blob: ceedbdcea155503d97e862095148e8b63aa07f6a [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <limits.h>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/thread_task_runner_handle.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include "base/message_pump_win.h"
#include "base/win/scoped_handle.h"
#endif
using base::PlatformThread;
using base::Thread;
using base::Time;
using base::TimeDelta;
using base::TimeTicks;
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.
namespace {
class Foo : public base::RefCounted<Foo> {
public:
Foo() : test_count_(0) {
}
void Test0() {
++test_count_;
}
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
void Test1Ptr(std::string* a) {
++test_count_;
result_.append(*a);
}
void Test1Int(int a) {
test_count_ += a;
}
void Test2Ptr(std::string* a, std::string* b) {
++test_count_;
result_.append(*a);
result_.append(*b);
}
void Test2Mixed(const std::string& a, std::string* b) {
++test_count_;
result_.append(a);
result_.append(*b);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
friend class base::RefCounted<Foo>;
~Foo() {}
int test_count_;
std::string result_;
};
void RunTest_PostTask(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Add tests to message loop
scoped_refptr<Foo> foo(new Foo());
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test0, foo.get()));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1ConstRef, foo.get(), a));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1Ptr, foo.get(), &b));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1Int, foo.get(), 100));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test2Ptr, foo.get(), &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test2Mixed, foo.get(), a, &d));
// After all tests, post a message that will shut down the message loop
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&MessageLoop::Quit, base::Unretained(MessageLoop::current())));
// Now kick things off
MessageLoop::current()->Run();
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Add tests to message loop
scoped_refptr<Foo> foo(new Foo());
std::string a("a"), b("b"), c("c"), d("d");
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test0, foo.get()));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1ConstRef, foo.get(), a));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1Ptr, foo.get(), &b));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1Int, foo.get(), 100));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test2Ptr, foo.get(), &a, &c));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&Foo::Test2Mixed, foo.get(), a, &d));
// After all tests, post a message that will shut down the message loop
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&MessageLoop::Quit, base::Unretained(MessageLoop::current())));
// Now kick things off with the SEH block active.
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
EXPECT_EQ(foo->test_count(), 105);
EXPECT_EQ(foo->result(), "abacad");
}
// This function runs slowly to simulate a large amount of work being done.
static void SlowFunc(TimeDelta pause, int* quit_counter) {
PlatformThread::Sleep(pause);
if (--(*quit_counter) == 0)
MessageLoop::current()->Quit();
}
// This function records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
*run_time = Time::Now();
// Cause our Run function to take some time to execute. As a result we can
// count on subsequent RecordRunTimeFunc()s running at a future time,
// without worry about the resolution of our system clock being an issue.
SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
}
void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that PostDelayedTask results in a delayed task.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 1;
Time run_time;
loop.PostDelayedTask(
FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
kDelay);
Time time_before_run = Time::Now();
loop.Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kDelay, time_after_run - time_before_run);
}
void RunTest_PostDelayedTask_InDelayOrder(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that two tasks with different delays run in the right order.
int num_tasks = 2;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromMilliseconds(200));
// If we get a large pause in execution (due to a context switch) here, this
// test could fail.
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 < run_time1);
}
void RunTest_PostDelayedTask_InPostOrder(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that two tasks with the same delay run in the order in which they
// were posted.
//
// NOTE: This is actually an approximate test since the API only takes a
// "delay" parameter, so we are not exactly simulating two tasks that get
// posted at the exact same time. It would be nice if the API allowed us to
// specify the desired run time.
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
int num_tasks = 2;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay);
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay);
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time1 < run_time2);
}
void RunTest_PostDelayedTask_InPostOrder_2(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that a delayed task still runs after a normal tasks even if the
// normal tasks take a long time to run.
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
int num_tasks = 2;
Time run_time;
loop.PostTask(FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks));
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromMilliseconds(10));
Time time_before_run = Time::Now();
loop.Run();
Time time_after_run = Time::Now();
EXPECT_EQ(0, num_tasks);
EXPECT_LT(kPause, time_after_run - time_before_run);
}
void RunTest_PostDelayedTask_InPostOrder_3(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that a delayed task still runs after a pile of normal tasks. The key
// difference between this test and the previous one is that here we return
// the MessageLoop a lot so we give the MessageLoop plenty of opportunities
// to maybe run the delayed task. It should know not to do so until the
// delayed task's delay has passed.
int num_tasks = 11;
Time run_time1, run_time2;
// Clutter the ML with tasks.
for (int i = 1; i < num_tasks; ++i)
loop.PostTask(FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks));
loop.PostDelayedTask(
FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(1));
loop.Run();
EXPECT_EQ(0, num_tasks);
EXPECT_TRUE(run_time2 > run_time1);
}
void RunTest_PostDelayedTask_SharedTimer(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time1, run_time2;
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks),
TimeDelta::FromSeconds(1000));
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks),
TimeDelta::FromMilliseconds(10));
Time start_time = Time::Now();
loop.Run();
EXPECT_EQ(0, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
loop.RunUntilIdle();
EXPECT_TRUE(run_time1.is_null());
EXPECT_FALSE(run_time2.is_null());
}
#if defined(COBALT)
void RunTest_PostBlockingTask(MessageLoop::Type message_loop_type) {
base::Thread thread("PostBlockingTsk");
thread.StartWithOptions(base::Thread::Options(message_loop_type, 0));
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
int num_tasks = INT_MAX;
TimeTicks time_before_post_1 = TimeTicks::Now();
thread.message_loop()->PostTask(
FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks));
TimeTicks time_before_post_2 = TimeTicks::Now();
thread.message_loop()->PostBlockingTask(
FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks));
TimeTicks time_after_post_2 = TimeTicks::Now();
// Not much time should have passed during the regular PostTask.
