blob: 497a1e3fbcf2be853c8fbb89f74f2e2a92d387a8 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cobalt/math/r_tree.h"
#include <vector>
#include "base/hash_tables.h"
#include "cobalt/math/r_tree_base.h"
#include "cobalt/math/rect.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace cobalt {
namespace math {
class RTreeTest : public ::testing::Test {
protected:
typedef RTree<int> RT;
// Given a pointer to an RTree, traverse it and verify that its internal
// structure is consistent with RTree semantics.
void ValidateRTree(RTreeBase* rt) {
// If RTree is empty it should have an empty rectangle.
if (!rt->root()->count()) {
EXPECT_TRUE(rt->root()->rect().IsEmpty());
EXPECT_EQ(0, rt->root()->Level());
return;
}
// Root is allowed to have fewer than min_children_ but never more than
// max_children_.
EXPECT_LE(rt->root()->count(), rt->max_children_);
// The root should never be a record node.
EXPECT_GT(rt->root()->Level(), -1);
// The root should never have a parent pointer.
EXPECT_TRUE(rt->root()->parent() == NULL);
// Bounds must be consistent on the root.
CheckBoundsConsistent(rt->root());
for (size_t i = 0; i < rt->root()->count(); ++i) {
ValidateNode(rt->root()->child(i), rt->min_children_, rt->max_children_);
}
}
// Recursive descent method used by ValidateRTree to check each node within
// the RTree for consistency with RTree semantics.
void ValidateNode(const RTreeBase::NodeBase* node_base, size_t min_children,
size_t max_children) {
if (node_base->Level() >= 0) {
const RTreeBase::Node* node =
static_cast<const RTreeBase::Node*>(node_base);
EXPECT_GE(node->count(), min_children);
EXPECT_LE(node->count(), max_children);
CheckBoundsConsistent(node);
for (size_t i = 0; i < node->count(); ++i)
ValidateNode(node->child(i), min_children, max_children);
}
}
// Check bounds are consistent with children bounds, and other checks
// convenient to do while enumerating the children of node.
void CheckBoundsConsistent(const RTreeBase::Node* node) {
EXPECT_FALSE(node->rect().IsEmpty());
Rect check_bounds;
for (size_t i = 0; i < node->count(); ++i) {
const RTreeBase::NodeBase* child_node = node->child(i);
check_bounds.Union(child_node->rect());
EXPECT_EQ(node->Level() - 1, child_node->Level());
EXPECT_EQ(node, child_node->parent());
}
EXPECT_EQ(check_bounds, node->rect());
}
// Adds count squares stacked around the point (0,0) with key equal to width.
void AddStackedSquares(RT* rt, int count) {
for (int i = 1; i <= count; ++i) {
rt->Insert(Rect(0, 0, i, i), i);
ValidateRTree(static_cast<RTreeBase*>(rt));
}
}
// Given an unordered list of matching keys, verifies that it contains all
// values [1..length] for the length of that list.
void VerifyAllKeys(const RT::Matches& keys) {
for (size_t i = 1; i <= keys.size(); ++i) EXPECT_EQ(1U, keys.count(i));
}
// Given a node and a rectangle, builds an expanded rectangle list where the
// ith element of the vector is the union of the rectangle of the ith child of
// the node and the argument rectangle.
void BuildExpandedRects(RTreeBase::Node* node, const Rect& rect,
std::vector<Rect>* expanded_rects) {
expanded_rects->clear();
expanded_rects->reserve(node->count());
for (size_t i = 0; i < node->count(); ++i) {
Rect expanded_rect(rect);
expanded_rect.Union(node->child(i)->rect());
expanded_rects->push_back(expanded_rect);
}
}
};
class RTreeNodeTest : public RTreeTest {
protected:
typedef RTreeBase::NodeBase RTreeNodeBase;
typedef RT::Record RTreeRecord;
typedef RTreeBase::Node RTreeNode;
typedef RTreeBase::Node::Rects RTreeRects;
typedef RTreeBase::Nodes RTreeNodes;
// Accessors to private members of RTree::Node.
const RTreeRecord* record(RTreeNode* node, size_t i) {
return static_cast<const RTreeRecord*>(node->child(i));
}
// Provides access for tests to private methods of RTree::Node.
