id == NameToId(cx->names().length));
MOZ_ASSERT(attrs & JSPROP_PERMANENT);
MOZ_ASSERT(!(attrs & JSPROP_ENUMERATE));
/* Steps 1-2 are irrelevant in our implementation. */
/* Steps 3-5. */
uint32_t newLen;
if (!CanonicalizeArrayLengthValue(cx, value, &newLen))
return false;
/* Steps 6-7. */
bool lengthIsWritable = obj->arrayLengthIsWritable();
#ifdef DEBUG
{
RootedShape lengthShape(cx, obj->nativeLookup(cx, id));
MOZ_ASSERT(lengthShape);
MOZ_ASSERT(lengthShape->writable() == lengthIsWritable);
}
#endif
uint32_t oldLen = obj->getArrayLength();
/* Steps 8-9 for arrays with non-writable length. */
if (!lengthIsWritable) {
if (newLen == oldLen)
return true;
if (setterIsStrict) {
return JS_ReportErrorFlagsAndNumber(cx, JSREPORT_ERROR, js_GetErrorMessage, NULL,
JSMSG_CANT_REDEFINE_ARRAY_LENGTH);
}
return JSObject::reportReadOnly(cx, id, JSREPORT_STRICT | JSREPORT_WARNING);
}
/* Step 8. */
bool succeeded = true;
do {
// The initialized length and capacity of an array only need updating
// when non-hole elements are added or removed, which doesn't happen
// when array length stays the same or increases.
if (newLen >= oldLen)
break;
// Attempt to propagate dense-element optimization tricks, if possible,
// and avoid the generic (and accordingly slow) deletion code below.
// We can only do this if there are only densely-indexed elements.
// Once there's a sparse indexed element, there's no good way to know,
// save by enumerating all the properties to find it. But we *have* to
// know in case that sparse indexed element is non-configurable, as
// that element must prevent any deletions below it. Bug 586842 should
// fix this inefficiency by moving indexed storage to be entirely
// separate from non-indexed storage.
if (!obj->isIndexed()) {
uint32_t oldCapacity = obj->getDenseCapacity();
uint32_t oldInitializedLength = obj->getDenseInitializedLength();
MOZ_ASSERT(oldCapacity >= oldInitializedLength);
if (oldInitializedLength > newLen)
obj->setDenseInitializedLength(newLen);
if (oldCapacity > newLen)
obj->shrinkElements(cx, newLen);
// We've done the work of deleting any dense elements needing
// deletion, and there are no sparse elements. Thus we can skip
// straight to defining the length.
break;
}
// Step 15.
//
// Attempt to delete all elements above the new length, from greatest
// to least. If any of these deletions fails, we're supposed to define
// the length to one greater than the index that couldn't be deleted,
// *with the property attributes specified*. This might convert the
// length to be not the value specified, yet non-writable. (You may be
// forgiven for thinking these are interesting semantics.) Example:
//
// var arr =
// Object.defineProperty([0, 1, 2, 3], 1, { writable: false });
// Object.defineProperty(arr, "length",
// { value: 0, writable: false });
//
// will convert |arr| to an array of non-writable length two, then
// throw a TypeError.
//
// We implement this behavior, in the relevant lops below, by setting
// |succeeded| to false. Then we exit the loop, define the length
// appropriately, and only then throw a TypeError, if necessary.
uint32_t gap = oldLen - newLen;
const uint32_t RemoveElementsFastLimit = 1 << 24;
if (gap < RemoveElementsFastLimit) {
// If we're removing a relatively small number of elements, just do
// it exactly by the spec.
while (newLen < oldLen) {
/* Step 15a. */
oldLen--;
/* Steps 15b-d. */
JSBool deleteSucceeded;
if (!JSObject::deleteElement(cx, obj, oldLen, &deleteSucceeded))
return false;
if (!deleteSucceeded) {
newLen = oldLen + 1;
succeeded = false;
break;
}
}
} else {
// If we're removing a large number of elements from an array
// that's probably sparse, try a different tack. Get all the own
// property names, sift out the indexes in the deletion range into
// a vector, sort the vector greatest to least, then delete the
// indexes greatest to least using that vector. See bug 322135.
//
// This heuristic's kind of a huge guess -- "large number of
// elements" and "probably sparse" are completely unprincipled
// predictions. In the long run, bug 586842 will support the right
// fix: store sparse elements in a sorted data structure that
// permits fast in-reverse-order traversal and concurrent removals.
Vector<uint32_t> indexes(cx);
{
AutoIdVector props(cx);
if (!GetPropertyNames(cx, obj, JSITER_OWNONLY | JSITER_HIDDEN, &props))
return false;
for (size_t i = 0; i < props.length(); i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
uint32_t index;
if (!js_IdIsIndex(props[i], &index))
continue;
if (index >= newLen && index < oldLen) {
if (!indexes.append(index))
return false;
}
}
}
uint32_t count = indexes.length();
{
// We should use radix sort to be O(n), but this is uncommon
// enough that we'll punt til someone complains.
Vector<uint32_t> scratch(cx);
if (!scratch.resize(count))
return false;
MOZ_ALWAYS_TRUE(MergeSort(indexes.begin(), count, scratch.begin(),
ReverseIndexComparator()));
}
uint32_t index = UINT32_MAX;
for (uint32_t i = 0; i < count; i++) {
MOZ_ASSERT(indexes[i] < index, "indexes should never repeat");
index = indexes[i];
/* Steps 15b-d. */
JSBool deleteSucceeded;
if (!JSObject::deleteElement(cx, obj, index, &deleteSucceeded))
return false;
if (!deleteSucceeded) {
newLen = index + 1;
succeeded = false;
break;
}
}
}
} while (false);
/* Steps 12, 16. */
// Yes, we totally drop a non-stub getter/setter from a defineProperty
// API call on the floor here. Given that getter/setter will go away in
// the long run, with accessors replacing them both internally and at the
// API level, just run with this.
RootedShape lengthShape(cx, obj->nativeLookup(cx, id));
if (!JSObject::changeProperty(cx, obj, lengthShape, attrs,
JSPROP_PERMANENT | JSPROP_READONLY | JSPROP_SHARED,
array_length_getter, array_length_setter))
{
return false;
}
RootedValue v(cx, NumberValue(newLen));
AddTypePropertyId(cx, obj, id, v);
JSObject::setArrayLength(cx, obj, newLen);
// All operations past here until the |!succeeded| code must be infallible,
// so that all element fields remain properly synchronized.
// Trim the initialized length, if needed, to preserve the <= length
// invariant. (Capacity was already reduced during element deletion, if
// necessary.)
ObjectElements *header = obj->getElementsHeader();
header->initializedLength = Min(header->initializedLength, newLen);
if (attrs & JSPROP_READONLY) {
header->setNonwritableArrayLength();
// When an array's length becomes non-writable, writes to indexes
// greater than or equal to the length don't change the array. We
// handle this with a check for non-writable length in most places.
// But in JIT code every check counts -- so we piggyback the check on
// the already-required range check for |index < capacity| by making
// capacity of arrays with non-writable length never exceed the length.
if (obj->getDenseCapacity() > newLen) {
obj->shrinkElements(cx, newLen);
obj->getElementsHeader()->capacity = newLen;
}
}
if (setterIsStrict && !succeeded) {
RootedId elementId(cx);
if (!IndexToId(cx, newLen - 1, &elementId))
return false;
return obj->reportNotConfigurable(cx, elementId);
}
return true;
}
bool
js::WouldDefinePastNonwritableLength(JSContext *cx, HandleObject obj, uint32_t index, bool strict,
bool *definesPast)
{
if (!obj->isArray()) {
*definesPast = false;
return true;
}
uint32_t length = obj->getArrayLength();
if (index < length) {
*definesPast = false;
return true;
}
if (obj->arrayLengthIsWritable()) {
*definesPast = false;
return true;
}
*definesPast = true;
if (!strict && !cx->hasExtraWarningsOption())
return true;
// Error in strict mode code or warn with strict option.
// XXX include the index and maybe array length in the error message
unsigned flags = strict ? JSREPORT_ERROR : (JSREPORT_STRICT | JSREPORT_WARNING);
return JS_ReportErrorFlagsAndNumber(cx, flags, js_GetErrorMessage, NULL,
JSMSG_CANT_DEFINE_PAST_ARRAY_LENGTH);
}
static JSBool
array_addProperty(JSContext *cx, HandleObject obj, HandleId id,
MutableHandleValue vp)
{
uint32_t index, length;
if (!js_IdIsIndex(id, &index))
return true;
length = obj->getArrayLength();
if (index >= length) {
MOZ_ASSERT(obj->arrayLengthIsWritable(),
"how'd this element get added if length is non-writable?");
JSObject::setArrayLength(cx, obj, index + 1);
}
return true;
}
JSBool
js::ObjectMayHaveExtraIndexedProperties(JSObject *obj)
{
/*
* Whether obj may have indexed properties anywhere besides its dense
* elements. This includes other indexed properties in its shape hierarchy,
* and indexed properties or elements along its prototype chain.