EXPECT_GT(kPause, time_before_post_2 - time_before_post_1);
// The PostBlockingTask should wait for both.
EXPECT_LE(kPause * 2, time_after_post_2 - time_before_post_1);
}
void RunTest_WaitForFence(MessageLoop::Type message_loop_type) {
base::Thread thread("WaitForFence");
thread.StartWithOptions(base::Thread::Options(message_loop_type, 0));
const TimeDelta kPause = TimeDelta::FromMilliseconds(50);
int num_tasks = INT_MAX;
TimeTicks time_before_post = TimeTicks::Now();
thread.message_loop()->PostTask(
FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks));
thread.message_loop()->PostTask(
FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks));
TimeTicks time_before_wait = TimeTicks::Now();
thread.message_loop()->WaitForFence();
TimeTicks time_after_wait = TimeTicks::Now();
// Not much time should have passed during the regular PostTask.
EXPECT_GT(kPause, time_before_wait - time_before_post);
// The WaitForFence should wait for the tasks to finish.
EXPECT_LE(kPause * 2, time_after_wait - time_before_post);
}
#endif
#if defined(OS_WIN)
void SubPumpFunc() {
MessageLoop::current()->SetNestableTasksAllowed(true);
MSG msg;
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
MessageLoop::current()->Quit();
}
void RunTest_PostDelayedTask_SharedTimer_SubPump() {
MessageLoop loop(MessageLoop::TYPE_UI);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time;
loop.PostTask(FROM_HERE, base::Bind(&SubPumpFunc));
// This very delayed task should never run.
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromSeconds(1000));
// This slightly delayed task should run from within SubPumpFunc).
loop.PostDelayedTask(
FROM_HERE,
base::Bind(&PostQuitMessage, 0),
TimeDelta::FromMilliseconds(10));
Time start_time = Time::Now();
loop.Run();
EXPECT_EQ(1, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
loop.RunUntilIdle();
EXPECT_TRUE(run_time.is_null());
}
#endif // defined(OS_WIN)
// This is used to inject a test point for recording the destructor calls for
// Closure objects send to MessageLoop::PostTask(). It is awkward usage since we
// are trying to hook the actual destruction, which is not a common operation.
class RecordDeletionProbe : public base::RefCounted<RecordDeletionProbe> {
public:
RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted)
: post_on_delete_(post_on_delete), was_deleted_(was_deleted) {
}
void Run() {}
private:
friend class base::RefCounted<RecordDeletionProbe>;
~RecordDeletionProbe() {
*was_deleted_ = true;
if (post_on_delete_)
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&RecordDeletionProbe::Run, post_on_delete_.get()));
}
scoped_refptr<RecordDeletionProbe> post_on_delete_;
bool* was_deleted_;
};
void RunTest_EnsureDeletion(MessageLoop::Type message_loop_type) {
bool a_was_deleted = false;
bool b_was_deleted = false;
{
MessageLoop loop(message_loop_type);
loop.PostTask(
FROM_HERE, base::Bind(&RecordDeletionProbe::Run,
new RecordDeletionProbe(NULL, &a_was_deleted)));
// TODO(ajwong): Do we really need 1000ms here?
loop.PostDelayedTask(
FROM_HERE, base::Bind(&RecordDeletionProbe::Run,
new RecordDeletionProbe(NULL, &b_was_deleted)),
TimeDelta::FromMilliseconds(1000));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
}
void RunTest_EnsureDeletion_Chain(MessageLoop::Type message_loop_type) {
bool a_was_deleted = false;
bool b_was_deleted = false;
bool c_was_deleted = false;
{
MessageLoop loop(message_loop_type);
// The scoped_refptr for each of the below is held either by the chained
// RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback.
RecordDeletionProbe* a = new RecordDeletionProbe(NULL, &a_was_deleted);
RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted);
RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted);
loop.PostTask(FROM_HERE, base::Bind(&RecordDeletionProbe::Run, c));
}
EXPECT_TRUE(a_was_deleted);
EXPECT_TRUE(b_was_deleted);
EXPECT_TRUE(c_was_deleted);
}
void NestingFunc(int* depth) {
if (*depth > 0) {
*depth -= 1;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&NestingFunc, depth));
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->Run();
}
MessageLoop::current()->Quit();
}
#if defined(OS_WIN)
LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) {
ADD_FAILURE() << "bad exception handler";
::ExitProcess(ex_info->ExceptionRecord->ExceptionCode);
return EXCEPTION_EXECUTE_HANDLER;
}
// This task throws an SEH exception: initially write to an invalid address.