scoped_ptr<RTreeNode> NewNodeAtLevel(size_t level) {
return make_scoped_ptr(new RTreeBase::Node(level));
}
void NodeRecomputeLocalBounds(RTreeNodeBase* node) {
node->RecomputeLocalBounds();
}
bool NodeCompareVertical(RTreeNodeBase* a, RTreeNodeBase* b) {
return RTreeBase::Node::CompareVertical(a, b);
}
bool NodeCompareHorizontal(RTreeNodeBase* a, RTreeNodeBase* b) {
return RTreeBase::Node::CompareHorizontal(a, b);
}
bool NodeCompareCenterDistanceFromParent(const RTreeNodeBase* a,
const RTreeNodeBase* b) {
return RTreeBase::Node::CompareCenterDistanceFromParent(a, b);
}
int NodeOverlapIncreaseToAdd(RTreeNode* node, const Rect& rect,
const RTreeNodeBase* candidate_node,
const Rect& expanded_rect) {
return node->OverlapIncreaseToAdd(rect, candidate_node, expanded_rect);
}
void NodeBuildLowBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
const std::vector<RTreeNodeBase*>& horizontal_sort,
RTreeRects* vertical_bounds,
RTreeRects* horizontal_bounds) {
RTreeBase::Node::BuildLowBounds(vertical_sort, horizontal_sort,
vertical_bounds, horizontal_bounds);
}
void NodeBuildHighBounds(const std::vector<RTreeNodeBase*>& vertical_sort,
const std::vector<RTreeNodeBase*>& horizontal_sort,
RTreeRects* vertical_bounds,
RTreeRects* horizontal_bounds) {
RTreeBase::Node::BuildHighBounds(vertical_sort, horizontal_sort,
vertical_bounds, horizontal_bounds);
}
int NodeSmallestMarginSum(size_t start_index, size_t end_index,
const RTreeRects& low_bounds,
const RTreeRects& high_bounds) {
return RTreeBase::Node::SmallestMarginSum(start_index, end_index,
low_bounds, high_bounds);
}
size_t NodeChooseSplitIndex(size_t min_children, size_t max_children,
const RTreeRects& low_bounds,
const RTreeRects& high_bounds) {
return RTreeBase::Node::ChooseSplitIndex(min_children, max_children,
low_bounds, high_bounds);
}
scoped_ptr<RTreeNodeBase> NodeDivideChildren(
RTreeNode* node, const RTreeRects& low_bounds,
const RTreeRects& high_bounds,
const std::vector<RTreeNodeBase*>& sorted_children, size_t split_index) {
return node->DivideChildren(low_bounds, high_bounds, sorted_children,
split_index);
}
RTreeNode* NodeLeastOverlapIncrease(RTreeNode* node, const Rect& node_rect,
const RTreeRects& expanded_rects) {
return node->LeastOverlapIncrease(node_rect, expanded_rects);
}
RTreeNode* NodeLeastAreaEnlargement(RTreeNode* node, const Rect& node_rect,
const RTreeRects& expanded_rects) {
return node->LeastAreaEnlargement(node_rect, expanded_rects);
}
};
// RTreeNodeTest --------------------------------------------------------------
TEST_F(RTreeNodeTest, RemoveNodesForReinsert) {
// Make a leaf node for testing removal from.
scoped_ptr<RTreeNode> test_node(new RTreeNode);
// Build 20 record nodes with rectangle centers going from (1,1) to (20,20)
for (int i = 1; i <= 20; ++i)
test_node->AddChild(scoped_ptr<RTreeNodeBase>(
new RTreeRecord(Rect(i - 1, i - 1, 2, 2), i)));
// Quick verification of the node before removing children.
ValidateNode(test_node.get(), 1U, 20U);
// Use a scoped vector to delete all children that get removed from the Node.
RTreeNodes removals;
test_node->RemoveNodesForReinsert(1, &removals);
// Should have gotten back 1 node pointer.
EXPECT_EQ(1U, removals.size());
// There should be 19 left in the test_node.
EXPECT_EQ(19U, test_node->count());
// If we fix up the bounds on the test_node, it should verify.
NodeRecomputeLocalBounds(test_node.get());
ValidateNode(test_node.get(), 2U, 20U);
// The node we removed should be node 10, as it was exactly in the center.