*/
JS_ASSERT(obj->isNative());
if (obj->isIndexed())
return true;
/*
* Walk up the prototype chain and see if this indexed element already
* exists. If we hit the end of the prototype chain, it's safe to set the
* element on the original object.
*/
while ((obj = obj->getProto()) != NULL) {
/*
* If the prototype is a non-native object (possibly a dense array), or
* a native object (possibly a slow array) that has indexed properties,
* return true.
*/
if (!obj->isNative())
return true;
if (obj->isIndexed())
return true;
if (obj->getDenseInitializedLength() > 0)
return true;
}
return false;
}
Class js::ArrayClass = {
"Array",
JSCLASS_HAS_CACHED_PROTO(JSProto_Array),
array_addProperty,
JS_DeletePropertyStub, /* delProperty */
JS_PropertyStub, /* getProperty */
JS_StrictPropertyStub, /* setProperty */
JS_EnumerateStub,
JS_ResolveStub,
JS_ConvertStub,
NULL,
NULL, /* checkAccess */
NULL, /* call */
NULL, /* construct */
NULL, /* hasInstance */
NULL, /* trace */
{
NULL, /* outerObject */
NULL, /* innerObject */
NULL, /* iteratorObject */
false, /* isWrappedNative */
}
};
static bool
AddLengthProperty(JSContext *cx, HandleObject obj)
{
/*
* Add the 'length' property for a newly created array,
* and update the elements to be an empty array owned by the object.
* The shared emptyObjectElements singleton cannot be used for slow arrays,
* as accesses to 'length' will use the elements header.
*/
RootedId lengthId(cx, NameToId(cx->names().length));
JS_ASSERT(!obj->nativeLookup(cx, lengthId));
return JSObject::addProperty(cx, obj, lengthId, array_length_getter, array_length_setter,
SHAPE_INVALID_SLOT, JSPROP_PERMANENT | JSPROP_SHARED, 0, 0,
/* allowDictionary = */ false);
}
#if JS_HAS_TOSOURCE
JS_ALWAYS_INLINE bool
IsArray(const Value &v)
{
return v.isObject() && v.toObject().isArray();
}
JS_ALWAYS_INLINE bool
array_toSource_impl(JSContext *cx, CallArgs args)
{
JS_ASSERT(IsArray(args.thisv()));
Rooted<JSObject*> obj(cx, &args.thisv().toObject());
RootedValue elt(cx);
AutoCycleDetector detector(cx, obj);
if (!detector.init())
return false;
StringBuffer sb(cx);
if (detector.foundCycle()) {
if (!sb.append("[]"))
return false;
goto make_string;
}
if (!sb.append('['))
return false;
uint32_t length;
if (!GetLengthProperty(cx, obj, &length))
return false;
for (uint32_t index = 0; index < length; index++) {
JSBool hole;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, index, &hole, &elt)) {
return false;
}
/* Get element's character string. */
JSString *str;
if (hole) {
str = cx->runtime()->emptyString;
} else {
str = ValueToSource(cx, elt);
if (!str)
return false;
}
/* Append element to buffer. */
if (!sb.append(str))
return false;
if (index + 1 != length) {
if (!sb.append(", "))
return false;
} else if (hole) {
if (!sb.append(','))
return false;
}
}
/* Finalize the buffer. */
if (!sb.append(']'))
return false;
make_string:
JSString *str = sb.finishString();
if (!str)
return false;
args.rval().setString(str);
return true;
}
JSBool
array_toSource(JSContext *cx, unsigned argc, Value *vp)
{
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
return CallNonGenericMethod<IsArray, array_toSource_impl>(cx, args);
}
#endif
static bool
array_join_sub(JSContext *cx, CallArgs &args, bool locale)
{
TRACK_MEMORY_SCOPE("Javascript");
// This method is shared by Array.prototype.join and
// Array.prototype.toLocaleString. The steps in ES5 are nearly the same, so
// the annotations in this function apply to both toLocaleString and join.
// Step 1
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
AutoCycleDetector detector(cx, obj);
if (!detector.init())
return false;
if (detector.foundCycle()) {
args.rval().setString(cx->names().empty);
return true;
}
// Steps 2 and 3
uint32_t length;
if (!GetLengthProperty(cx, obj, &length))
return false;
// Steps 4 and 5
RootedString sepstr(cx, NULL);
if (!locale && args.hasDefined(0)) {
sepstr = ToString<CanGC>(cx, args.handleAt(0));
if (!sepstr)
return false;
}
static const jschar comma = ',';
const jschar *sep;
size_t seplen;
if (sepstr) {
sep = NULL;
seplen = sepstr->length();
} else {
sep = &comma;
seplen = 1;
}
// Step 6 is implicit in the loops below
StringBuffer sb(cx);
// Various optimized versions of steps 7-10
if (!locale && !seplen && obj->isArray() && !ObjectMayHaveExtraIndexedProperties(obj)) {
const Value *start = obj->getDenseElements();
const Value *end = start + obj->getDenseInitializedLength();
const Value *elem;
for (elem = start; elem < end; elem++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/*
* Object stringifying is slow; delegate it to a separate loop to
* keep this one tight.
*/
if (elem->isObject())
break;
if (!elem->isMagic(JS_ELEMENTS_HOLE) && !elem->isNullOrUndefined()) {
if (!ValueToStringBuffer(cx, *elem, sb))
return false;
}
}
RootedValue v(cx);
for (uint32_t i = uint32_t(PointerRangeSize(start, elem)); i < length; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSBool hole;
if (!GetElement(cx, obj, i, &hole, &v))
return false;
if (!hole && !v.isNullOrUndefined()) {
if (!ValueToStringBuffer(cx, v, sb))
return false;
}
}
} else {
RootedValue elt(cx);
for (uint32_t index = 0; index < length; index++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSBool hole;
if (!GetElement(cx, obj, index, &hole, &elt))
return false;
if (!hole && !elt.isNullOrUndefined()) {
if (locale) {
JSObject *robj = ToObject(cx, elt);
if (!robj)
return false;
RootedId id(cx, NameToId(cx->names().toLocaleString));
if (!robj->callMethod(cx, id, 0, NULL, &elt))
return false;
}
if (!ValueToStringBuffer(cx, elt, sb))
return false;
}
if (index + 1 != length) {
const jschar *sepchars = sep ? sep : sepstr->getChars(cx);
if (!sepchars || !sb.append(sepchars, seplen))
return false;
}
}
}
// Step 11
JSString *str = sb.finishString();
if (!str)
return false;
args.rval().setString(str);
return true;
}
/* ES5 15.4.4.2. NB: The algorithm here differs from the one in ES3. */
static JSBool
array_toString(JSContext *cx, unsigned argc, Value *vp)
{
TRACK_MEMORY_SCOPE("Javascript");
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
RootedValue join(cx, args.calleev());
if (!JSObject::getProperty(cx, obj, obj, cx->names().join, &join))
return false;
if (!js_IsCallable(join)) {
JSString *str = JS_BasicObjectToString(cx, obj);
if (!str)
return false;
args.rval().setString(str);
return true;
}
InvokeArgs args2(cx);
if (!args2.init(0))
return false;
args2.setCallee(join);
args2.setThis(ObjectValue(*obj));
/* Do the call. */
if (!Invoke(cx, args2))
return false;
args.rval().set(args2.rval());
return true;
}
/* ES5 15.4.4.3 */
static JSBool
array_toLocaleString(JSContext *cx, unsigned argc, Value *vp)
{
TRACK_MEMORY_SCOPE("Javascript");
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
return array_join_sub(cx, args, true);
}
/* ES5 15.4.4.5 */
static JSBool
array_join(JSContext *cx, unsigned argc, Value *vp)
{
TRACK_MEMORY_SCOPE("Javascript");
JS_CHECK_RECURSION(cx, return false);
CallArgs args = CallArgsFromVp(argc, vp);
return array_join_sub(cx, args, false);
}
static inline bool
InitArrayTypes(JSContext *cx, TypeObject *type, const Value *vector, unsigned count)
{
if (cx->typeInferenceEnabled() && !type->unknownProperties()) {
AutoEnterAnalysis enter(cx);
TypeSet *types = type->getProperty(cx, JSID_VOID, true);
if (!types)
return false;
for (unsigned i = 0; i < count; i++) {
if (vector[i].isMagic(JS_ELEMENTS_HOLE))
continue;
Type valtype = GetValueType(cx, vector[i]);
types->addType(cx, valtype);
}
}
return true;
}
enum ShouldUpdateTypes
{
UpdateTypes = true,
DontUpdateTypes = false
};
/* vector must point to rooted memory. */
static bool
InitArrayElements(JSContext *cx, HandleObject obj, uint32_t start, uint32_t count, const Value *vector, ShouldUpdateTypes updateTypes)
{
JS_ASSERT(count <= MAX_ARRAY_INDEX);
if (count == 0)
return true;
types::TypeObject *type = obj->getType(cx);
if (!type)
return false;
if (updateTypes && !InitArrayTypes(cx, type, vector, count))
return false;
/*
* Optimize for dense arrays so long as adding the given set of elements
* wouldn't otherwise make the array slow or exceed a non-writable array
* length.