// If the right SEH filter is installed, it will fix the error.
class Crasher : public base::RefCounted<Crasher> {
public:
// Ctor. If trash_SEH_handler is true, the task will override the unhandled
// exception handler with one sure to crash this test.
explicit Crasher(bool trash_SEH_handler)
: trash_SEH_handler_(trash_SEH_handler) {
}
void Run() {
PlatformThread::Sleep(TimeDelta::FromMilliseconds(1));
if (trash_SEH_handler_)
::SetUnhandledExceptionFilter(&BadExceptionHandler);
// Generate a SEH fault. We do it in asm to make sure we know how to undo
// the damage.
#if defined(_M_IX86)
__asm {
mov eax, dword ptr [Crasher::bad_array_]
mov byte ptr [eax], 66
}
#elif defined(_M_X64)
bad_array_[0] = 66;
#else
#error "needs architecture support"
#endif
MessageLoop::current()->Quit();
}
// Points the bad array to a valid memory location.
static void FixError() {
bad_array_ = &valid_store_;
}
private:
bool trash_SEH_handler_;
static volatile char* bad_array_;
static char valid_store_;
};
volatile char* Crasher::bad_array_ = 0;
char Crasher::valid_store_ = 0;
// This SEH filter fixes the problem and retries execution. Fixing requires
// that the last instruction: mov eax, [Crasher::bad_array_] to be retried
// so we move the instruction pointer 5 bytes back.
LONG WINAPI HandleCrasherException(EXCEPTION_POINTERS *ex_info) {
if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION)
return EXCEPTION_EXECUTE_HANDLER;
Crasher::FixError();
#if defined(_M_IX86)
ex_info->ContextRecord->Eip -= 5;
#elif defined(_M_X64)
ex_info->ContextRecord->Rip -= 5;
#endif
return EXCEPTION_CONTINUE_EXECUTION;
}
void RunTest_Crasher(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherException);
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&Crasher::Run, new Crasher(false)));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
if (::IsDebuggerPresent())
return;
LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter =
::SetUnhandledExceptionFilter(&HandleCrasherException);
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&Crasher::Run, new Crasher(true)));
MessageLoop::current()->set_exception_restoration(true);
MessageLoop::current()->Run();
MessageLoop::current()->set_exception_restoration(false);
::SetUnhandledExceptionFilter(old_SEH_filter);
}
#endif // defined(OS_WIN)
void RunTest_Nesting(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
int depth = 100;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&NestingFunc, &depth));
MessageLoop::current()->Run();
EXPECT_EQ(depth, 0);
}
#if defined(OS_WIN)
const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test";
#endif
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERED,
PUMPS,
SLEEP,
RUNS,
};
// Saves the order in which the tasks executed.
struct TaskItem {
TaskItem(TaskType t, int c, bool s)
: type(t),
cookie(c),
start(s) {
}
TaskType type;
int cookie;
bool start;
bool operator == (const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
std::ostream& operator <<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX: os << "MESSAGEBOX"; break;
case ENDDIALOG: os << "ENDDIALOG"; break;
case RECURSIVE: os << "RECURSIVE"; break;
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
case ORDERED: os << "ORDERED"; break;
case PUMPS: os << "PUMPS"; break;
case SLEEP: os << "SLEEP"; break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
else
return os << item.type << " " << item.cookie << " ends";
}
class TaskList {
public:
void RecordStart(TaskType type, int cookie) {
TaskItem item(type, cookie, true);
DVLOG(1) << item;
task_list_.push_back(item);
}
void RecordEnd(TaskType type, int cookie) {
TaskItem item(type, cookie, false);
DVLOG(1) << item;
task_list_.push_back(item);
}
size_t Size() {
return task_list_.size();
}
TaskItem Get(int n) {
return task_list_[n];
}
private:
std::vector<TaskItem> task_list_;
};
// Saves the order the tasks ran.
void OrderedFunc(TaskList* order, int cookie) {
order->RecordStart(ORDERED, cookie);
order->RecordEnd(ORDERED, cookie);
}
#if defined(OS_WIN)
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
order->RecordStart(MESSAGEBOX, cookie);
if (is_reentrant)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
order->RecordEnd(MESSAGEBOX, cookie);
}
// Will end the MessageBox.
void EndDialogFunc(TaskList* order, int cookie) {
order->RecordStart(ENDDIALOG, cookie);
HWND window = GetActiveWindow();
if (window != NULL) {
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
// Cheap way to signal that the window wasn't found if RunEnd() isn't
// called.
order->RecordEnd(ENDDIALOG, cookie);
}
}
#endif // defined(OS_WIN)
void RecursiveFunc(TaskList* order, int cookie, int depth,
bool is_reentrant) {
order->RecordStart(RECURSIVE, cookie);
if (depth > 0) {
if (is_reentrant)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
}
order->RecordEnd(RECURSIVE, cookie);
}
void RecursiveSlowFunc(TaskList* order, int cookie, int depth,
bool is_reentrant) {
RecursiveFunc(order, cookie, depth, is_reentrant);
PlatformThread::Sleep(TimeDelta::FromMilliseconds(10));
}
void QuitFunc(TaskList* order, int cookie) {
order->RecordStart(QUITMESSAGELOOP, cookie);
MessageLoop::current()->Quit();
order->RecordEnd(QUITMESSAGELOOP, cookie);
}
void SleepFunc(TaskList* order, int cookie, TimeDelta delay) {
order->RecordStart(SLEEP, cookie);
PlatformThread::Sleep(delay);
order->RecordEnd(SLEEP, cookie);
}
#if defined(OS_WIN)
void RecursiveFuncWin(MessageLoop* target,
HANDLE event,
bool expect_window,
TaskList* order,
bool is_reentrant) {
target->PostTask(FROM_HERE,
base::Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
target->PostTask(FROM_HERE,
base::Bind(&MessageBoxFunc, order, 2, is_reentrant));
target->PostTask(FROM_HERE,
base::Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
// The trick here is that for recursive task processing, this task will be
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
// without a chance.