EXPECT_EQ(10, static_cast<RTreeRecord*>(removals[0])->key());
// Now remove the next 2.
removals.clear();
test_node->RemoveNodesForReinsert(2, &removals);
EXPECT_EQ(2U, removals.size());
EXPECT_EQ(17U, test_node->count());
NodeRecomputeLocalBounds(test_node.get());
ValidateNode(test_node.get(), 2U, 20U);
// Lastly the 2 nodes we should have gotten back are keys 9 and 11, as their
// centers were the closest to the center of the node bounding box.
base::hash_set<intptr_t> results_hash;
results_hash.insert(static_cast<RTreeRecord*>(removals[0])->key());
results_hash.insert(static_cast<RTreeRecord*>(removals[1])->key());
EXPECT_EQ(1U, results_hash.count(9));
EXPECT_EQ(1U, results_hash.count(11));
}
TEST_F(RTreeNodeTest, CompareVertical) {
// One rect with lower y than another should always sort lower.
RTreeRecord low(Rect(0, 1, 10, 10), 1);
RTreeRecord middle(Rect(0, 5, 10, 10), 5);
EXPECT_TRUE(NodeCompareVertical(&low, &middle));
EXPECT_FALSE(NodeCompareVertical(&middle, &low));
// Try a non-overlapping higher-y rectangle.
RTreeRecord high(Rect(-10, 20, 10, 1), 10);
EXPECT_TRUE(NodeCompareVertical(&low, &high));
EXPECT_FALSE(NodeCompareVertical(&high, &low));
// Ties are broken by lowest bottom y value.
RTreeRecord shorter_tie(Rect(10, 1, 100, 2), 2);
EXPECT_TRUE(NodeCompareVertical(&shorter_tie, &low));
EXPECT_FALSE(NodeCompareVertical(&low, &shorter_tie));
}
TEST_F(RTreeNodeTest, CompareHorizontal) {
// One rect with lower x than another should always sort lower than higher x.
RTreeRecord low(Rect(1, 0, 10, 10), 1);
RTreeRecord middle(Rect(5, 0, 10, 10), 5);
EXPECT_TRUE(NodeCompareHorizontal(&low, &middle));
EXPECT_FALSE(NodeCompareHorizontal(&middle, &low));
// Try a non-overlapping higher-x rectangle.
RTreeRecord high(Rect(20, -10, 1, 10), 10);
EXPECT_TRUE(NodeCompareHorizontal(&low, &high));
EXPECT_FALSE(NodeCompareHorizontal(&high, &low));
// Ties are broken by lowest bottom x value.
RTreeRecord shorter_tie(Rect(1, 10, 2, 100), 2);
EXPECT_TRUE(NodeCompareHorizontal(&shorter_tie, &low));
EXPECT_FALSE(NodeCompareHorizontal(&low, &shorter_tie));
}
TEST_F(RTreeNodeTest, CompareCenterDistanceFromParent) {
// Create a test node we can add children to, for distance comparisons.
scoped_ptr<RTreeNode> parent(new RTreeNode);
// Add three children, one each with centers at (0, 0), (10, 10), (-9, -9),
// around which a bounding box will be centered at (0, 0)
scoped_ptr<RTreeRecord> center_zero(new RTreeRecord(Rect(-1, -1, 2, 2), 1));
parent->AddChild(center_zero.PassAs<RTreeNodeBase>());
scoped_ptr<RTreeRecord> center_positive(new RTreeRecord(Rect(9, 9, 2, 2), 2));
parent->AddChild(center_positive.PassAs<RTreeNodeBase>());
scoped_ptr<RTreeRecord> center_negative(
new RTreeRecord(Rect(-10, -10, 2, 2), 3));
parent->AddChild(center_negative.PassAs<RTreeNodeBase>());
ValidateNode(parent.get(), 1U, 5U);
EXPECT_EQ(Rect(-10, -10, 21, 21), parent->rect());
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(1)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(0)));
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(0), parent->child(2)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(0)));
EXPECT_TRUE(
NodeCompareCenterDistanceFromParent(parent->child(2), parent->child(1)));
EXPECT_FALSE(
NodeCompareCenterDistanceFromParent(parent->child(1), parent->child(2)));
}
TEST_F(RTreeNodeTest, OverlapIncreaseToAdd) {
// Create a test node with three children, for overlap comparisons.
scoped_ptr<RTreeNode> parent(new RTreeNode);
// Add three children, each 4 wide and tall, at (0, 0), (3, 3), (6, 6) with
// overlapping corners.
