| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "cobalt/math/r_tree_base.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "base/logging.h" |
| |
| namespace cobalt { |
| namespace math { |
| |
| // Helpers -------------------------------------------------------------------- |
| |
| namespace { |
| |
| // Returns a Vector2d to allow us to do arithmetic on the result such as |
| // computing distances between centers. |
| Vector2d CenterOfRect(const Rect& rect) { |
| return rect.OffsetFromOrigin() + |
| Vector2d(rect.width() / 2, rect.height() / 2); |
| } |
| } |
| |
| // RTreeBase::NodeBase -------------------------------------------------------- |
| |
| RTreeBase::NodeBase::~NodeBase() {} |
| |
| void RTreeBase::NodeBase::RecomputeBoundsUpToRoot() { |
| RecomputeLocalBounds(); |
| if (parent_) parent_->RecomputeBoundsUpToRoot(); |
| } |
| |
| RTreeBase::NodeBase::NodeBase(const Rect& rect, NodeBase* parent) |
| : rect_(rect), parent_(parent) {} |
| |
| void RTreeBase::NodeBase::RecomputeLocalBounds() {} |
| |
| // RTreeBase::RecordBase ------------------------------------------------------ |
| |
| RTreeBase::RecordBase::RecordBase(const Rect& rect) : NodeBase(rect, NULL) {} |
| |
| RTreeBase::RecordBase::~RecordBase() {} |
| |
| void RTreeBase::RecordBase::AppendIntersectingRecords( |
| const Rect& query_rect, Records* matches_out) const { |
| if (rect().Intersects(query_rect)) matches_out->push_back(this); |
| } |
| |
| void RTreeBase::RecordBase::AppendAllRecords(Records* matches_out) const { |
| matches_out->push_back(this); |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> |
| RTreeBase::RecordBase::RemoveAndReturnLastChild() { |
| return scoped_ptr<NodeBase>(); |
| } |
| |
| int RTreeBase::RecordBase::Level() const { return -1; } |
| |
| // RTreeBase::Node ------------------------------------------------------------ |
| |
| RTreeBase::Node::Node() : NodeBase(Rect(), NULL), level_(0) {} |
| |
| RTreeBase::Node::~Node() {} |
| |
| scoped_ptr<RTreeBase::Node> RTreeBase::Node::ConstructParent() { |
| DCHECK(!parent()); |
| scoped_ptr<Node> new_parent(new Node(level_ + 1)); |
| new_parent->AddChild(scoped_ptr<NodeBase>(this)); |
| return new_parent.Pass(); |
| } |
| |
| void RTreeBase::Node::AppendIntersectingRecords(const Rect& query_rect, |
| Records* matches_out) const { |
| // Check own bounding box for intersection, can cull all children if no |
| // intersection. |
| if (!rect().Intersects(query_rect)) return; |
| |
| // Conversely if we are completely contained within the query rect we can |
| // confidently skip all bounds checks for ourselves and all our children. |
| if (query_rect.Contains(rect())) { |
| AppendAllRecords(matches_out); |
| return; |
| } |
| |
| // We intersect the query rect but we are not are not contained within it. |
| // We must query each of our children in turn. |
| for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) |
| (*i)->AppendIntersectingRecords(query_rect, matches_out); |
| } |
| |
| void RTreeBase::Node::AppendAllRecords(Records* matches_out) const { |
| for (Nodes::const_iterator i = children_.begin(); i != children_.end(); ++i) |
| (*i)->AppendAllRecords(matches_out); |
| } |
| |
| void RTreeBase::Node::RemoveNodesForReinsert(size_t number_to_remove, |
| Nodes* nodes) { |
| DCHECK_LE(number_to_remove, children_.size()); |
| |
| std::partial_sort(children_.begin(), children_.begin() + number_to_remove, |
| children_.end(), |
| &RTreeBase::Node::CompareCenterDistanceFromParent); |
| |
| // Move the lowest-distance nodes to the returned vector. |
| nodes->insert(nodes->end(), children_.begin(), |
| children_.begin() + number_to_remove); |
| children_.weak_erase(children_.begin(), children_.begin() + number_to_remove); |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveChild( |
| NodeBase* child_node, Nodes* orphans) { |