*/
do {
if (!obj->isArray())
break;
if (ObjectMayHaveExtraIndexedProperties(obj))
break;
if (obj->shouldConvertDoubleElements())
break;
if (!obj->arrayLengthIsWritable() && start + count > obj->getArrayLength())
break;
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, start, count);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
uint32_t newlen = start + count;
if (newlen > obj->getArrayLength())
obj->setArrayLengthInt32(newlen);
JS_ASSERT(count < UINT32_MAX / sizeof(Value));
obj->copyDenseElements(start, vector, count);
JS_ASSERT_IF(count != 0, !obj->getDenseElement(newlen - 1).isMagic(JS_ELEMENTS_HOLE));
return true;
} while (false);
const Value* end = vector + count;
while (vector < end && start <= MAX_ARRAY_INDEX) {
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!SetArrayElement(cx, obj, start++, HandleValue::fromMarkedLocation(vector++))) {
return false;
}
}
if (vector == end)
return true;
JS_ASSERT(start == MAX_ARRAY_INDEX + 1);
RootedValue value(cx);
RootedId id(cx);
RootedValue indexv(cx);
double index = MAX_ARRAY_INDEX + 1;
do {
value = *vector++;
indexv = DoubleValue(index);
if (!ValueToId<CanGC>(cx, indexv, &id) ||
!JSObject::setGeneric(cx, obj, obj, id, &value, true))
{
return false;
}
index += 1;
} while (vector != end);
return true;
}
static JSBool
array_reverse(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
uint32_t len;
if (!GetLengthProperty(cx, obj, &len))
return false;
do {
if (!obj->isArray())
break;
if (ObjectMayHaveExtraIndexedProperties(obj))
break;
/* An empty array or an array with no elements is already reversed. */
if (len == 0 || obj->getDenseCapacity() == 0) {
args.rval().setObject(*obj);
return true;
}
/*
* It's actually surprisingly complicated to reverse an array due to the
* orthogonality of array length and array capacity while handling
* leading and trailing holes correctly. Reversing seems less likely to
* be a common operation than other array mass-mutation methods, so for
* now just take a probably-small memory hit (in the absence of too many
* holes in the array at its start) and ensure that the capacity is
* sufficient to hold all the elements in the array if it were full.
*/
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, len, 0);
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
/* Fill out the array's initialized length to its proper length. */
obj->ensureDenseInitializedLength(cx, len, 0);
RootedValue origlo(cx), orighi(cx);
uint32_t lo = 0, hi = len - 1;
for (; lo < hi; lo++, hi--) {
origlo = obj->getDenseElement(lo);
orighi = obj->getDenseElement(hi);
obj->setDenseElement(lo, orighi);
if (orighi.isMagic(JS_ELEMENTS_HOLE) &&
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(lo))) {
return false;
}
obj->setDenseElement(hi, origlo);
if (origlo.isMagic(JS_ELEMENTS_HOLE) &&
!js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(hi))) {
return false;
}
}
/*
* Per ECMA-262, don't update the length of the array, even if the new
* array has trailing holes (and thus the original array began with
* holes).
*/
args.rval().setObject(*obj);
return true;
} while (false);
RootedValue lowval(cx), hival(cx);
for (uint32_t i = 0, half = len / 2; i < half; i++) {
JSBool hole, hole2;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, i, &hole, &lowval) ||
!GetElement(cx, obj, len - i - 1, &hole2, &hival))
{
return false;
}
if (!hole && !hole2) {
if (!SetArrayElement(cx, obj, i, hival))
return false;
if (!SetArrayElement(cx, obj, len - i - 1, lowval))
return false;
} else if (hole && !hole2) {
if (!SetArrayElement(cx, obj, i, hival))
return false;
if (!DeletePropertyOrThrow(cx, obj, len - i - 1))
return false;
} else if (!hole && hole2) {
if (!DeletePropertyOrThrow(cx, obj, i))
return false;
if (!SetArrayElement(cx, obj, len - i - 1, lowval))
return false;
} else {
// No action required.
}
}
args.rval().setObject(*obj);
return true;
}
namespace {
inline bool
CompareStringValues(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
{
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSString *astr = a.toString();
JSString *bstr = b.toString();
int32_t result;
if (!CompareStrings(cx, astr, bstr, &result))
return false;
*lessOrEqualp = (result <= 0);
return true;
}
static uint64_t const powersOf10[] = {
1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000, 1000000000000ULL
};
static inline unsigned
NumDigitsBase10(uint32_t n)
{
/*
* This is just floor_log10(n) + 1
* Algorithm taken from
* http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
*/
uint32_t log2, t;
JS_CEILING_LOG2(log2, n);
t = log2 * 1233 >> 12;
return t - (n < powersOf10[t]) + 1;
}
inline bool
CompareLexicographicInt32(JSContext *cx, const Value &a, const Value &b, bool *lessOrEqualp)
{
int32_t aint = a.toInt32();
int32_t bint = b.toInt32();
/*
* If both numbers are equal ... trivial
* If only one of both is negative --> arithmetic comparison as char code
* of '-' is always less than any other digit
* If both numbers are negative convert them to positive and continue
* handling ...
*/
if (aint == bint) {
*lessOrEqualp = true;
} else if ((aint < 0) && (bint >= 0)) {
*lessOrEqualp = true;
} else if ((aint >= 0) && (bint < 0)) {
*lessOrEqualp = false;
} else {
uint32_t auint = Abs(aint);
uint32_t buint = Abs(bint);
/*
* ... get number of digits of both integers.
* If they have the same number of digits --> arithmetic comparison.
* If digits_a > digits_b: a < b*10e(digits_a - digits_b).
* If digits_b > digits_a: a*10e(digits_b - digits_a) <= b.
*/
unsigned digitsa = NumDigitsBase10(auint);
unsigned digitsb = NumDigitsBase10(buint);
if (digitsa == digitsb) {
*lessOrEqualp = (auint <= buint);
} else if (digitsa > digitsb) {
JS_ASSERT((digitsa - digitsb) < ArrayLength(powersOf10));
*lessOrEqualp = (uint64_t(auint) < uint64_t(buint) * powersOf10[digitsa - digitsb]);
} else { /* if (digitsb > digitsa) */
JS_ASSERT((digitsb - digitsa) < ArrayLength(powersOf10));
*lessOrEqualp = (uint64_t(auint) * powersOf10[digitsb - digitsa] <= uint64_t(buint));
}
}
return true;
}
inline bool
CompareSubStringValues(JSContext *cx, const jschar *s1, size_t l1,
const jschar *s2, size_t l2, bool *lessOrEqualp)
{
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
int32_t result;
if (!s1 || !s2 || !CompareChars(s1, l1, s2, l2, &result))
return false;
*lessOrEqualp = (result <= 0);
return true;
}
struct SortComparatorStrings
{
JSContext *const cx;
SortComparatorStrings(JSContext *cx)
: cx(cx) {}
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
return CompareStringValues(cx, a, b, lessOrEqualp);
}
};
struct SortComparatorLexicographicInt32
{
JSContext *const cx;
SortComparatorLexicographicInt32(JSContext *cx)
: cx(cx) {}
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp) {
return CompareLexicographicInt32(cx, a, b, lessOrEqualp);
}
};
struct StringifiedElement
{
size_t charsBegin;
size_t charsEnd;
size_t elementIndex;
};
struct SortComparatorStringifiedElements
{
JSContext *const cx;
const StringBuffer &sb;
SortComparatorStringifiedElements(JSContext *cx, const StringBuffer &sb)
: cx(cx), sb(sb) {}
bool operator()(const StringifiedElement &a, const StringifiedElement &b, bool *lessOrEqualp) {
return CompareSubStringValues(cx, sb.begin() + a.charsBegin, a.charsEnd - a.charsBegin,
sb.begin() + b.charsBegin, b.charsEnd - b.charsBegin,
lessOrEqualp);
}
};
struct SortComparatorFunction
{
JSContext *const cx;
const Value &fval;
FastInvokeGuard &fig;
SortComparatorFunction(JSContext *cx, const Value &fval, FastInvokeGuard &fig)
: cx(cx), fval(fval), fig(fig) { }
bool operator()(const Value &a, const Value &b, bool *lessOrEqualp);
};
bool
SortComparatorFunction::operator()(const Value &a, const Value &b, bool *lessOrEqualp)
{
/*
* array_sort deals with holes and undefs on its own and they should not
* come here.
*/
JS_ASSERT(!a.isMagic() && !a.isUndefined());
JS_ASSERT(!a.isMagic() && !b.isUndefined());
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
InvokeArgs &args = fig.args();
if (!args.init(2))
return false;
args.setCallee(fval);
args.setThis(UndefinedValue());
args[0] = a;
args[1] = b;
if (!fig.invoke(cx))
return false;
double cmp;
if (!ToNumber(cx, args.rval(), &cmp))
return false;
/*
* XXX eport some kind of error here if cmp is NaN? ECMA talks about
* 'consistent compare functions' that don't return NaN, but is silent
* about what the result should be. So we currently ignore it.