Rect top(0, 0, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(top, 1)));
Rect middle(3, 3, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(middle, 2)));
Rect bottom(6, 6, 4, 4);
parent->AddChild(scoped_ptr<RTreeNodeBase>(new RTreeRecord(bottom, 3)));
ValidateNode(parent.get(), 1U, 5U);
// Test a rect in corner.
Rect corner(0, 0, 1, 1);
Rect expanded = top;
expanded.Union(corner);
// It should not add any overlap to add this to the first child at (0, 0).
EXPECT_EQ(0, NodeOverlapIncreaseToAdd(parent.get(), corner, parent->child(0),
expanded));
expanded = middle;
expanded.Union(corner);
// Overlap for middle rectangle should increase from 2 pixels at (3, 3) and
// (6, 6) to 17 pixels, as it will now cover 4x4 rectangle top,
// so a change of +15.
EXPECT_EQ(15, NodeOverlapIncreaseToAdd(parent.get(), corner, parent->child(1),
expanded));
expanded = bottom;
expanded.Union(corner);
// Overlap for bottom rectangle should increase from 1 pixel at (6, 6) to
// 32 pixels, as it will now cover both 4x4 rectangles top and middle,
// so a change of 31.
EXPECT_EQ(31, NodeOverlapIncreaseToAdd(parent.get(), corner, parent->child(2),
expanded));
// Test a rect that doesn't overlap with anything, in the far right corner.
Rect far_corner(9, 0, 1, 1);
expanded = top;
expanded.Union(far_corner);
// Overlap of top should go from 1 to 4, as it will now cover the entire first
// row of pixels in middle.
EXPECT_EQ(3, NodeOverlapIncreaseToAdd(parent.get(), far_corner,
parent->child(0), expanded));
expanded = middle;
expanded.Union(far_corner);
// Overlap of middle should go from 2 to 8, as it will cover the rightmost 4
// pixels of top and the top 4 pixels of bottom as it expands.
EXPECT_EQ(6, NodeOverlapIncreaseToAdd(parent.get(), far_corner,
parent->child(1), expanded));
expanded = bottom;
expanded.Union(far_corner);
// Overlap of bottom should go from 1 to 4, as it will now cover the rightmost
// 4 pixels of middle.
EXPECT_EQ(3, NodeOverlapIncreaseToAdd(parent.get(), far_corner,
parent->child(2), expanded));
}
TEST_F(RTreeNodeTest, BuildLowBounds) {
RTreeNodes records;
records.reserve(10);
for (int i = 1; i <= 10; ++i)
records.push_back(new RTreeRecord(Rect(0, 0, i, i), i));
RTreeRects vertical_bounds;
RTreeRects horizontal_bounds;
NodeBuildLowBounds(records.get(), records.get(), &vertical_bounds,
&horizontal_bounds);
for (int i = 0; i < 10; ++i) {
EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
}
}
TEST_F(RTreeNodeTest, BuildHighBounds) {
RTreeNodes records;
records.reserve(25);
for (int i = 0; i < 25; ++i)
records.push_back(new RTreeRecord(Rect(i, i, 25 - i, 25 - i), i));
RTreeRects vertical_bounds;
RTreeRects horizontal_bounds;
NodeBuildHighBounds(records.get(), records.get(), &vertical_bounds,
&horizontal_bounds);
for (int i = 0; i < 25; ++i) {
EXPECT_EQ(records[i]->rect(), vertical_bounds[i]);
EXPECT_EQ(records[i]->rect(), horizontal_bounds[i]);
}
}
TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexVertical) {
RTreeRects low_vertical_bounds;
RTreeRects high_vertical_bounds;
RTreeRects low_horizontal_bounds;
RTreeRects high_horizontal_bounds;
// In this test scenario we describe a mirrored, stacked configuration of
// horizontal, 1 pixel high rectangles labeled a-f like this:
//
// shape: | v sort: | h sort: |
// -------+---------+---------+
// aaaaa | 0 | 0 |
// bbb | 1 | 2 |
// c | 2 | 4 |
// d | 3 | 5 |
// eee | 4 | 3 |
// fffff | 5 | 1 |
//
// These are already sorted vertically from top to bottom. Bounding rectangles
// of these vertically sorted will be 5 wide, i tall bounding boxes.