| DCHECK_EQ(this, child_node->parent()); |
| |
| scoped_ptr<NodeBase> orphan(child_node->RemoveAndReturnLastChild()); |
| while (orphan) { |
| orphans->push_back(orphan.release()); |
| orphan = child_node->RemoveAndReturnLastChild(); |
| } |
| |
| Nodes::iterator i = std::find(children_.begin(), children_.end(), child_node); |
| DCHECK(i != children_.end()); |
| children_.weak_erase(i); |
| |
| return scoped_ptr<NodeBase>(child_node); |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::RemoveAndReturnLastChild() { |
| if (children_.empty()) return scoped_ptr<NodeBase>(); |
| |
| scoped_ptr<NodeBase> last_child(children_.back()); |
| children_.weak_erase(children_.end() - 1); |
| last_child->set_parent(NULL); |
| return last_child.Pass(); |
| } |
| |
| RTreeBase::Node* RTreeBase::Node::ChooseSubtree(NodeBase* node) { |
| DCHECK(node); |
| // Should never be called on a node at equal or lower level in the tree than |
| // the node to insert. |
| DCHECK_GT(level_, node->Level()); |
| |
| // If we are a parent of nodes on the provided node level, we are done. |
| if (level_ == node->Level() + 1) return this; |
| |
| // Precompute a vector of expanded rects, used by both LeastOverlapIncrease |
| // and LeastAreaEnlargement. |
| Rects expanded_rects; |
| expanded_rects.reserve(children_.size()); |
| for (Nodes::iterator i = children_.begin(); i != children_.end(); ++i) |
| expanded_rects.push_back(UnionRects(node->rect(), (*i)->rect())); |
| |
| Node* best_candidate = NULL; |
| // For parents of leaf nodes, we pick the node that will cause the least |
| // increase in overlap by the addition of this new node. This may detect a |
| // tie, in which case it will return NULL. |
| if (level_ == 1) |
| best_candidate = LeastOverlapIncrease(node->rect(), expanded_rects); |
| |
| // For non-parents of leaf nodes, or for parents of leaf nodes with ties in |
| // overlap increase, we choose the subtree with least area enlargement caused |
| // by the addition of the new node. |
| if (!best_candidate) |
| best_candidate = LeastAreaEnlargement(node->rect(), expanded_rects); |
| |
| DCHECK(best_candidate); |
| return best_candidate->ChooseSubtree(node); |
| } |
| |
| size_t RTreeBase::Node::AddChild(scoped_ptr<NodeBase> node) { |
| DCHECK(node); |
| // Sanity-check that the level of the child being added is one less than ours. |
| DCHECK_EQ(level_ - 1, node->Level()); |
| node->set_parent(this); |
| set_rect(UnionRects(rect(), node->rect())); |
| children_.push_back(node.release()); |
| return children_.size(); |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::Split(size_t min_children, |
| size_t max_children) { |
| // We should have too many children to begin with. |
| DCHECK_EQ(max_children + 1, children_.size()); |
| |
| // Determine if we should split along the horizontal or vertical axis. |
| std::vector<NodeBase*> vertical_sort(children_.get()); |
| std::vector<NodeBase*> horizontal_sort(children_.get()); |
| std::sort(vertical_sort.begin(), vertical_sort.end(), |
| &RTreeBase::Node::CompareVertical); |
| std::sort(horizontal_sort.begin(), horizontal_sort.end(), |
| &RTreeBase::Node::CompareHorizontal); |
| |
| Rects low_vertical_bounds; |
| Rects low_horizontal_bounds; |
| BuildLowBounds(vertical_sort, horizontal_sort, &low_vertical_bounds, |
| &low_horizontal_bounds); |
| |
| Rects high_vertical_bounds; |
| Rects high_horizontal_bounds; |
| BuildHighBounds(vertical_sort, horizontal_sort, &high_vertical_bounds, |
| &high_horizontal_bounds); |
| |
| // Choose |end_index| such that both Nodes after the split will have |
| // min_children <= children_.size() <= max_children. |
| size_t end_index = std::min(max_children, children_.size() - min_children); |
| bool is_vertical_split = |
| SmallestMarginSum(min_children, end_index, low_horizontal_bounds, |
| high_horizontal_bounds) < |