*/
*lessOrEqualp = (IsNaN(cmp) || cmp <= 0);
return true;
}
struct NumericElement
{
double dv;
size_t elementIndex;
};
bool
ComparatorNumericLeftMinusRight(const NumericElement &a, const NumericElement &b,
bool *lessOrEqualp)
{
*lessOrEqualp = (a.dv <= b.dv);
return true;
}
bool
ComparatorNumericRightMinusLeft(const NumericElement &a, const NumericElement &b,
bool *lessOrEqualp)
{
*lessOrEqualp = (b.dv <= a.dv);
return true;
}
typedef bool (*ComparatorNumeric)(const NumericElement &a, const NumericElement &b,
bool *lessOrEqualp);
ComparatorNumeric SortComparatorNumerics[] = {
NULL,
NULL,
ComparatorNumericLeftMinusRight,
ComparatorNumericRightMinusLeft
};
bool
ComparatorInt32LeftMinusRight(const Value &a, const Value &b, bool *lessOrEqualp)
{
*lessOrEqualp = (a.toInt32() <= b.toInt32());
return true;
}
bool
ComparatorInt32RightMinusLeft(const Value &a, const Value &b, bool *lessOrEqualp)
{
*lessOrEqualp = (b.toInt32() <= a.toInt32());
return true;
}
typedef bool (*ComparatorInt32)(const Value &a, const Value &b, bool *lessOrEqualp);
ComparatorInt32 SortComparatorInt32s[] = {
NULL,
NULL,
ComparatorInt32LeftMinusRight,
ComparatorInt32RightMinusLeft
};
// Note: Values for this enum must match up with SortComparatorNumerics
// and SortComparatorInt32s.
enum ComparatorMatchResult {
Match_Failure = 0,
Match_None,
Match_LeftMinusRight,
Match_RightMinusLeft
};
/*
* Specialize behavior for comparator functions with particular common bytecode
* patterns: namely, |return x - y| and |return y - x|.
*/
ComparatorMatchResult
MatchNumericComparator(JSContext *cx, const Value &v)
{
if (!v.isObject())
return Match_None;
JSObject &obj = v.toObject();
if (!obj.is<JSFunction>())
return Match_None;
JSFunction *fun = &obj.as<JSFunction>();
if (!fun->isInterpreted())
return Match_None;
JSScript *script = fun->getOrCreateScript(cx);
if (!script)
return Match_Failure;
jsbytecode *pc = script->code;
uint16_t arg0, arg1;
if (JSOp(*pc) != JSOP_GETARG)
return Match_None;
arg0 = GET_ARGNO(pc);
pc += JSOP_GETARG_LENGTH;
if (JSOp(*pc) != JSOP_GETARG)
return Match_None;
arg1 = GET_ARGNO(pc);
pc += JSOP_GETARG_LENGTH;
if (JSOp(*pc) != JSOP_SUB)
return Match_None;
pc += JSOP_SUB_LENGTH;
if (JSOp(*pc) != JSOP_RETURN)
return Match_None;
if (arg0 == 0 && arg1 == 1)
return Match_LeftMinusRight;
if (arg0 == 1 && arg1 == 0)
return Match_RightMinusLeft;
return Match_None;
}
template<typename K, typename C>
inline bool
MergeSortByKey(K keys, size_t len, K scratch, C comparator, AutoValueVector *vec)
{
MOZ_ASSERT(vec->length() >= len);
/* Sort keys. */
if (!MergeSort(keys, len, scratch, comparator))
return false;
/*
* Reorder vec by keys in-place, going element by element. When an out-of-
* place element is encountered, move that element to its proper position,
* displacing whatever element was at *that* point to its proper position,
* and so on until an element must be moved to the current position.
*
* At each outer iteration all elements up to |i| are sorted. If
* necessary each inner iteration moves some number of unsorted elements
* (including |i|) directly to sorted position. Thus on completion |*vec|
* is sorted, and out-of-position elements have moved once. Complexity is
* Θ(len) + O(len) == O(2*len), with each element visited at most twice.
*/
for (size_t i = 0; i < len; i++) {
size_t j = keys[i].elementIndex;
if (i == j)
continue; // fixed point
MOZ_ASSERT(j > i, "Everything less than |i| should be in the right place!");
Value tv = (*vec)[j];
do {
size_t k = keys[j].elementIndex;
keys[j].elementIndex = j;
(*vec)[j] = (*vec)[k];
j = k;
} while (j != i);
// We could assert the loop invariant that |i == keys[i].elementIndex|
// here if we synced |keys[i].elementIndex|. But doing so would render
// the assertion vacuous, so don't bother, even in debug builds.
(*vec)[i] = tv;
}
return true;
}
/*
* Sort Values as strings.
*
* To minimize #conversions, SortLexicographically() first converts all Values
* to strings at once, then sorts the elements by these cached strings.
*/
bool
SortLexicographically(JSContext *cx, AutoValueVector *vec, size_t len)
{
JS_ASSERT(vec->length() >= len);
StringBuffer sb(cx);
Vector<StringifiedElement, 0, TempAllocPolicy> strElements(cx);
/* MergeSort uses the upper half as scratch space. */
if (!strElements.reserve(2 * len))
return false;
/* Convert Values to strings. */
size_t cursor = 0;
for (size_t i = 0; i < len; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
if (!ValueToStringBuffer(cx, (*vec)[i], sb))
return false;
StringifiedElement el = { cursor, sb.length(), i };
strElements.infallibleAppend(el);
cursor = sb.length();
}
/* Resize strElements so we can perform MergeSort. */
JS_ALWAYS_TRUE(strElements.resize(2 * len));
/* Sort Values in vec alphabetically. */
return MergeSortByKey(strElements.begin(), len, strElements.begin() + len,
SortComparatorStringifiedElements(cx, sb), vec);
}
/*
* Sort Values as numbers.
*
* To minimize #conversions, SortNumerically first converts all Values to
* numerics at once, then sorts the elements by these cached numerics.
*/
bool
SortNumerically(JSContext *cx, AutoValueVector *vec, size_t len, ComparatorMatchResult comp)
{
JS_ASSERT(vec->length() >= len);
Vector<NumericElement, 0, TempAllocPolicy> numElements(cx);
/* MergeSort uses the upper half as scratch space. */
if (!numElements.reserve(2 * len))
return false;
/* Convert Values to numerics. */
for (size_t i = 0; i < len; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
double dv;
if (!ToNumber(cx, (*vec)[i], &dv))
return false;
NumericElement el = { dv, i };
numElements.infallibleAppend(el);
}
/* Resize strElements so we can perform MergeSort. */
JS_ALWAYS_TRUE(numElements.resize(2 * len));
/* Sort Values in vec numerically. */
return MergeSortByKey(numElements.begin(), len, numElements.begin() + len,
SortComparatorNumerics[comp], vec);
}
} /* namespace anonymous */
JSBool
js::array_sort(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedValue fvalRoot(cx);
Value &fval = fvalRoot.get();
if (args.hasDefined(0)) {
if (args[0].isPrimitive()) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_SORT_ARG);
return false;
}
fval = args[0]; /* non-default compare function */
} else {
fval.setNull();
}
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
uint32_t len;
if (!GetLengthProperty(cx, obj, &len))
return false;
if (len < 2) {
/* [] and [a] remain unchanged when sorted. */
args.rval().setObject(*obj);
return true;
}
/*
* We need a temporary array of 2 * len Value to hold the array elements
* and the scratch space for merge sort. Check that its size does not
* overflow size_t, which would allow for indexing beyond the end of the
* malloc'd vector.
*/
#if JS_BITS_PER_WORD == 32
if (size_t(len) > size_t(-1) / (2 * sizeof(Value))) {
js_ReportAllocationOverflow(cx);
return false;
}
#endif
/*
* Initialize vec as a root. We will clear elements of vec one by
* one while increasing the rooted amount of vec when we know that the
* property at the corresponding index exists and its value must be rooted.
*
* In this way when sorting a huge mostly sparse array we will not
* access the tail of vec corresponding to properties that do not
* exist, allowing OS to avoiding committing RAM. See bug 330812.
*/
size_t n, undefs;
{
AutoValueVector vec(cx);
if (!vec.reserve(2 * size_t(len)))
return false;
/*
* By ECMA 262, 15.4.4.11, a property that does not exist (which we
* call a "hole") is always greater than an existing property with
* value undefined and that is always greater than any other property.
* Thus to sort holes and undefs we simply count them, sort the rest
* of elements, append undefs after them and then make holes after
* undefs.
*/
undefs = 0;
bool allStrings = true;
bool allInts = true;
RootedValue v(cx);
for (uint32_t i = 0; i < len; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Clear vec[newlen] before including it in the rooted set. */
JSBool hole;
if (!GetElement(cx, obj, i, &hole, &v))
return false;
if (hole)
continue;
if (v.isUndefined()) {
++undefs;
continue;
}
vec.infallibleAppend(v);
allStrings = allStrings && v.isString();
allInts = allInts && v.isInt32();
}
/*
* If the array only contains holes, we're done. But if it contains
* undefs, those must be sorted to the front of the array.