for (int i = 0; i < 6; ++i) {
low_vertical_bounds.push_back(Rect(0, 0, 5, i + 1));
high_vertical_bounds.push_back(Rect(0, i, 5, 6 - i));
}
// Low bounds of horizontal sort start with bounds of box a and then jump to
// cover everything, as box f is second in horizontal sort.
low_horizontal_bounds.push_back(Rect(0, 0, 5, 1));
for (int i = 0; i < 5; ++i) low_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
// High horizontal bounds are hand-calculated.
high_horizontal_bounds.push_back(Rect(0, 0, 5, 6));
high_horizontal_bounds.push_back(Rect(0, 1, 5, 5));
high_horizontal_bounds.push_back(Rect(1, 1, 3, 4));
high_horizontal_bounds.push_back(Rect(1, 2, 3, 3));
high_horizontal_bounds.push_back(Rect(2, 2, 1, 2));
high_horizontal_bounds.push_back(Rect(2, 3, 1, 1));
int smallest_vertical_margin =
NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
int smallest_horizontal_margin = NodeSmallestMarginSum(
2, 3, low_horizontal_bounds, high_horizontal_bounds);
EXPECT_LT(smallest_vertical_margin, smallest_horizontal_margin);
EXPECT_EQ(3U, NodeChooseSplitIndex(2, 5, low_vertical_bounds,
high_vertical_bounds));
}
TEST_F(RTreeNodeTest, ChooseSplitAxisAndIndexHorizontal) {
RTreeRects low_vertical_bounds;
RTreeRects high_vertical_bounds;
RTreeRects low_horizontal_bounds;
RTreeRects high_horizontal_bounds;
// We rotate the shape from ChooseSplitAxisAndIndexVertical to test
// horizontal split axis detection:
//
// +--------+
// | a f |
// | ab ef |
// sort: | abcdef |
// | ab ef |
// | a f |
// |--------+
// v sort: | 024531 |
// h sort: | 012345 |
// +--------+
//
// Low bounds of vertical sort start with bounds of box a and then jump to
// cover everything, as box f is second in vertical sort.
low_vertical_bounds.push_back(Rect(0, 0, 1, 5));
for (int i = 0; i < 5; ++i) low_vertical_bounds.push_back(Rect(0, 0, 6, 5));
// High vertical bounds are hand-calculated.
high_vertical_bounds.push_back(Rect(0, 0, 6, 5));
high_vertical_bounds.push_back(Rect(1, 0, 5, 5));
high_vertical_bounds.push_back(Rect(1, 1, 4, 3));
high_vertical_bounds.push_back(Rect(2, 1, 3, 3));
high_vertical_bounds.push_back(Rect(2, 2, 2, 1));
high_vertical_bounds.push_back(Rect(3, 2, 1, 1));
// These are already sorted horizontally from left to right. Bounding
// rectangles of these horizontally sorted will be i wide, 5 tall bounding
// boxes.
for (int i = 0; i < 6; ++i) {
low_horizontal_bounds.push_back(Rect(0, 0, i + 1, 5));
high_horizontal_bounds.push_back(Rect(i, 0, 6 - i, 5));
}
int smallest_vertical_margin =
NodeSmallestMarginSum(2, 3, low_vertical_bounds, high_vertical_bounds);
int smallest_horizontal_margin = NodeSmallestMarginSum(
2, 3, low_horizontal_bounds, high_horizontal_bounds);
EXPECT_GT(smallest_vertical_margin, smallest_horizontal_margin);
EXPECT_EQ(3U, NodeChooseSplitIndex(2, 5, low_horizontal_bounds,
high_horizontal_bounds));
}
TEST_F(RTreeNodeTest, DivideChildren) {
// Create a test node to split.
scoped_ptr<RTreeNode> test_node(new RTreeNode);
std::vector<RTreeNodeBase*> sorted_children;
RTreeRects low_bounds;
RTreeRects high_bounds;
// Insert 10 record nodes, also inserting them into our children array.
for (int i = 1; i <= 10; ++i) {
scoped_ptr<RTreeRecord> record(new RTreeRecord(Rect(0, 0, i, i), i));
sorted_children.push_back(record.get());
test_node->AddChild(record.PassAs<RTreeNodeBase>());
low_bounds.push_back(Rect(0, 0, i, i));
high_bounds.push_back(Rect(0, 0, 10, 10));
}
// Split the children in half.
scoped_ptr<RTreeNodeBase> split_node_base(NodeDivideChildren(
test_node.get(), low_bounds, high_bounds, sorted_children, 5));
RTreeNode* split_node = static_cast<RTreeNode*>(split_node_base.get());
// Both nodes should be valid.