| SmallestMarginSum(min_children, end_index, low_vertical_bounds, |
| high_vertical_bounds); |
| |
| // Choose split index along chosen axis and perform the split. |
| const Rects& low_bounds(is_vertical_split ? low_vertical_bounds |
| : low_horizontal_bounds); |
| const Rects& high_bounds(is_vertical_split ? high_vertical_bounds |
| : high_horizontal_bounds); |
| size_t split_index = |
| ChooseSplitIndex(min_children, end_index, low_bounds, high_bounds); |
| |
| const std::vector<NodeBase*>& sort(is_vertical_split ? vertical_sort |
| : horizontal_sort); |
| return DivideChildren(low_bounds, high_bounds, sort, split_index); |
| } |
| |
| int RTreeBase::Node::Level() const { return level_; } |
| |
| RTreeBase::Node::Node(int level) : NodeBase(Rect(), NULL), level_(level) {} |
| |
| // static |
| bool RTreeBase::Node::CompareVertical(const NodeBase* a, const NodeBase* b) { |
| const Rect& a_rect = a->rect(); |
| const Rect& b_rect = b->rect(); |
| return (a_rect.y() < b_rect.y()) || |
| ((a_rect.y() == b_rect.y()) && (a_rect.height() < b_rect.height())); |
| } |
| |
| // static |
| bool RTreeBase::Node::CompareHorizontal(const NodeBase* a, const NodeBase* b) { |
| const Rect& a_rect = a->rect(); |
| const Rect& b_rect = b->rect(); |
| return (a_rect.x() < b_rect.x()) || |
| ((a_rect.x() == b_rect.x()) && (a_rect.width() < b_rect.width())); |
| } |
| |
| // static |
| bool RTreeBase::Node::CompareCenterDistanceFromParent(const NodeBase* a, |
| const NodeBase* b) { |
| const NodeBase* p = a->parent(); |
| |
| DCHECK(p); |
| DCHECK_EQ(p, b->parent()); |
| |
| Vector2d p_center = CenterOfRect(p->rect()); |
| Vector2d a_center = CenterOfRect(a->rect()); |
| Vector2d b_center = CenterOfRect(b->rect()); |
| |
| // We don't bother with square roots because we are only comparing the two |
| // values for sorting purposes. |
| return (a_center - p_center).LengthSquared() < |
| (b_center - p_center).LengthSquared(); |
| } |
| |
| // static |
| void RTreeBase::Node::BuildLowBounds( |
| const std::vector<NodeBase*>& vertical_sort, |
| const std::vector<NodeBase*>& horizontal_sort, Rects* vertical_bounds, |
| Rects* horizontal_bounds) { |
| Rect vertical_bounds_rect; |
| vertical_bounds->reserve(vertical_sort.size()); |
| for (std::vector<NodeBase*>::const_iterator i = vertical_sort.begin(); |
| i != vertical_sort.end(); ++i) { |
| vertical_bounds_rect.Union((*i)->rect()); |
| vertical_bounds->push_back(vertical_bounds_rect); |
| } |
| |
| Rect horizontal_bounds_rect; |
| horizontal_bounds->reserve(horizontal_sort.size()); |
| for (std::vector<NodeBase*>::const_iterator i = horizontal_sort.begin(); |
| i != horizontal_sort.end(); ++i) { |
| horizontal_bounds_rect.Union((*i)->rect()); |
| horizontal_bounds->push_back(horizontal_bounds_rect); |
| } |
| } |
| |
| // static |
| void RTreeBase::Node::BuildHighBounds( |
| const std::vector<NodeBase*>& vertical_sort, |
| const std::vector<NodeBase*>& horizontal_sort, Rects* vertical_bounds, |
| Rects* horizontal_bounds) { |
| Rect vertical_bounds_rect; |
| vertical_bounds->reserve(vertical_sort.size()); |
| for (std::vector<NodeBase*>::const_reverse_iterator i = |
| vertical_sort.rbegin(); |
| i != vertical_sort.rend(); ++i) { |
| vertical_bounds_rect.Union((*i)->rect()); |
| vertical_bounds->push_back(vertical_bounds_rect); |
| } |
| std::reverse(vertical_bounds->begin(), vertical_bounds->end()); |
| |
| Rect horizontal_bounds_rect; |
| horizontal_bounds->reserve(horizontal_sort.size()); |
| for (std::vector<NodeBase*>::const_reverse_iterator i = |
| horizontal_sort.rbegin(); |
| i != horizontal_sort.rend(); ++i) { |
| horizontal_bounds_rect.Union((*i)->rect()); |
| horizontal_bounds->push_back(horizontal_bounds_rect); |
| } |
| std::reverse(horizontal_bounds->begin(), horizontal_bounds->end()); |
| } |
| |
| size_t RTreeBase::Node::ChooseSplitIndex(size_t start_index, size_t end_index, |