*/
n = vec.length();
if (n == 0 && undefs == 0) {
args.rval().setObject(*obj);
return true;
}
/* Here len == n + undefs + number_of_holes. */
if (fval.isNull()) {
/*
* Sort using the default comparator converting all elements to
* strings.
*/
if (allStrings) {
JS_ALWAYS_TRUE(vec.resize(n * 2));
if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorStrings(cx)))
return false;
} else if (allInts) {
JS_ALWAYS_TRUE(vec.resize(n * 2));
if (!MergeSort(vec.begin(), n, vec.begin() + n,
SortComparatorLexicographicInt32(cx))) {
return false;
}
} else {
if (!SortLexicographically(cx, &vec, n))
return false;
}
} else {
ComparatorMatchResult comp = MatchNumericComparator(cx, fval);
if (comp == Match_Failure)
return false;
if (comp != Match_None) {
if (allInts) {
JS_ALWAYS_TRUE(vec.resize(n * 2));
if (!MergeSort(vec.begin(), n, vec.begin() + n, SortComparatorInt32s[comp]))
return false;
} else {
if (!SortNumerically(cx, &vec, n, comp))
return false;
}
} else {
FastInvokeGuard fig(cx, fval);
MOZ_ASSERT(!InParallelSection(),
"Array.sort() can't currently be used from parallel code");
JS_ALWAYS_TRUE(vec.resize(n * 2));
if (!MergeSort(vec.begin(), n, vec.begin() + n,
SortComparatorFunction(cx, fval, fig)))
{
return false;
}
}
}
if (!InitArrayElements(cx, obj, 0, uint32_t(n), vec.begin(), DontUpdateTypes))
return false;
}
/* Set undefs that sorted after the rest of elements. */
while (undefs != 0) {
--undefs;
RootedValue undefinedValue(cx);
if (!JS_CHECK_OPERATION_LIMIT(cx) || !SetArrayElement(cx, obj, n++, undefinedValue))
return false;
}
/* Re-create any holes that sorted to the end of the array. */
while (len > n) {
if (!JS_CHECK_OPERATION_LIMIT(cx) || !DeletePropertyOrThrow(cx, obj, --len))
return false;
}
args.rval().setObject(*obj);
return true;
}
JS_ALWAYS_INLINE JSBool
NewbornArrayPushImpl(JSContext *cx, HandleObject obj, const Value &v)
{
JS_ASSERT(!v.isMagic());
JS_ASSERT(obj->arrayLengthIsWritable());
uint32_t length = obj->getArrayLength();
JS_ASSERT(length <= obj->getDenseCapacity());
if (!obj->ensureElements(cx, length + 1))
return false;
obj->setDenseInitializedLength(length + 1);
obj->setArrayLengthInt32(length + 1);
JSObject::initDenseElementWithType(cx, obj, length, v);
return true;
}
JSBool
js_NewbornArrayPush(JSContext *cx, HandleObject obj, const Value &vp)
{
return NewbornArrayPushImpl(cx, obj, vp);
}
/* ES5 15.4.4.7 */
JSBool
js::array_push(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
/* Fast path for the fully-dense case. */
if (obj->isArray() &&
obj->arrayLengthIsWritable() &&
!ObjectMayHaveExtraIndexedProperties(obj))
{
uint32_t length = obj->getArrayLength();
uint32_t argCount = args.length();
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, length, argCount);
if (result == JSObject::ED_FAILED)
return false;
if (result == JSObject::ED_OK) {
obj->setArrayLengthInt32(length + argCount);
for (uint32_t i = 0, index = length; i < argCount; index++, i++)
JSObject::setDenseElementWithType(cx, obj, index, args[i]);
args.rval().setNumber(obj->getArrayLength());
return true;
}
MOZ_ASSERT(result == JSObject::ED_SPARSE);
}
/* Steps 2-3. */
uint32_t length;
if (!GetLengthProperty(cx, obj, &length))
return false;
/* Steps 4-5. */
if (!InitArrayElements(cx, obj, length, args.length(), args.array(), UpdateTypes))
return false;
/* Steps 6-7. */
double newlength = length + double(args.length());
args.rval().setNumber(newlength);
return SetLengthProperty(cx, obj, newlength);
}
/* ES6 20130308 draft 15.4.4.6. */
JSBool
js::array_pop(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
/* Steps 2-3. */
uint32_t index;
if (!GetLengthProperty(cx, obj, &index))
return false;
/* Steps 4-5. */
if (index == 0) {
/* Step 4b. */
args.rval().setUndefined();
} else {
/* Step 5a. */
index--;
/* Step 5b, 5e. */
JSBool hole;
if (!GetElement(cx, obj, index, &hole, args.rval()))
return false;
/* Step 5c. */
if (!hole && !DeletePropertyOrThrow(cx, obj, index))
return false;
}
// Keep dense initialized length optimal, if possible. Note that this just
// reflects the possible deletion above: in particular, it's okay to do
// this even if the length is non-writable and SetLengthProperty throws.
if (obj->isNative() && obj->getDenseInitializedLength() > index)
obj->setDenseInitializedLength(index);
/* Steps 4a, 5d. */
return SetLengthProperty(cx, obj, index);
}
void
js::ArrayShiftMoveElements(JSObject *obj)
{
JS_ASSERT(obj->isArray());
JS_ASSERT(obj->arrayLengthIsWritable());
/*
* At this point the length and initialized length have already been
* decremented and the result fetched, so just shift the array elements
* themselves.
*/
uint32_t initlen = obj->getDenseInitializedLength();
obj->moveDenseElementsUnbarriered(0, 1, initlen);
}
/* ES5 15.4.4.9 */
JSBool
js::array_shift(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
/* Steps 2-3. */
uint32_t len;
if (!GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (len == 0) {
/* Step 4a. */
if (!SetLengthProperty(cx, obj, 0))
return false;
/* Step 4b. */
args.rval().setUndefined();
return true;
}
uint32_t newlen = len - 1;
/* Fast paths. */
if (obj->isArray() &&
obj->getDenseInitializedLength() > 0 &&
newlen < obj->getDenseCapacity() &&
!ObjectMayHaveExtraIndexedProperties(obj))
{
args.rval().set(obj->getDenseElement(0));
if (args.rval().isMagic(JS_ELEMENTS_HOLE))
args.rval().setUndefined();
obj->moveDenseElements(0, 1, obj->getDenseInitializedLength() - 1);
obj->setDenseInitializedLength(obj->getDenseInitializedLength() - 1);
if (!SetLengthProperty(cx, obj, newlen))
return false;
return js_SuppressDeletedProperty(cx, obj, INT_TO_JSID(newlen));
}
/* Steps 5, 10. */
JSBool hole;
if (!GetElement(cx, obj, uint32_t(0), &hole, args.rval()))
return false;
/* Steps 6-7. */
RootedValue value(cx);
for (uint32_t i = 0; i < newlen; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
if (!GetElement(cx, obj, i + 1, &hole, &value))
return false;
if (hole) {
if (!DeletePropertyOrThrow(cx, obj, i))
return false;
} else {
if (!SetArrayElement(cx, obj, i, value))
return false;
}
}
/* Step 8. */
if (!DeletePropertyOrThrow(cx, obj, newlen))
return false;
/* Step 9. */
return SetLengthProperty(cx, obj, newlen);
}
static JSBool
array_unshift(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
uint32_t length;
if (!GetLengthProperty(cx, obj, &length))
return false;
double newlen = length;
if (args.length() > 0) {
/* Slide up the array to make room for all args at the bottom. */
if (length > 0) {
bool optimized = false;
do {
if (!obj->isArray())
break;
if (ObjectMayHaveExtraIndexedProperties(obj))
break;
if (!obj->arrayLengthIsWritable())
break;
JSObject::EnsureDenseResult result = obj->ensureDenseElements(cx, length, args.length());
if (result != JSObject::ED_OK) {
if (result == JSObject::ED_FAILED)
return false;
JS_ASSERT(result == JSObject::ED_SPARSE);
break;
}
obj->moveDenseElements(args.length(), 0, length);
for (uint32_t i = 0; i < args.length(); i++)
obj->setDenseElement(i, MagicValue(JS_ELEMENTS_HOLE));
optimized = true;
} while (false);
if (!optimized) {
double last = length;
double upperIndex = last + args.length();
RootedValue value(cx);
do {
--last, --upperIndex;
JSBool hole;
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
if (!GetElement(cx, obj, last, &hole, &value))
return false;
if (hole) {
if (!DeletePropertyOrThrow(cx, obj, upperIndex))
return false;
} else {
if (!SetArrayElement(cx, obj, upperIndex, value))
return false;
}
} while (last != 0);
}
}
/* Copy from args to the bottom of the array. */
if (!InitArrayElements(cx, obj, 0, args.length(), args.array(), UpdateTypes))
return false;
newlen += args.length();
}
if (!SetLengthProperty(cx, obj, newlen))
return false;
/* Follow Perl by returning the new array length. */
args.rval().setNumber(newlen);
return true;
}
static inline void
TryReuseArrayType(JSObject *obj, JSObject *nobj)
{
/*
* Try to change the type of a newly created array nobj to the same type
* as obj. This can only be performed if the original object is an array
* and has the same prototype.