// For non-recursive task processing, this will be executed _after_ the
// MessageBox will have been dismissed by the code below, where
// expect_window_ is true.
target->PostTask(FROM_HERE,
base::Bind(&EndDialogFunc, order, 4));
target->PostTask(FROM_HERE,
base::Bind(&QuitFunc, order, 5));
// Enforce that every tasks are sent before starting to run the main thread
// message loop.
ASSERT_TRUE(SetEvent(event));
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
// you will never realize one MessageBox was shown.
for (; expect_window;) {
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
if (window) {
// Dismiss it.
for (;;) {
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
if (button != NULL) {
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
break;
}
}
break;
}
}
}
#endif // defined(OS_WIN)
void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&RecursiveFunc, &order, 1, 2, false));
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&RecursiveFunc, &order, 2, 2, false));
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&QuitFunc, &order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed());
TaskList order;
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&RecursiveSlowFunc, &order, 1, 2, false));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&RecursiveSlowFunc, &order, 2, 2, false));
MessageLoop::current()->PostDelayedTask(
FROM_HERE,
base::Bind(&OrderedFunc, &order, 3),
TimeDelta::FromMilliseconds(5));
MessageLoop::current()->PostDelayedTask(
FROM_HERE,
base::Bind(&QuitFunc, &order, 4),
TimeDelta::FromMilliseconds(5));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(16U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(7), TaskItem(ORDERED, 3, false));
#if (defined(__LB_SHELL__) && !defined(__LB_ANDROID__)) || defined(OS_STARBOARD)
if (message_loop_type == MessageLoop::TYPE_DEFAULT) {
// lbshell messagepump gives delayed tasks higher priority, which causes
// the process order to be a bit different. the messagepump src code is in
// external\chromium\base\message_pump_shell.cc, function
// void MessagePumpShell::Run(Delegate * delegate);
#endif
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 4, true));
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 4, false));
#if (defined(__LB_SHELL__) && !defined(__LB_ANDROID__)) || defined(OS_STARBOARD)
} else {
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 4, true));
EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 4, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 2, false));
}
#endif
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 2, false));
}
void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&RecursiveFunc, &order, 1, 2, true));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&RecursiveFunc, &order, 2, 2, true));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&QuitFunc, &order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(14U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false));
}
#if defined(OS_WIN)
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.
// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveDenial2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
base::Bind(&RecursiveFuncWin,
MessageLoop::current(),
event.Get(),
true,
&order,
false));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.Size(), 17);
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
// When EndDialogFunc is processed, the window is already dismissed, hence no
// "end" entry.
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
}
// A side effect of this test is the generation a beep. Sorry. This test also
// needs to process windows messages on the current thread.
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveSupport2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
base::Bind(&RecursiveFuncWin,
MessageLoop::current(),
event.Get(),
false,
&order,
true));
// Let the other thread execute.
WaitForSingleObject(event, INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(order.Size(), 18);
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
// Note that this executes in the MessageBox modal loop.
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
/* The order can subtly change here. The reason is that when RecursiveFunc(1)
is called in the main thread, if it is faster than getting to the
PostTask(FROM_HERE, base::Bind(&QuitFunc) execution, the order of task
execution can change. We don't care anyway that the order isn't correct.
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
*/
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
}
#endif // defined(OS_WIN)
void FuncThatPumps(TaskList* order, int cookie) {
order->RecordStart(PUMPS, cookie);
{
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
MessageLoop::current()->RunUntilIdle();
}
order->RecordEnd(PUMPS, cookie);
}
void FuncThatRuns(TaskList* order, int cookie, base::RunLoop* run_loop) {
order->RecordStart(RUNS, cookie);
{
MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current());
run_loop->Run();
}
order->RecordEnd(RUNS, cookie);
}
void FuncThatQuitsNow() {
MessageLoop::current()->QuitNow();
}
// Tests that non nestable tasks run in FIFO if there are no nested loops.
void RunTest_NonNestableWithNoNesting(
MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
MessageLoop::current()->PostNonNestableTask(
FROM_HERE,
base::Bind(&OrderedFunc, &order, 1));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&QuitFunc, &order, 3));
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(6U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false));
}
// Tests that non nestable tasks don't run when there's code in the call stack.
void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type,
bool use_delayed) {
MessageLoop loop(message_loop_type);
TaskList order;
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&FuncThatPumps, &order, 1));
if (use_delayed) {
MessageLoop::current()->PostNonNestableDelayedTask(
FROM_HERE,
base::Bind(&OrderedFunc, &order, 2),
TimeDelta::FromMilliseconds(1));
} else {
MessageLoop::current()->PostNonNestableTask(
FROM_HERE,
base::Bind(&OrderedFunc, &order, 2));
}
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50)));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&OrderedFunc, &order, 5));
if (use_delayed) {
MessageLoop::current()->PostNonNestableDelayedTask(
FROM_HERE,
base::Bind(&QuitFunc, &order, 6),
TimeDelta::FromMilliseconds(2));
} else {
MessageLoop::current()->PostNonNestableTask(
FROM_HERE,
base::Bind(&QuitFunc, &order, 6));
}
MessageLoop::current()->Run();
// FIFO order.