| const Rects& low_bounds, |
| const Rects& high_bounds) { |
| DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
| |
| int smallest_overlap_area = |
| UnionRects(low_bounds[start_index], high_bounds[start_index]) |
| .size() |
| .GetArea(); |
| int smallest_combined_area = low_bounds[start_index].size().GetArea() + |
| high_bounds[start_index].size().GetArea(); |
| size_t optimal_split_index = start_index; |
| for (size_t p = start_index + 1; p < end_index; ++p) { |
| const int overlap_area = |
| UnionRects(low_bounds[p], high_bounds[p]).size().GetArea(); |
| const int combined_area = |
| low_bounds[p].size().GetArea() + high_bounds[p].size().GetArea(); |
| if ((overlap_area < smallest_overlap_area) || |
| ((overlap_area == smallest_overlap_area) && |
| (combined_area < smallest_combined_area))) { |
| smallest_overlap_area = overlap_area; |
| smallest_combined_area = combined_area; |
| optimal_split_index = p; |
| } |
| } |
| |
| // optimal_split_index currently points at the last element in the first set, |
| // so advance it by 1 to point at the first element in the second set. |
| return optimal_split_index + 1; |
| } |
| |
| // static |
| int RTreeBase::Node::SmallestMarginSum(size_t start_index, size_t end_index, |
| const Rects& low_bounds, |
| const Rects& high_bounds) { |
| DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
| DCHECK_LT(start_index, low_bounds.size()); |
| DCHECK_LE(start_index, end_index); |
| DCHECK_LE(end_index, low_bounds.size()); |
| Rects::const_iterator i(low_bounds.begin() + start_index); |
| Rects::const_iterator j(high_bounds.begin() + start_index); |
| int smallest_sum = i->width() + i->height() + j->width() + j->height(); |
| for (; i != (low_bounds.begin() + end_index); ++i, ++j) { |
| smallest_sum = std::min( |
| smallest_sum, i->width() + i->height() + j->width() + j->height()); |
| } |
| |
| return smallest_sum; |
| } |
| |
| void RTreeBase::Node::RecomputeLocalBounds() { |
| Rect bounds; |
| for (size_t i = 0; i < children_.size(); ++i) |
| bounds.Union(children_[i]->rect()); |
| |
| set_rect(bounds); |
| } |
| |
| int RTreeBase::Node::OverlapIncreaseToAdd(const Rect& rect, |
| const NodeBase* candidate_node, |
| const Rect& expanded_rect) const { |
| DCHECK(candidate_node); |
| |
| // Early-out when |rect| is contained completely within |candidate|. |
| if (candidate_node->rect().Contains(rect)) return 0; |
| |
| int total_original_overlap = 0; |
| int total_expanded_overlap = 0; |
| |
| // Now calculate overlap with all other rects in this node. |
| for (Nodes::const_iterator it = children_.begin(); it != children_.end(); |
| ++it) { |
| // Skip calculating overlap with the candidate rect. |
| if ((*it) == candidate_node) continue; |
| NodeBase* overlap_node = (*it); |
| total_original_overlap += |
| IntersectRects(candidate_node->rect(), overlap_node->rect()) |
| .size() |
| .GetArea(); |
| Rect expanded_overlap_rect = expanded_rect; |
| expanded_overlap_rect.Intersect(overlap_node->rect()); |
| total_expanded_overlap += expanded_overlap_rect.size().GetArea(); |
| } |
| |
| return total_expanded_overlap - total_original_overlap; |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> RTreeBase::Node::DivideChildren( |
| const Rects& low_bounds, const Rects& high_bounds, |
| const std::vector<NodeBase*>& sorted_children, size_t split_index) { |
| DCHECK_EQ(low_bounds.size(), high_bounds.size()); |
| DCHECK_EQ(low_bounds.size(), sorted_children.size()); |
| DCHECK_LT(split_index, low_bounds.size()); |
| DCHECK_GT(split_index, 0U); |
| |
| scoped_ptr<Node> sibling(new Node(level_)); |
| sibling->set_parent(parent()); |
| set_rect(low_bounds[split_index - 1]); |
| sibling->set_rect(high_bounds[split_index]); |
| |
| // Our own children_ vector is unsorted, so we wipe it out and divide the |