*/
JS_ASSERT(nobj->isArray());
JS_ASSERT(nobj->getProto()->hasNewType(&ArrayClass, nobj->type()));
if (obj->isArray() && !obj->hasSingletonType() && obj->getProto() == nobj->getProto())
nobj->setType(obj->type());
}
/*
* Returns true if this is a dense array whose |count| properties starting from
* |startingIndex| may be accessed (get, set, delete) directly through its
* contiguous vector of elements without fear of getters, setters, etc. along
* the prototype chain, or of enumerators requiring notification of
* modifications.
*/
static inline bool
CanOptimizeForDenseStorage(HandleObject arr, uint32_t startingIndex, uint32_t count, JSContext *cx)
{
/* If the desired properties overflow dense storage, we can't optimize. */
if (UINT32_MAX - startingIndex < count)
return false;
/* There's no optimizing possible if it's not an array. */
if (!arr->isArray())
return false;
/*
* Don't optimize if the array might be in the midst of iteration. We
* rely on this to be able to safely move dense array elements around with
* just a memmove (see JSObject::moveDenseArrayElements), without worrying
* about updating any in-progress enumerators for properties implicitly
* deleted if a hole is moved from one location to another location not yet
* visited. See bug 690622.
*
* Another potential wrinkle: what if the enumeration is happening on an
* object which merely has |arr| on its prototype chain? It turns out this
* case can't happen, because any dense array used as the prototype of
* another object is first slowified, for type inference's sake.
*/
types::TypeObject *arrType = arr->getType(cx);
if (JS_UNLIKELY(!arrType || arrType->hasAllFlags(OBJECT_FLAG_ITERATED)))
return false;
/*
* Now watch out for getters and setters along the prototype chain or in
* other indexed properties on the object. (Note that non-writable length
* is subsumed by the initializedLength comparison.)
*/
return !ObjectMayHaveExtraIndexedProperties(arr) &&
startingIndex + count <= arr->getDenseInitializedLength();
}
/* ES5 15.4.4.12. */
static JSBool
array_splice(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
/* Steps 3-4. */
uint32_t len;
if (!GetLengthProperty(cx, obj, &len))
return false;
/* Step 5. */
double relativeStart;
if (!ToInteger(cx, argc >= 1 ? args[0] : UndefinedValue(), &relativeStart))
return false;
/* Step 6. */
uint32_t actualStart;
if (relativeStart < 0)
actualStart = Max(len + relativeStart, 0.0);
else
actualStart = Min(relativeStart, double(len));
/* Step 7. */
uint32_t actualDeleteCount;
if (argc != 1) {
double deleteCountDouble;
if (!ToInteger(cx, argc >= 2 ? args[1] : Int32Value(0), &deleteCountDouble))
return false;
actualDeleteCount = Min(Max(deleteCountDouble, 0.0), double(len - actualStart));
} else {
/*
* Non-standard: if start was specified but deleteCount was omitted,
* delete to the end of the array. See bug 668024 for discussion.
*/
actualDeleteCount = len - actualStart;
}
JS_ASSERT(len - actualStart >= actualDeleteCount);
/* Steps 2, 8-9. */
RootedObject arr(cx);
if (CanOptimizeForDenseStorage(obj, actualStart, actualDeleteCount, cx)) {
arr = NewDenseCopiedArray(cx, actualDeleteCount, obj, actualStart);
if (!arr)
return false;
TryReuseArrayType(obj, arr);
} else {
arr = NewDenseAllocatedArray(cx, actualDeleteCount);
if (!arr)
return false;
TryReuseArrayType(obj, arr);
RootedValue fromValue(cx);
for (uint32_t k = 0; k < actualDeleteCount; k++) {
JSBool hole;
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, actualStart + k, &hole, &fromValue) ||
(!hole && !JSObject::defineElement(cx, arr, k, fromValue)))
{
return false;
}
}
}
/* Step 11. */
uint32_t itemCount = (argc >= 2) ? (argc - 2) : 0;
if (itemCount < actualDeleteCount) {
/* Step 12: the array is being shrunk. */
uint32_t sourceIndex = actualStart + actualDeleteCount;
uint32_t targetIndex = actualStart + itemCount;
uint32_t finalLength = len - actualDeleteCount + itemCount;
if (CanOptimizeForDenseStorage(obj, 0, len, cx)) {
/* Steps 12(a)-(b). */
obj->moveDenseElements(targetIndex, sourceIndex, len - sourceIndex);
/*
* Update the initialized length. Do so before shrinking so that we
* can apply the write barrier to the old slots.
*/
if (cx->typeInferenceEnabled())
obj->setDenseInitializedLength(finalLength);
/* Steps 12(c)-(d). */
obj->shrinkElements(cx, finalLength);
/* Fix running enumerators for the deleted items. */
if (!js_SuppressDeletedElements(cx, obj, finalLength, len))
return false;
} else {
/*
* This is all very slow if the length is very large. We don't yet
* have the ability to iterate in sorted order, so we just do the
* pessimistic thing and let JS_CHECK_OPERATION_LIMIT handle the
* fallout.
*/
/* Steps 12(a)-(b). */
RootedValue fromValue(cx);
for (uint32_t from = sourceIndex, to = targetIndex; from < len; from++, to++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
JSBool hole;
if (!GetElement(cx, obj, from, &hole, &fromValue))
return false;
if (hole) {
if (!DeletePropertyOrThrow(cx, obj, to))
return false;
} else {
if (!SetArrayElement(cx, obj, to, fromValue))
return false;
}
}
/* Steps 12(c)-(d). */
for (uint32_t k = len; k > finalLength; k--) {
if (!DeletePropertyOrThrow(cx, obj, k - 1))
return false;
}
}
} else if (itemCount > actualDeleteCount) {
/* Step 13. */
/*
* Optimize only if the array is already dense and we can extend it to
* its new length. It would be wrong to extend the elements here for a
* number of reasons.
*
* First, this could cause us to fall into the fast-path below. This
* would cause elements to be moved into places past the non-writable
* length. And when the dense initialized length is updated, that'll
* cause the |in| operator to think that those elements actually exist,
* even though, properly, setting them must fail.
*
* Second, extending the elements here will trigger assertions inside
* ensureDenseElements that the elements aren't being extended past the
* length of a non-writable array. This is because extending elements
* will extend capacity -- which might extend them past a non-writable
* length, violating the |capacity <= length| invariant for such
* arrays. And that would make the various JITted fast-path method
* implementations of [].push, [].unshift, and so on wrong.
*
* If the array length is non-writable, this method *will* throw. For
* simplicity, have the slow-path code do it. (Also note that the slow
* path may validly *not* throw -- if all the elements being moved are
* holes.)
*/
if (obj->isArray() && obj->arrayLengthIsWritable()) {
JSObject::EnsureDenseResult res =
obj->ensureDenseElements(cx, obj->getArrayLength(),
itemCount - actualDeleteCount);
if (res == JSObject::ED_FAILED)
return false;
}
if (CanOptimizeForDenseStorage(obj, len, itemCount - actualDeleteCount, cx)) {
obj->moveDenseElements(actualStart + itemCount,
actualStart + actualDeleteCount,
len - (actualStart + actualDeleteCount));
if (cx->typeInferenceEnabled())
obj->setDenseInitializedLength(len + itemCount - actualDeleteCount);
} else {
RootedValue fromValue(cx);
for (double k = len - actualDeleteCount; k > actualStart; k--) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
double from = k + actualDeleteCount - 1;
double to = k + itemCount - 1;
JSBool hole;
if (!GetElement(cx, obj, from, &hole, &fromValue))
return false;
if (hole) {
if (!DeletePropertyOrThrow(cx, obj, to))
return false;
} else {
if (!SetArrayElement(cx, obj, to, fromValue))
return false;
}
}
}
}
/* Step 10. */
Value *items = args.array() + 2;
/* Steps 14-15. */
for (uint32_t k = actualStart, i = 0; i < itemCount; i++, k++) {
if (!SetArrayElement(cx, obj, k, HandleValue::fromMarkedLocation(&items[i])))
return false;
}
/* Step 16. */
double finalLength = double(len) - actualDeleteCount + itemCount;
if (!SetLengthProperty(cx, obj, finalLength))
return false;
/* Step 17. */
args.rval().setObject(*arr);
return true;
}
#ifdef JS_ION
bool
js::array_concat_dense(JSContext *cx, HandleObject obj1, HandleObject obj2, HandleObject result)
{
JS_ASSERT(result->isArray() && obj1->isArray() && obj2->isArray());
uint32_t initlen1 = obj1->getDenseInitializedLength();
JS_ASSERT(initlen1 == obj1->getArrayLength());
uint32_t initlen2 = obj2->getDenseInitializedLength();
JS_ASSERT(initlen2 == obj2->getArrayLength());
/* No overflow here due to nelements limit. */
uint32_t len = initlen1 + initlen2;
if (!result->ensureElements(cx, len))
return false;
JS_ASSERT(!result->getDenseInitializedLength());
result->setDenseInitializedLength(len);
result->initDenseElements(0, obj1->getDenseElements(), initlen1);
result->initDenseElements(initlen1, obj2->getDenseElements(), initlen2);
result->setArrayLengthInt32(len);
return true;
}
#endif /* JS_ION */
/*
* Python-esque sequence operations.
