blob: e0869e3da9df00d32df96e6a61910c2052fecc89 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef COBALT_MATH_QUAD_F_H_
#define COBALT_MATH_QUAD_F_H_
#include <algorithm>
#include <cmath>
#include <iosfwd>
#include <string>
#include "cobalt/math/matrix3_f.h"
#include "cobalt/math/point_f.h"
#include "cobalt/math/rect_f.h"
namespace cobalt {
namespace math {
// A Quad is defined by four corners, allowing it to have edges that are not
// axis-aligned, unlike a Rect.
class QuadF {
public:
QuadF() {}
QuadF(const PointF& p1, const PointF& p2, const PointF& p3, const PointF& p4)
: p1_(p1), p2_(p2), p3_(p3), p4_(p4) {}
// Creates a quad by multiplying the corner points of the given rectangle by
// the given matrix.
QuadF(const Matrix3F& matrix, const RectF& rect)
: p1_(matrix * PointF(rect.x(), rect.y())),
p2_(matrix * PointF(rect.right(), rect.y())),
p3_(matrix * PointF(rect.right(), rect.bottom())),
p4_(matrix * PointF(rect.x(), rect.bottom())) {}
explicit QuadF(const RectF& rect)
: p1_(rect.x(), rect.y()),
p2_(rect.right(), rect.y()),
p3_(rect.right(), rect.bottom()),
p4_(rect.x(), rect.bottom()) {}
void operator=(const RectF& rect);
void SetQuad(const PointF& p1, const PointF& p2, const PointF& p3,
const PointF& p4) {
set_p1(p1);
set_p2(p2);
set_p3(p3);
set_p4(p4);
}
void set_p1(const PointF& p) { p1_ = p; }
void set_p2(const PointF& p) { p2_ = p; }
void set_p3(const PointF& p) { p3_ = p; }
void set_p4(const PointF& p) { p4_ = p; }
const PointF& p1() const { return p1_; }
const PointF& p2() const { return p2_; }
const PointF& p3() const { return p3_; }
const PointF& p4() const { return p4_; }
// Returns true if the quad is an axis-aligned rectangle.
bool IsRectilinear() const;
// Returns true if the points of the quad are in counter-clockwise order. This
// assumes that the quad is convex, and that no three points are collinear.
bool IsCounterClockwise() const;
// Returns true if the |point| is contained within the quad, or lies on on
// edge of the quad. This assumes that the quad is convex.
bool Contains(const PointF& point) const;
// Returns a rectangle that bounds the four points of the quad. The points of
// the quad may lie on the right/bottom edge of the resulting rectangle,
// rather than being strictly inside it.
RectF BoundingBox() const {
float rl = std::min(std::min(p1_.x(), p2_.x()), std::min(p3_.x(), p4_.x()));
float rr = std::max(std::max(p1_.x(), p2_.x()), std::max(p3_.x(), p4_.x()));
float rt = std::min(std::min(p1_.y(), p2_.y()), std::min(p3_.y(), p4_.y()));
float rb = std::max(std::max(p1_.y(), p2_.y()), std::max(p3_.y(), p4_.y()));
return RectF(rl, rt, rr - rl, rb - rt);
}
// Add a vector to the quad, offseting each point in the quad by the vector.
void operator+=(const Vector2dF& rhs);
// Subtract a vector from the quad, offseting each point in the quad by the
// inverse of the vector.
void operator-=(const Vector2dF& rhs);
// Scale each point in the quad by the |scale| factor.
void Scale(float scale) { Scale(scale, scale); }
// Scale each point in the quad by the scale factors along each axis.
void Scale(float x_scale, float y_scale);
// Returns a string representation of quad.
std::string ToString() const;
private:
PointF p1_;
PointF p2_;
PointF p3_;
PointF p4_;
};
inline bool operator==(const QuadF& lhs, const QuadF& rhs) {
return lhs.p1() == rhs.p1() && lhs.p2() == rhs.p2() && lhs.p3() == rhs.p3() &&
lhs.p4() == rhs.p4();
}
inline bool operator!=(const QuadF& lhs, const QuadF& rhs) {
return !(lhs == rhs);
}
// Add a vector to a quad, offseting each point in the quad by the vector.
QuadF operator+(const QuadF& lhs, const Vector2dF& rhs);
// Subtract a vector from a quad, offseting each point in the quad by the
// inverse of the vector.
QuadF operator-(const QuadF& lhs, const Vector2dF& rhs);
} // namespace math
} // namespace cobalt
#endif // COBALT_MATH_QUAD_F_H_