| // sorted bounds rects between ourselves and our sibling. |
| children_.weak_clear(); |
| children_.insert(children_.end(), sorted_children.begin(), |
| sorted_children.begin() + split_index); |
| sibling->children_.insert(sibling->children_.end(), |
| sorted_children.begin() + split_index, |
| sorted_children.end()); |
| |
| for (size_t i = 0; i < sibling->children_.size(); ++i) |
| sibling->children_[i]->set_parent(sibling.get()); |
| |
| return sibling.PassAs<NodeBase>(); |
| } |
| |
| RTreeBase::Node* RTreeBase::Node::LeastOverlapIncrease( |
| const Rect& node_rect, const Rects& expanded_rects) { |
| NodeBase* best_node = children_.front(); |
| int least_overlap_increase = |
| OverlapIncreaseToAdd(node_rect, children_[0], expanded_rects[0]); |
| for (size_t i = 1; i < children_.size(); ++i) { |
| int overlap_increase = |
| OverlapIncreaseToAdd(node_rect, children_[i], expanded_rects[i]); |
| if (overlap_increase < least_overlap_increase) { |
| least_overlap_increase = overlap_increase; |
| best_node = children_[i]; |
| } else if (overlap_increase == least_overlap_increase) { |
| // If we are tied at zero there is no possible better overlap increase, |
| // so we can report a tie early. |
| if (overlap_increase == 0) return NULL; |
| |
| best_node = NULL; |
| } |
| } |
| |
| // Ensure that our children are always Nodes and not Records. |
| DCHECK_GE(level_, 1); |
| return static_cast<Node*>(best_node); |
| } |
| |
| RTreeBase::Node* RTreeBase::Node::LeastAreaEnlargement( |
| const Rect& node_rect, const Rects& expanded_rects) { |
| DCHECK(!children_.empty()); |
| DCHECK_EQ(children_.size(), expanded_rects.size()); |
| |
| NodeBase* best_node = children_.front(); |
| int least_area_enlargement = |
| expanded_rects[0].size().GetArea() - best_node->rect().size().GetArea(); |
| for (size_t i = 1; i < children_.size(); ++i) { |
| NodeBase* candidate_node = children_[i]; |
| int area_change = expanded_rects[i].size().GetArea() - |
| candidate_node->rect().size().GetArea(); |
| DCHECK_GE(area_change, 0); |
| if (area_change < least_area_enlargement) { |
| best_node = candidate_node; |
| least_area_enlargement = area_change; |
| } else if (area_change == least_area_enlargement && |
| candidate_node->rect().size().GetArea() < |
| best_node->rect().size().GetArea()) { |
| // Ties are broken by choosing the entry with the least area. |
| best_node = candidate_node; |
| } |
| } |
| |
| // Ensure that our children are always Nodes and not Records. |
| DCHECK_GE(level_, 1); |
| return static_cast<Node*>(best_node); |
| } |
| |
| // RTreeBase ------------------------------------------------------------------ |
| |
| RTreeBase::RTreeBase(size_t min_children, size_t max_children) |
| : root_(new Node()), |
| min_children_(min_children), |
| max_children_(max_children) { |
| DCHECK_GE(min_children_, 2U); |
| DCHECK_LE(min_children_, max_children_ / 2U); |
| } |
| |
| RTreeBase::~RTreeBase() {} |
| |
| void RTreeBase::InsertNode(scoped_ptr<NodeBase> node, |
| int* highest_reinsert_level) { |
| // Find the most appropriate parent to insert node into. |
| Node* parent = root_->ChooseSubtree(node.get()); |
| DCHECK(parent); |
| // Verify ChooseSubtree returned a Node at the correct level. |
| DCHECK_EQ(parent->Level(), node->Level() + 1); |
| Node* insert_parent = static_cast<Node*>(parent); |
| NodeBase* needs_bounds_recomputed = insert_parent->parent(); |
| Nodes reinserts; |
| // Attempt to insert the Node, if this overflows the Node we must handle it. |
| while (insert_parent && |
| insert_parent->AddChild(node.Pass()) > max_children_) { |
| // If we have yet to re-insert nodes at this level during this data insert, |
| // and we're not at the root, R*-Tree calls for re-insertion of some of the |
| // nodes, resulting in a better balance on the tree. |
| if (insert_parent->parent() && |