*/
JSBool
js::array_concat(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Treat our |this| object as the first argument; see ECMA 15.4.4.4. */
Value *p = args.array() - 1;
/* Create a new Array object and root it using *vp. */
RootedObject aobj(cx, ToObject(cx, args.thisv()));
if (!aobj)
return false;
RootedObject nobj(cx);
uint32_t length;
if (aobj->isArray() && !aobj->isIndexed()) {
length = aobj->getArrayLength();
uint32_t initlen = aobj->getDenseInitializedLength();
nobj = NewDenseCopiedArray(cx, initlen, aobj, 0);
if (!nobj)
return false;
TryReuseArrayType(aobj, nobj);
JSObject::setArrayLength(cx, nobj, length);
args.rval().setObject(*nobj);
if (argc == 0)
return true;
argc--;
p++;
} else {
nobj = NewDenseEmptyArray(cx);
if (!nobj)
return false;
args.rval().setObject(*nobj);
length = 0;
}
/* Loop over [0, argc] to concat args into nobj, expanding all Arrays. */
for (unsigned i = 0; i <= argc; i++) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
HandleValue v = HandleValue::fromMarkedLocation(&p[i]);
if (v.isObject()) {
RootedObject obj(cx, &v.toObject());
if (ObjectClassIs(obj, ESClass_Array, cx)) {
uint32_t alength;
if (!GetLengthProperty(cx, obj, &alength))
return false;
RootedValue tmp(cx);
for (uint32_t slot = 0; slot < alength; slot++) {
JSBool hole;
if (!JS_CHECK_OPERATION_LIMIT(cx) || !GetElement(cx, obj, slot, &hole, &tmp))
return false;
/*
* Per ECMA 262, 15.4.4.4, step 9, ignore nonexistent
* properties.
*/
if (!hole && !SetArrayElement(cx, nobj, length + slot, tmp))
return false;
}
length += alength;
continue;
}
}
if (!SetArrayElement(cx, nobj, length, v))
return false;
length++;
}
return SetLengthProperty(cx, nobj, length);
}
static JSBool
array_slice(JSContext *cx, unsigned argc, Value *vp)
{
uint32_t length, begin, end, slot;
JSBool hole;
CallArgs args = CallArgsFromVp(argc, vp);
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
if (!GetLengthProperty(cx, obj, &length))
return false;
begin = 0;
end = length;
if (args.length() > 0) {
double d;
if (!ToInteger(cx, args[0], &d))
return false;
if (d < 0) {
d += length;
if (d < 0)
d = 0;
} else if (d > length) {
d = length;
}
begin = (uint32_t)d;
if (args.hasDefined(1)) {
if (!ToInteger(cx, args[1], &d))
return false;
if (d < 0) {
d += length;
if (d < 0)
d = 0;
} else if (d > length) {
d = length;
}
end = (uint32_t)d;
}
}
if (begin > end)
begin = end;
RootedObject nobj(cx);
if (obj->isArray() && end <= obj->getDenseInitializedLength() &&
!ObjectMayHaveExtraIndexedProperties(obj))
{
nobj = NewDenseCopiedArray(cx, end - begin, obj, begin);
if (!nobj)
return false;
TryReuseArrayType(obj, nobj);
args.rval().setObject(*nobj);
return true;
}
nobj = NewDenseAllocatedArray(cx, end - begin);
if (!nobj)
return false;
TryReuseArrayType(obj, nobj);
RootedValue value(cx);
for (slot = begin; slot < end; slot++) {
if (!JS_CHECK_OPERATION_LIMIT(cx) ||
!GetElement(cx, obj, slot, &hole, &value)) {
return false;
}
if (!hole && !SetArrayElement(cx, nobj, slot - begin, value))
return false;
}
args.rval().setObject(*nobj);
return true;
}
/* ES5 15.4.4.20. */
static JSBool
array_filter(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
/* Step 1. */
RootedObject obj(cx, ToObject(cx, args.thisv()));
if (!obj)
return false;
/* Step 2-3. */
uint32_t len;
if (!GetLengthProperty(cx, obj, &len))
return false;
/* Step 4. */
if (args.length() == 0) {
js_ReportMissingArg(cx, args.calleev(), 0);
return false;
}
RootedObject callable(cx, ValueToCallable(cx, args[0], args.length() - 1));
if (!callable)
return false;
/* Step 5. */
RootedValue thisv(cx, args.length() >= 2 ? args[1] : UndefinedValue());
/* Step 6. */
RootedObject arr(cx, NewDenseAllocatedArray(cx, 0));
if (!arr)
return false;
TypeObject *newtype = GetTypeCallerInitObject(cx, JSProto_Array);
if (!newtype)
return false;
arr->setType(newtype);
/* Step 7. */
uint32_t k = 0;
/* Step 8. */
uint32_t to = 0;
/* Step 9. */
JS_ASSERT(!InParallelSection());
FastInvokeGuard fig(cx, ObjectValue(*callable));
InvokeArgs &args2 = fig.args();
RootedValue kValue(cx);
while (k < len) {
if (!JS_CHECK_OPERATION_LIMIT(cx))
return false;
/* Step a, b, and c.i. */
JSBool kNotPresent;
if (!GetElement(cx, obj, k, &kNotPresent, &kValue))
return false;
/* Step c.ii-iii. */
if (!kNotPresent) {
if (!args2.init(3))
return false;
args2.setCallee(ObjectValue(*callable));
args2.setThis(thisv);
args2[0] = kValue;
args2[1] = NumberValue(k);
args2[2] = ObjectValue(*obj);
if (!fig.invoke(cx))
return false;
if (ToBoolean(args2.rval())) {
if (!SetArrayElement(cx, arr, to, kValue))
return false;
to++;
}
}
/* Step d. */
k++;
}
/* Step 10. */
args.rval().setObject(*arr);
return true;
}
static JSBool
array_isArray(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
bool isArray = args.length() > 0 && IsObjectWithClass(args[0], ESClass_Array, cx);
args.rval().setBoolean(isArray);
return true;
}
#define GENERIC JSFUN_GENERIC_NATIVE
static const JSFunctionSpec array_methods[] = {
#if JS_HAS_TOSOURCE
JS_FN(js_toSource_str, array_toSource, 0,0),
#endif
JS_FN(js_toString_str, array_toString, 0,0),
JS_FN(js_toLocaleString_str,array_toLocaleString,0,0),
/* Perl-ish methods. */
JS_FN("join", array_join, 1,JSFUN_GENERIC_NATIVE),
JS_FN("reverse", array_reverse, 0,JSFUN_GENERIC_NATIVE),
JS_FN("sort", array_sort, 1,JSFUN_GENERIC_NATIVE),
JS_FN("push", array_push, 1,JSFUN_GENERIC_NATIVE),
JS_FN("pop", array_pop, 0,JSFUN_GENERIC_NATIVE),
JS_FN("shift", array_shift, 0,JSFUN_GENERIC_NATIVE),
JS_FN("unshift", array_unshift, 1,JSFUN_GENERIC_NATIVE),
JS_FN("splice", array_splice, 2,JSFUN_GENERIC_NATIVE),
/* Pythonic sequence methods. */
JS_FN("concat", array_concat, 1,JSFUN_GENERIC_NATIVE),
JS_FN("slice", array_slice, 2,JSFUN_GENERIC_NATIVE),
{"lastIndexOf", {NULL, NULL}, 1,0, "ArrayLastIndexOf"},
{"indexOf", {NULL, NULL}, 1,0, "ArrayIndexOf"},
{"forEach", {NULL, NULL}, 1,0, "ArrayForEach"},
{"map", {NULL, NULL}, 1,0, "ArrayMap"},
{"reduce", {NULL, NULL}, 1,0, "ArrayReduce"},
{"reduceRight", {NULL, NULL}, 1,0, "ArrayReduceRight"},
JS_FN("filter", array_filter, 1,JSFUN_GENERIC_NATIVE),
{"some", {NULL, NULL}, 1,0, "ArraySome"},
{"every", {NULL, NULL}, 1,0, "ArrayEvery"},
JS_FN("iterator", JS_ArrayIterator, 0,0),
JS_FS_END
};
static const JSFunctionSpec array_static_methods[] = {
JS_FN("isArray", array_isArray, 1,0),
{"lastIndexOf", {NULL, NULL}, 2,0, "ArrayStaticLastIndexOf"},
{"indexOf", {NULL, NULL}, 2,0, "ArrayStaticIndexOf"},
{"forEach", {NULL, NULL}, 2,0, "ArrayStaticForEach"},
{"map", {NULL, NULL}, 2,0, "ArrayStaticMap"},
{"every", {NULL, NULL}, 2,0, "ArrayStaticEvery"},
{"some", {NULL, NULL}, 2,0, "ArrayStaticSome"},
{"reduce", {NULL, NULL}, 2,0, "ArrayStaticReduce"},
{"reduceRight", {NULL, NULL}, 2,0, "ArrayStaticReduceRight"},
JS_FS_END
};
/* ES5 15.4.2 */
JSBool
js_Array(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
RootedTypeObject type(cx, GetTypeCallerInitObject(cx, JSProto_Array));
if (!type)
return false;
if (args.length() != 1 || !args[0].isNumber()) {
if (!InitArrayTypes(cx, type, args.array(), args.length()))