ASSERT_EQ(12U, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(2), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true));
EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false));
EXPECT_EQ(order.Get(5), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(6), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false));
EXPECT_EQ(order.Get(8), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(9), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true));
EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false));
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_QuitNow(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop run_loop;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&run_loop)));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 4)); // never runs
MessageLoop::current()->Run();
ASSERT_EQ(6U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works before RunWithID.
void RunTest_RunLoopQuitOrderBefore(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop run_loop;
run_loop.Quit();
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 1)); // never runs
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(0U, order.Size());
}
// Tests RunLoopQuit works during RunWithID.
void RunTest_RunLoopQuitOrderDuring(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop run_loop;
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 1));
MessageLoop::current()->PostTask(
FROM_HERE, run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2)); // never runs
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow)); // never runs
run_loop.Run();
ASSERT_EQ(2U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit works after RunWithID.
void RunTest_RunLoopQuitOrderAfter(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop run_loop;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&run_loop)));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 3));
MessageLoop::current()->PostTask(
FROM_HERE, run_loop.QuitClosure()); // has no affect
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 4));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&FuncThatQuitsNow));
base::RunLoop outer_run_loop;
outer_run_loop.Run();
ASSERT_EQ(8U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 4, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitTop(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop outer_run_loop;
base::RunLoop nested_run_loop;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&nested_run_loop)));
MessageLoop::current()->PostTask(
FROM_HERE, outer_run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitNested(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop outer_run_loop;
base::RunLoop nested_run_loop;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&nested_run_loop)));
MessageLoop::current()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(
FROM_HERE, outer_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitBogus(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop outer_run_loop;
base::RunLoop nested_run_loop;
base::RunLoop bogus_run_loop;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&nested_run_loop)));
MessageLoop::current()->PostTask(
FROM_HERE, bogus_run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 2));
MessageLoop::current()->PostTask(
FROM_HERE, outer_run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, nested_run_loop.QuitClosure());
outer_run_loop.Run();
ASSERT_EQ(4U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
// Tests RunLoopQuit only quits the corresponding MessageLoop::Run.
void RunTest_RunLoopQuitDeep(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
TaskList order;
base::RunLoop outer_run_loop;
base::RunLoop nested_loop1;
base::RunLoop nested_loop2;
base::RunLoop nested_loop3;
base::RunLoop nested_loop4;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 1, base::Unretained(&nested_loop1)));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 2, base::Unretained(&nested_loop2)));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 3, base::Unretained(&nested_loop3)));
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&FuncThatRuns, &order, 4, base::Unretained(&nested_loop4)));
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 5));
MessageLoop::current()->PostTask(
FROM_HERE, outer_run_loop.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 6));
MessageLoop::current()->PostTask(
FROM_HERE, nested_loop1.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 7));
MessageLoop::current()->PostTask(
FROM_HERE, nested_loop2.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 8));
MessageLoop::current()->PostTask(
FROM_HERE, nested_loop3.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 9));
MessageLoop::current()->PostTask(
FROM_HERE, nested_loop4.QuitClosure());
MessageLoop::current()->PostTask(
FROM_HERE, base::Bind(&OrderedFunc, &order, 10));
outer_run_loop.Run();
ASSERT_EQ(18U, order.Size());
int task_index = 0;
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 5, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 6, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 7, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 8, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, true));
EXPECT_EQ(order.Get(task_index++), TaskItem(ORDERED, 9, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 4, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 3, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 2, false));
EXPECT_EQ(order.Get(task_index++), TaskItem(RUNS, 1, false));
EXPECT_EQ(static_cast<size_t>(task_index), order.Size());
}
void PostNTasksThenQuit(int posts_remaining) {
if (posts_remaining > 1) {
MessageLoop::current()->PostTask(
FROM_HERE,
base::Bind(&PostNTasksThenQuit, posts_remaining - 1));
} else {
MessageLoop::current()->QuitWhenIdle();
}
}
void RunTest_RecursivePosts(MessageLoop::Type message_loop_type,
int num_times) {
MessageLoop loop(message_loop_type);
loop.PostTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, num_times));
loop.Run();
}
#if defined(OS_WIN)
class DispatcherImpl : public MessageLoopForUI::Dispatcher {
public:
DispatcherImpl() : dispatch_count_(0) {}
virtual bool Dispatch(const base::NativeEvent& msg) override {
::TranslateMessage(&msg);
::DispatchMessage(&msg);
// Do not count WM_TIMER since it is not what we post and it will cause
// flakiness.
if (msg.message != WM_TIMER)
++dispatch_count_;
// We treat WM_LBUTTONUP as the last message.