ValidateNode(test_node.get(), 1U, 10U);
ValidateNode(split_node, 1U, 10U);
// Both nodes should have five children.
EXPECT_EQ(5U, test_node->count());
EXPECT_EQ(5U, split_node->count());
// Test node should have children 1-5, split node should have children 6-10.
for (int i = 0; i < 5; ++i) {
EXPECT_EQ(i + 1, record(test_node.get(), i)->key());
EXPECT_EQ(i + 6, record(split_node, i)->key());
}
}
TEST_F(RTreeNodeTest, RemoveChildNoOrphans) {
scoped_ptr<RTreeNode> test_parent(new RTreeNode);
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
ValidateNode(test_parent.get(), 1U, 5U);
RTreeNodes orphans;
// Remove the middle node.
scoped_ptr<RTreeNodeBase> middle_child(
test_parent->RemoveChild(test_parent->child(1), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(2U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
// Remove the end node.
scoped_ptr<RTreeNodeBase> end_child(
test_parent->RemoveChild(test_parent->child(1), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(1U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
// Remove the first node.
scoped_ptr<RTreeNodeBase> first_child(
test_parent->RemoveChild(test_parent->child(0), &orphans));
EXPECT_EQ(0U, orphans.size());
EXPECT_EQ(0U, test_parent->count());
}
TEST_F(RTreeNodeTest, RemoveChildOrphans) {
// Build binary tree of Nodes of height 4, keeping weak pointers to the
// Levels 0 and 1 Nodes and the Records so we can test removal of them below.
std::vector<RTreeNode*> level_1_children;
std::vector<RTreeNode*> level_0_children;
std::vector<RTreeRecord*> records;
int id = 1;
scoped_ptr<RTreeNode> root(NewNodeAtLevel(2));
for (int i = 0; i < 2; ++i) {
scoped_ptr<RTreeNode> level_1_child(NewNodeAtLevel(1));
for (int j = 0; j < 2; ++j) {
scoped_ptr<RTreeNode> level_0_child(new RTreeNode);
for (int k = 0; k < 2; ++k) {
scoped_ptr<RTreeRecord> record(new RTreeRecord(Rect(0, 0, id, id), id));
++id;
records.push_back(record.get());
level_0_child->AddChild(record.PassAs<RTreeNodeBase>());
}
level_0_children.push_back(level_0_child.get());
level_1_child->AddChild(level_0_child.PassAs<RTreeNodeBase>());
}
level_1_children.push_back(level_1_child.get());
root->AddChild(level_1_child.PassAs<RTreeNodeBase>());
}
// This should now be a valid tree structure.
ValidateNode(root.get(), 2U, 2U);
EXPECT_EQ(2U, level_1_children.size());
EXPECT_EQ(4U, level_0_children.size());
EXPECT_EQ(8U, records.size());
// Now remove all of the level 0 nodes so we get the record nodes as orphans.
RTreeNodes orphans;
for (size_t i = 0; i < level_0_children.size(); ++i)
level_1_children[i / 2]->RemoveChild(level_0_children[i], &orphans);
// Orphans should be all 8 records but no order guarantee.