return false;
JSObject *obj = (args.length() == 0)
? NewDenseEmptyArray(cx)
: NewDenseCopiedArray(cx, args.length(), args.array());
if (!obj)
return false;
obj->setType(type);
args.rval().setObject(*obj);
return true;
}
uint32_t length;
if (args[0].isInt32()) {
int32_t i = args[0].toInt32();
if (i < 0) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
length = uint32_t(i);
} else {
double d = args[0].toDouble();
length = ToUint32(d);
if (d != double(length)) {
JS_ReportErrorNumber(cx, js_GetErrorMessage, NULL, JSMSG_BAD_ARRAY_LENGTH);
return false;
}
}
RootedObject obj(cx, NewDenseUnallocatedArray(cx, length));
if (!obj)
return false;
obj->setType(type);
/* If the length calculation overflowed, make sure that is marked for the new type. */
if (obj->getArrayLength() > INT32_MAX)
JSObject::setArrayLength(cx, obj, obj->getArrayLength());
args.rval().setObject(*obj);
return true;
}
JSObject *
js_InitArrayClass(JSContext *cx, HandleObject obj)
{
JS_ASSERT(obj->isNative());
Rooted<GlobalObject*> global(cx, &obj->as<GlobalObject>());
RootedObject proto(cx, global->getOrCreateObjectPrototype(cx));
if (!proto)
return NULL;
RootedTypeObject type(cx, proto->getNewType(cx, &ArrayClass));
if (!type)
return NULL;
RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayClass, TaggedProto(proto),
proto->getParent(), NewObjectMetadata(cx),
gc::FINALIZE_OBJECT0));
RootedObject arrayProto(cx, JSObject::createArray(cx, gc::FINALIZE_OBJECT4, gc::TenuredHeap, shape, type, 0));
if (!arrayProto || !JSObject::setSingletonType(cx, arrayProto) || !AddLengthProperty(cx, arrayProto))
return NULL;
RootedFunction ctor(cx);
ctor = global->createConstructor(cx, js_Array, cx->names().Array, 1);
if (!ctor)
return NULL;
/*
* The default 'new' type of Array.prototype is required by type inference
* to have unknown properties, to simplify handling of e.g. heterogenous
* arrays in JSON and script literals and allows setDenseArrayElement to
* be used without updating the indexed type set for such default arrays.
*/
if (!JSObject::setNewTypeUnknown(cx, &ArrayClass, arrayProto))
return NULL;
if (!LinkConstructorAndPrototype(cx, ctor, arrayProto))
return NULL;
if (!DefinePropertiesAndBrand(cx, arrayProto, NULL, array_methods) ||
!DefinePropertiesAndBrand(cx, ctor, NULL, array_static_methods))
{
return NULL;
}
if (!DefineConstructorAndPrototype(cx, global, JSProto_Array, ctor, arrayProto))
return NULL;
return arrayProto;
}
/*
* Array allocation functions.
*/
static inline bool
EnsureNewArrayElements(JSContext *cx, JSObject *obj, uint32_t length)
{
/*
* If ensureElements creates dynamically allocated slots, then having
* fixedSlots is a waste.
*/
DebugOnly<uint32_t> cap = obj->getDenseCapacity();
if (!obj->ensureElements(cx, length))
return false;
JS_ASSERT_IF(cap, !obj->hasDynamicElements());
return true;
}
template<bool allocateCapacity>
static JS_ALWAYS_INLINE JSObject *
NewArray(JSContext *cx, uint32_t length, JSObject *protoArg, NewObjectKind newKind = GenericObject)
{
gc::AllocKind allocKind = GuessArrayGCKind(length);
JS_ASSERT(CanBeFinalizedInBackground(allocKind, &ArrayClass));
allocKind = GetBackgroundAllocKind(allocKind);
NewObjectCache &cache = cx->runtime()->newObjectCache;
NewObjectCache::EntryIndex entry = -1;
if (newKind == GenericObject &&
!cx->compartment()->objectMetadataCallback &&
cache.lookupGlobal(&ArrayClass, cx->global(), allocKind, &entry))
{
RootedObject obj(cx, cache.newObjectFromHit(cx, entry, GetInitialHeap(newKind, &ArrayClass)));
if (obj) {
/* Fixup the elements pointer and length, which may be incorrect. */
obj->setFixedElements();
JSObject::setArrayLength(cx, obj, length);
if (allocateCapacity && !EnsureNewArrayElements(cx, obj, length))
return NULL;
return obj;
}
}
RootedObject proto(cx, protoArg);
if (protoArg)
JS::PoisonPtr(&protoArg);
if (!proto && !FindProto(cx, &ArrayClass, &proto))
return NULL;
RootedTypeObject type(cx, proto->getNewType(cx, &ArrayClass));
if (!type)
return NULL;
/*
* Get a shape with zero fixed slots, regardless of the size class.
* See JSObject::createArray.
*/
RootedShape shape(cx, EmptyShape::getInitialShape(cx, &ArrayClass, TaggedProto(proto),
cx->global(), NewObjectMetadata(cx), gc::FINALIZE_OBJECT0));
if (!shape)
return NULL;
RootedObject obj(cx, JSObject::createArray(cx, allocKind, GetInitialHeap(newKind, &ArrayClass),
shape, type, length));
if (!obj)
return NULL;
if (shape->isEmptyShape()) {
if (!AddLengthProperty(cx, obj))
return NULL;
shape = obj->lastProperty();
EmptyShape::insertInitialShape(cx, shape, proto);
}
if (newKind == SingletonObject && !JSObject::setSingletonType(cx, obj))
return NULL;
if (entry != -1)
cache.fillGlobal(entry, &ArrayClass, cx->global(), allocKind, obj);
if (allocateCapacity && !EnsureNewArrayElements(cx, obj, length))
return NULL;
Probes::createObject(cx, obj);
return obj;
}
JSObject * JS_FASTCALL
js::NewDenseEmptyArray(JSContext *cx, JSObject *proto /* = NULL */,
NewObjectKind newKind /* = GenericObject */)
{
return NewArray<false>(cx, 0, proto, newKind);
}
JSObject * JS_FASTCALL
js::NewDenseAllocatedArray(JSContext *cx, uint32_t length, JSObject *proto /* = NULL */,
NewObjectKind newKind /* = GenericObject */)
{
return NewArray<true>(cx, length, proto, newKind);
}
JSObject * JS_FASTCALL
js::NewDenseUnallocatedArray(JSContext *cx, uint32_t length, JSObject *proto /* = NULL */,
NewObjectKind newKind /* = GenericObject */)
{
return NewArray<false>(cx, length, proto, newKind);
}
JSObject *
js::NewDenseCopiedArray(JSContext *cx, uint32_t length, HandleObject src, uint32_t elementOffset,
JSObject *proto /* = NULL */)
{
JS_ASSERT(!src->isIndexed());
JSObject* obj = NewArray<true>(cx, length, proto);
if (!obj)
return NULL;
JS_ASSERT(obj->getDenseCapacity() >= length);
const Value* vp = src->getDenseElements() + elementOffset;
obj->setDenseInitializedLength(vp ? length : 0);
if (vp)
obj->initDenseElements(0, vp, length);
return obj;
}
// values must point at already-rooted Value objects
JSObject *
js::NewDenseCopiedArray(JSContext *cx, uint32_t length, const Value *values,
JSObject *proto /* = NULL */, NewObjectKind newKind /* = GenericObject */)
{
JSObject* obj = NewArray<true>(cx, length, proto);
if (!obj)
return NULL;
JS_ASSERT(obj->getDenseCapacity() >= length);
obj->setDenseInitializedLength(values ? length : 0);
if (values)
obj->initDenseElements(0, values, length);
return obj;
}
#ifdef DEBUG
JSBool
js_ArrayInfo(JSContext *cx, unsigned argc, Value *vp)
{
CallArgs args = CallArgsFromVp(argc, vp);
JSObject *array;
for (unsigned i = 0; i < args.length(); i++) {
RootedValue arg(cx, args[i]);
char *bytes = DecompileValueGenerator(cx, JSDVG_SEARCH_STACK, arg, NullPtr());
if (!bytes)
return false;
if (arg.isPrimitive() ||
!(array = arg.toObjectOrNull())->isArray()) {
fprintf(stderr, "%s: not array\n", bytes);
js_free(bytes);
continue;
}
fprintf(stderr, "%s: (len %u", bytes, array->getArrayLength());
fprintf(stderr, ", capacity %u", array->getDenseCapacity());
fputs(")\n", stderr);
js_free(bytes);
}
args.rval().setUndefined();
return true;
}
#endif