return msg.message != WM_LBUTTONUP;
}
int dispatch_count_;
};
void MouseDownUp() {
PostMessage(NULL, WM_LBUTTONDOWN, 0, 0);
PostMessage(NULL, WM_LBUTTONUP, 'A', 0);
}
void RunTest_Dispatcher(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
MessageLoop::current()->PostDelayedTask(
FROM_HERE,
base::Bind(&MouseDownUp),
TimeDelta::FromMilliseconds(100));
DispatcherImpl dispatcher;
base::RunLoop run_loop(&dispatcher);
run_loop.Run();
ASSERT_EQ(2, dispatcher.dispatch_count_);
}
LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) {
if (code == base::MessagePumpForUI::kMessageFilterCode) {
MSG* msg = reinterpret_cast<MSG*>(lparam);
if (msg->message == WM_LBUTTONDOWN)
return TRUE;
}
return FALSE;
}
void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
MessageLoop::current()->PostDelayedTask(
FROM_HERE,
base::Bind(&MouseDownUp),
TimeDelta::FromMilliseconds(100));
HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER,
MsgFilterProc,
NULL,
GetCurrentThreadId());
DispatcherImpl dispatcher;
base::RunLoop run_loop(&dispatcher);
run_loop.Run();
ASSERT_EQ(1, dispatcher.dispatch_count_);
UnhookWindowsHookEx(msg_hook);
}
class TestIOHandler : public MessageLoopForIO::IOHandler {
public:
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
virtual void OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered, DWORD error);
void Init();
void WaitForIO();
OVERLAPPED* context() { return &context_.overlapped; }
DWORD size() { return sizeof(buffer_); }
private:
char buffer_[48];
MessageLoopForIO::IOContext context_;
HANDLE signal_;
base::win::ScopedHandle file_;
bool wait_;
};
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
: signal_(signal), wait_(wait) {
memset(buffer_, 0, sizeof(buffer_));
memset(&context_, 0, sizeof(context_));
context_.handler = this;
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL));
EXPECT_TRUE(file_.IsValid());
}
void TestIOHandler::Init() {
MessageLoopForIO::current()->RegisterIOHandler(file_, this);
DWORD read;
EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context()));
EXPECT_EQ(ERROR_IO_PENDING, GetLastError());
if (wait_)
WaitForIO();
}
void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered, DWORD error) {
ASSERT_TRUE(context == &context_);
ASSERT_TRUE(SetEvent(signal_));
}
void TestIOHandler::WaitForIO() {
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
}
void RunTest_IOHandler() {
base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback_called.IsValid());
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
base::win::ScopedHandle server(
CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler(kPipeName, callback_called, false);
thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init,
base::Unretained(&handler)));
// Make sure the thread runs and sleeps for lack of work.
base::PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL));
DWORD result = WaitForSingleObject(callback_called, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
void RunTest_WaitForIO() {
base::win::ScopedHandle callback1_called(
CreateEvent(NULL, TRUE, FALSE, NULL));
base::win::ScopedHandle callback2_called(
CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback1_called.IsValid());
ASSERT_TRUE(callback2_called.IsValid());
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
base::win::ScopedHandle server1(
CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
base::win::ScopedHandle server2(
CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server1.IsValid());
ASSERT_TRUE(server2.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler1(kPipeName1, callback1_called, false);
TestIOHandler handler2(kPipeName2, callback2_called, true);
thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init,
base::Unretained(&handler1)));
// TODO(ajwong): Do we really need such long Sleeps in ths function?
// Make sure the thread runs and sleeps for lack of work.
TimeDelta delay = TimeDelta::FromMilliseconds(100);
base::PlatformThread::Sleep(delay);
thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init,
base::Unretained(&handler2)));
base::PlatformThread::Sleep(delay);
// At this time handler1 is waiting to be called, and the thread is waiting
// on the Init method of handler2, filtering only handler2 callbacks.
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL));
base::PlatformThread::Sleep(2 * delay);
EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) <<
"handler1 has not been called";
EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL));
HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
#endif // defined(OS_WIN)
} // namespace
//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop. That way we are sure
// that message loops work properly in all configurations. Of course, in some
// cases, a unit test may only be for a particular type of loop.
TEST(MessageLoopTest, PostTask) {
RunTest_PostTask(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostTask(MessageLoop::TYPE_UI);
#endif
RunTest_PostTask(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostTask_SEH) {
RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostTask_SEH(MessageLoop::TYPE_UI);
#endif
RunTest_PostTask_SEH(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_Basic) {
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) {
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder) {
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) {
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) {
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, PostDelayedTask_SharedTimer) {
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI);
#endif
RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO);
}
#if defined(COBALT)
TEST(MessageLoopTest, PostBlockingTask) {
RunTest_PostBlockingTask(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_PostBlockingTask(MessageLoop::TYPE_UI);
#endif
RunTest_PostBlockingTask(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, WaitForFence) {
RunTest_WaitForFence(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_WaitForFence(MessageLoop::TYPE_UI);
#endif
RunTest_WaitForFence(MessageLoop::TYPE_IO);
}
#endif
#if defined(OS_WIN)
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
RunTest_PostDelayedTask_SharedTimer_SubPump();
}
#endif
// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, DISABLED_EnsureDeletion) {
RunTest_EnsureDeletion(MessageLoop::TYPE_DEFAULT);
RunTest_EnsureDeletion(MessageLoop::TYPE_UI);
RunTest_EnsureDeletion(MessageLoop::TYPE_IO);
}
// TODO(darin): MessageLoop does not support deleting all tasks in the
// destructor.