EXPECT_EQ(8U, orphans.size());
for (std::vector<RTreeRecord*>::iterator it = records.begin();
it != records.end(); ++it) {
RTreeNodes::iterator orphan =
std::find(orphans.begin(), orphans.end(), *it);
EXPECT_NE(orphan, orphans.end());
orphans.erase(orphan);
}
EXPECT_EQ(0U, orphans.size());
}
TEST_F(RTreeNodeTest, RemoveAndReturnLastChild) {
scoped_ptr<RTreeNode> test_parent(new RTreeNode);
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 1, 1), 1)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 2, 2), 2)));
test_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 0, 3, 3), 3)));
ValidateNode(test_parent.get(), 1U, 5U);
RTreeNodeBase* child = test_parent->child(2);
scoped_ptr<RTreeNodeBase> last_child(test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, last_child.get());
EXPECT_EQ(2U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
child = test_parent->child(1);
scoped_ptr<RTreeNodeBase> middle_child(
test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, middle_child.get());
EXPECT_EQ(1U, test_parent->count());
NodeRecomputeLocalBounds(test_parent.get());
ValidateNode(test_parent.get(), 1U, 5U);
child = test_parent->child(0);
scoped_ptr<RTreeNodeBase> first_child(
test_parent->RemoveAndReturnLastChild());
EXPECT_EQ(child, first_child.get());
EXPECT_EQ(0U, test_parent->count());
}
TEST_F(RTreeNodeTest, LeastOverlapIncrease) {
scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
// Construct 4 nodes with 1x2 rects spaced horizontally 1 pixel apart, or:
//
// a b c d
// a b c d
//
for (int i = 0; i < 4; ++i) {
scoped_ptr<RTreeNode> node(new RTreeNode);
scoped_ptr<RTreeRecord> record(
new RTreeRecord(Rect(i * 2, 0, 1, 2), i + 1));
node->AddChild(record.PassAs<RTreeNodeBase>());
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
}
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (7, 0) should require minimum overlap on the part of the
// fourth rectangle to add:
//
// a b c dT
// a b c d
//
Rect test_rect_far(7, 0, 1, 1);
RTreeRects expanded_rects;
BuildExpandedRects(test_parent.get(), test_rect_far, &expanded_rects);
RTreeNode* result = NodeLeastOverlapIncrease(test_parent.get(), test_rect_far,
expanded_rects);
EXPECT_EQ(4, record(result, 0)->key());
// Test rect covering the bottom half of all children should be a 4-way tie,
// so LeastOverlapIncrease should return NULL:
//
// a b c d
// TTTTTTT
//
Rect test_rect_tie(0, 1, 7, 1);
BuildExpandedRects(test_parent.get(), test_rect_tie, &expanded_rects);
result = NodeLeastOverlapIncrease(test_parent.get(), test_rect_tie,
expanded_rects);
EXPECT_TRUE(result == NULL);
// Test rect completely inside c should return the third rectangle:
//
// a b T d
// a b c d
//
Rect test_rect_inside(4, 0, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastOverlapIncrease(test_parent.get(), test_rect_inside,
expanded_rects);
EXPECT_EQ(3, record(result, 0)->key());
// Add a rectangle that overlaps completely with rectangle c, to test
// when there is a tie between two completely contained rectangles:
//
// a b Ted
// a b eed
//
scoped_ptr<RTreeNode> record_parent(new RTreeNode);
record_parent->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(4, 0, 2, 2), 9)));
test_parent->AddChild(record_parent.PassAs<RTreeNodeBase>());
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastOverlapIncrease(test_parent.get(), test_rect_inside,
expanded_rects);
EXPECT_TRUE(result == NULL);
}
TEST_F(RTreeNodeTest, LeastAreaEnlargement) {
scoped_ptr<RTreeNode> test_parent(NewNodeAtLevel(1));
// Construct 4 nodes in a cross-hairs style configuration:
//
// a
// b c
// d
//
scoped_ptr<RTreeNode> node(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 0, 1, 1), 1)));
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 1, 1), 2)));
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(2, 1, 1, 1), 3)));
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(1, 2, 1, 1), 4)));
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (1, 3) should require minimum area to add to Node d:
//
// a
// b c
// d
// T
//
Rect test_rect_below(1, 3, 1, 1);
RTreeRects expanded_rects;
BuildExpandedRects(test_parent.get(), test_rect_below, &expanded_rects);
RTreeNode* result = NodeLeastAreaEnlargement(test_parent.get(),
test_rect_below, expanded_rects);
EXPECT_EQ(4, record(result, 0)->key());
// Test rect completely inside b should require minimum area to add to Node b:
//
// a
// T c
// d
//
Rect test_rect_inside(0, 1, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_inside, &expanded_rects);
result = NodeLeastAreaEnlargement(test_parent.get(), test_rect_inside,
expanded_rects);
EXPECT_EQ(2, record(result, 0)->key());
// Add e at (0, 1) to overlap b and c, to test tie-breaking:
//
// a
// eee
// d
//
node.reset(new RTreeNode);
node->AddChild(
scoped_ptr<RTreeNodeBase>(new RTreeRecord(Rect(0, 1, 3, 1), 7)));
test_parent->AddChild(node.PassAs<RTreeNodeBase>());
ValidateNode(test_parent.get(), 1U, 5U);
// Test rect at (3, 1) should tie between c and e, but c has smaller area so
// the algorithm should select c:
//
//
// a
// eeeT
// d
//
Rect test_rect_tie_breaker(3, 1, 1, 1);
BuildExpandedRects(test_parent.get(), test_rect_tie_breaker, &expanded_rects);
result = NodeLeastAreaEnlargement(test_parent.get(), test_rect_tie_breaker,
expanded_rects);
EXPECT_EQ(3, record(result, 0)->key());
}
// RTreeTest ------------------------------------------------------------------
// An empty RTree should never return AppendIntersectingRecords results, and
// RTrees should be empty upon construction.