| insert_parent->Level() > *highest_reinsert_level) { |
| insert_parent->RemoveNodesForReinsert(max_children_ / 3, &reinserts); |
| // Adjust highest_reinsert_level to this level. |
| *highest_reinsert_level = insert_parent->Level(); |
| // RemoveNodesForReinsert() does not recompute bounds, so mark it. |
| needs_bounds_recomputed = insert_parent; |
| break; |
| } |
| |
| // Split() will create a sibling to insert_parent both of which will have |
| // valid bounds, but this invalidates their parent's bounds. |
| node = insert_parent->Split(min_children_, max_children_); |
| insert_parent = static_cast<Node*>(insert_parent->parent()); |
| needs_bounds_recomputed = insert_parent; |
| } |
| |
| // If we have a Node to insert, and we hit the root of the current tree, |
| // we create a new root which is the parent of the current root and the |
| // insert_node. Note that we must release() the |root_| since |
| // ConstructParent() will take ownership of it. |
| if (!insert_parent && node) { |
| root_ = root_.release()->ConstructParent(); |
| root_->AddChild(node.Pass()); |
| } |
| |
| // Recompute bounds along insertion path. |
| if (needs_bounds_recomputed) |
| needs_bounds_recomputed->RecomputeBoundsUpToRoot(); |
| |
| // Complete re-inserts, if any. The algorithm only allows for one invocation |
| // of RemoveNodesForReinsert() per level of the tree in an overall call to |
| // Insert(). |
| while (!reinserts.empty()) { |
| Nodes::iterator last_element = reinserts.end() - 1; |
| NodeBase* temp_ptr(*last_element); |
| reinserts.weak_erase(last_element); |
| InsertNode(make_scoped_ptr(temp_ptr), highest_reinsert_level); |
| } |
| } |
| |
| scoped_ptr<RTreeBase::NodeBase> RTreeBase::RemoveNode(NodeBase* node) { |
| // We need to remove this node from its parent. |
| Node* parent = static_cast<Node*>(node->parent()); |
| // Record nodes are never allowed as the root, so we should always have a |
| // parent. |
| DCHECK(parent); |
| // Should always be a leaf that had the record. |
| DCHECK_EQ(0, parent->Level()); |
| |
| Nodes orphans; |
| scoped_ptr<NodeBase> removed_node(parent->RemoveChild(node, &orphans)); |
| |
| // It's possible that by removing |node| from |parent| we have made |parent| |
| // have less than the minimum number of children, in which case we will need |
| // to remove and delete |parent| while reinserting any other children that it |
| // had. We traverse up the tree doing this until we remove a child from a |
| // parent that still has greater than or equal to the minimum number of Nodes. |
| while (parent->count() < min_children_) { |
| NodeBase* child = parent; |
| parent = static_cast<Node*>(parent->parent()); |
| |
| // If we've hit the root, stop. |
| if (!parent) break; |
| |
| parent->RemoveChild(child, &orphans); |
| } |
| |
| // If we stopped deleting nodes up the tree before encountering the root, |
| // we'll need to fix up the bounds from the first parent we didn't delete |
| // up to the root. |
| if (parent) |
| parent->RecomputeBoundsUpToRoot(); |
| else |
| root_->RecomputeBoundsUpToRoot(); |
| |
| while (!orphans.empty()) { |
| Nodes::iterator last_element = orphans.end() - 1; |
| NodeBase* temp_ptr(*last_element); |
| orphans.weak_erase(last_element); |
| int starting_level = -1; |
| InsertNode(make_scoped_ptr(temp_ptr), &starting_level); |
| } |
| |
| return removed_node.Pass(); |
| } |
| |
| void RTreeBase::PruneRootIfNecessary() { |
| if (root()->count() == 1 && root()->Level() > 0) { |
| // Awkward reset(cast(release)) pattern here because there's no better way |
| // to downcast the scoped_ptr from RemoveAndReturnLastChild() from NodeBase |
| // to Node. |
| root_.reset( |
| static_cast<Node*>(root_->RemoveAndReturnLastChild().release())); |
| } |
| } |
| |
| void RTreeBase::ResetRoot() { root_.reset(new Node()); } |
| |
| } // namespace math |
| } // namespace cobalt |