// Fails, http://crbug.com/50272.
TEST(MessageLoopTest, DISABLED_EnsureDeletion_Chain) {
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_DEFAULT);
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_UI);
RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_IO);
}
#if defined(OS_WIN)
TEST(MessageLoopTest, Crasher) {
RunTest_Crasher(MessageLoop::TYPE_DEFAULT);
RunTest_Crasher(MessageLoop::TYPE_UI);
RunTest_Crasher(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, CrasherNasty) {
RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT);
RunTest_CrasherNasty(MessageLoop::TYPE_UI);
RunTest_CrasherNasty(MessageLoop::TYPE_IO);
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, Nesting) {
RunTest_Nesting(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_Nesting(MessageLoop::TYPE_UI);
#endif
RunTest_Nesting(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveDenial1) {
RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RecursiveDenial1(MessageLoop::TYPE_UI);
#endif
RunTest_RecursiveDenial1(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveDenial3) {
RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RecursiveDenial3(MessageLoop::TYPE_UI);
#endif
RunTest_RecursiveDenial3(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveSupport1) {
RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RecursiveSupport1(MessageLoop::TYPE_UI);
#endif
RunTest_RecursiveSupport1(MessageLoop::TYPE_IO);
}
#if defined(OS_WIN)
// This test occasionally hangs http://crbug.com/44567
TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveSupport2) {
// This test requires a UI loop
RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, NonNestableWithNoNesting) {
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI);
#endif
RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, NonNestableInNestedLoop) {
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false);
#if !defined(OS_STARBOARD)
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false);
#endif
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false);
}
TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) {
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true);
#if !defined(OS_STARBOARD)
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true);
#endif
RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true);
}
TEST(MessageLoopTest, QuitNow) {
RunTest_QuitNow(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_QuitNow(MessageLoop::TYPE_UI);
#endif
RunTest_QuitNow(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitTop) {
RunTest_RunLoopQuitTop(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitTop(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitTop(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitNested) {
RunTest_RunLoopQuitNested(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitNested(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitNested(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitBogus) {
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitBogus(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitDeep) {
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitDeep(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitOrderBefore) {
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitOrderBefore(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitOrderDuring) {
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitOrderDuring(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RunLoopQuitOrderAfter) {
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_DEFAULT);
#if !defined(OS_STARBOARD)
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_UI);
#endif
RunTest_RunLoopQuitOrderAfter(MessageLoop::TYPE_IO);
}
class DummyTaskObserver : public MessageLoop::TaskObserver {
public:
explicit DummyTaskObserver(int num_tasks)
: num_tasks_started_(0),
num_tasks_processed_(0),
num_tasks_(num_tasks) {}
virtual ~DummyTaskObserver() {}
virtual void WillProcessTask(TimeTicks time_posted) override {
num_tasks_started_++;
EXPECT_TRUE(time_posted != TimeTicks());
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
}
virtual void DidProcessTask(TimeTicks time_posted) override {
num_tasks_processed_++;
EXPECT_TRUE(time_posted != TimeTicks());
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
}
int num_tasks_started() const { return num_tasks_started_; }
int num_tasks_processed() const { return num_tasks_processed_; }
private:
int num_tasks_started_;
int num_tasks_processed_;
const int num_tasks_;
DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};
TEST(MessageLoopTest, TaskObserver) {
const int kNumPosts = 6;
DummyTaskObserver observer(kNumPosts);
MessageLoop loop;
loop.AddTaskObserver(&observer);
loop.PostTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, kNumPosts));
loop.Run();
loop.RemoveTaskObserver(&observer);
EXPECT_EQ(kNumPosts, observer.num_tasks_started());
EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
}
#if defined(OS_WIN)
TEST(MessageLoopTest, Dispatcher) {
// This test requires a UI loop
RunTest_Dispatcher(MessageLoop::TYPE_UI);
}
TEST(MessageLoopTest, DispatcherWithMessageHook) {
// This test requires a UI loop
RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI);
}
TEST(MessageLoopTest, IOHandler) {
RunTest_IOHandler();
}
TEST(MessageLoopTest, WaitForIO) {
RunTest_WaitForIO();
}
TEST(MessageLoopTest, HighResolutionTimer) {
MessageLoop loop;
const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
EXPECT_FALSE(loop.high_resolution_timers_enabled());
// Post a fast task to enable the high resolution timers.
loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1),
kFastTimer);
loop.Run();
EXPECT_TRUE(loop.high_resolution_timers_enabled());
// Post a slow task and verify high resolution timers
// are still enabled.
loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1),
kSlowTimer);
loop.Run();
EXPECT_TRUE(loop.high_resolution_timers_enabled());
// Wait for a while so that high-resolution mode elapses.
base::PlatformThread::Sleep(TimeDelta::FromMilliseconds(
MessageLoop::kHighResolutionTimerModeLeaseTimeMs));
// Post a slow task to disable the high resolution timers.
loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1),
kSlowTimer);
loop.Run();
EXPECT_FALSE(loop.high_resolution_timers_enabled());
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX) && !defined(OS_NACL)
namespace {
class QuitDelegate : public MessageLoopForIO::Watcher {
public:
virtual void OnFileCanWriteWithoutBlocking(int fd) override {
MessageLoop::current()->Quit();
}
virtual void OnFileCanReadWithoutBlocking(int fd) override {
MessageLoop::current()->Quit();
}
};
// LB_SHELL platforms don't implement WatchFileDescriptor().
// pipe() may not exist on some platforms.
#if !defined(__LB_SHELL__) && !defined(OS_STARBOARD)
TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
// Simulate a MessageLoop that dies before an FileDescriptorWatcher.
// This could happen when people use the Singleton pattern or atexit.
// Create a file descriptor. Doesn't need to be readable or writable,
// as we don't need to actually get any notifications.
// pipe() is just the easiest way to do it.
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for controller to live longer than message loop.
MessageLoopForIO::FileDescriptorWatcher controller;
{
MessageLoopForIO message_loop;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
// and don't run the message loop, just destroy it.
}
}
if (HANDLE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (HANDLE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
// Verify that it's ok to call StopWatchingFileDescriptor().
// (Errors only showed up in valgrind.)
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for message loop to live longer than controller.
MessageLoopForIO message_loop;
{
MessageLoopForIO::FileDescriptorWatcher controller;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
controller.StopWatchingFileDescriptor();
}
}
if (HANDLE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (HANDLE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
#endif
} // namespace
#endif // defined(OS_POSIX) && !defined(OS_NACL)
namespace {
// Inject a test point for recording the destructor calls for Closure objects
// send to MessageLoop::PostTask(). It is awkward usage since we are trying to
// hook the actual destruction, which is not a common operation.
class DestructionObserverProbe :
public base::RefCounted<DestructionObserverProbe> {
public:
DestructionObserverProbe(bool* task_destroyed,
bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called) {
}
virtual void Run() {
// This task should never run.
ADD_FAILURE();
}
private:
friend class base::RefCounted<DestructionObserverProbe>;
virtual ~DestructionObserverProbe() {
EXPECT_FALSE(*destruction_observer_called_);
*task_destroyed_ = true;
}
bool* task_destroyed_;
bool* destruction_observer_called_;
};
class MLDestructionObserver : public MessageLoop::DestructionObserver {
public:
MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called),
task_destroyed_before_message_loop_(false) {
}
virtual void WillDestroyCurrentMessageLoop() override {
task_destroyed_before_message_loop_ = *task_destroyed_;
*destruction_observer_called_ = true;
}
bool task_destroyed_before_message_loop() const {
return task_destroyed_before_message_loop_;
}
private:
bool* task_destroyed_;
bool* destruction_observer_called_;
bool task_destroyed_before_message_loop_;
};
} // namespace
TEST(MessageLoopTest, DestructionObserverTest) {
// Verify that the destruction observer gets called at the very end (after
// all the pending tasks have been destroyed).
MessageLoop* loop = new MessageLoop;
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
bool task_destroyed = false;
bool destruction_observer_called = false;
MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
loop->AddDestructionObserver(&observer);
loop->PostDelayedTask(
FROM_HERE,
base::Bind(&DestructionObserverProbe::Run,
new DestructionObserverProbe(&task_destroyed,
&destruction_observer_called)),
kDelay);
delete loop;
EXPECT_TRUE(observer.task_destroyed_before_message_loop());
// The task should have been destroyed when we deleted the loop.
EXPECT_TRUE(task_destroyed);
EXPECT_TRUE(destruction_observer_called);
}
// Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
// posts tasks on that message loop.
TEST(MessageLoopTest, ThreadMainTaskRunner) {
MessageLoop loop;
scoped_refptr<Foo> foo(new Foo());
std::string a("a");
base::ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, base::Bind(
&Foo::Test1ConstRef, foo.get(), a));
// Post quit task;
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(
&MessageLoop::Quit, base::Unretained(MessageLoop::current())));
// Now kick things off
MessageLoop::current()->Run();
EXPECT_EQ(foo->test_count(), 1);
EXPECT_EQ(foo->result(), "a");
}
TEST(MessageLoopTest, IsType) {
MessageLoop loop(MessageLoop::TYPE_UI);
EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
}
TEST(MessageLoopTest, RecursivePosts) {
// There was a bug in the MessagePumpGLib where posting tasks recursively
// caused the message loop to hang, due to the buffer of the internal pipe
// becoming full. Test all MessageLoop types to ensure this issue does not
// exist in other MessagePumps.
// On Linux, the pipe buffer size is 64KiB by default. The bug caused one
// byte accumulated in the pipe per two posts, so we should repeat 128K
// times to reproduce the bug.
const int kNumTimes = 1 << 17;
RunTest_RecursivePosts(MessageLoop::TYPE_DEFAULT, kNumTimes);
#if !defined(OS_STARBOARD)
RunTest_RecursivePosts(MessageLoop::TYPE_UI, kNumTimes);
#endif
RunTest_RecursivePosts(MessageLoop::TYPE_IO, kNumTimes);
}