TEST_F(RTreeTest, AppendIntersectingRecordsOnEmptyTree) {
RT rt(2, 10);
ValidateRTree(&rt);
RT::Matches results;
Rect test_rect(25, 25);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Clear should empty the tree, meaning that all queries should not return
// results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfSingleNode) {
RT rt(2, 5);
rt.Insert(Rect(0, 0, 100, 100), 1);
rt.Clear();
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Even with a complex internal structure, clear should empty the tree, meaning
// that all queries should not return results after.
TEST_F(RTreeTest, ClearEmptiesTreeOfManyNodes) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
rt.Clear();
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
ValidateRTree(&rt);
}
// Duplicate inserts should overwrite previous inserts.
TEST_F(RTreeTest, DuplicateInsertsOverwrite) {
RT rt(2, 5);
// Add 100 stacked squares, but always with duplicate key of 0.
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, i, i), 0);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(1U, results.size());
EXPECT_EQ(1U, results.count(0));
}
// Call Remove() once on something that's been inserted repeatedly.
TEST_F(RTreeTest, DuplicateInsertRemove) {
RT rt(3, 9);
AddStackedSquares(&rt, 25);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, i, i), 26);
ValidateRTree(&rt);
}
rt.Remove(26);
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(25U, results.size());
VerifyAllKeys(results);
}
// Call Remove() repeatedly on something that's been inserted once.
TEST_F(RTreeTest, InsertDuplicateRemove) {
RT rt(7, 15);
AddStackedSquares(&rt, 101);
for (int i = 0; i < 100; ++i) {
rt.Remove(101);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should meet all matching queries regardless of nesting.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresNestedHit) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should meet all matching queries when contained completely by
// the query rectangle.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresContainedHit) {
RT rt(2, 10);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(0, 0, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
}
// Stacked rects should miss a missing query when the query has no intersection
// with the rects.
TEST_F(RTreeTest, AppendIntersectingRecordsStackedSquaresCompleteMiss) {
RT rt(2, 7);
AddStackedSquares(&rt, 100);
RT::Matches results;
Rect test_rect(150, 150, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(0U, results.size());
}
// Removing half the nodes after insertion should still result in a valid tree.
TEST_F(RTreeTest, RemoveHalfStackedRects) {
RT rt(2, 11);
AddStackedSquares(&rt, 200);
for (int i = 101; i <= 200; ++i) {
rt.Remove(i);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(1, 1);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(100U, results.size());
VerifyAllKeys(results);
// Add the nodes back in.
for (int i = 101; i <= 200; ++i) {
rt.Insert(Rect(0, 0, i, i), i);
ValidateRTree(&rt);
}
results.clear();
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(200U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertDupToRoot) {
RT rt(2, 5);
rt.Insert(Rect(0, 0, 1, 2), 1);
ValidateRTree(&rt);
rt.Insert(Rect(0, 0, 2, 1), 1);
ValidateRTree(&rt);
}
TEST_F(RTreeTest, InsertNegativeCoordsRect) {
RT rt(5, 11);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(-i, -i, i, i), (i * 2) - 1);
ValidateRTree(&rt);
rt.Insert(Rect(0, 0, i, i), i * 2);
ValidateRTree(&rt);
}
RT::Matches results;
Rect test_rect(-1, -1, 2, 2);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(200U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, RemoveNegativeCoordsRect) {
RT rt(7, 21);
// Add 100 positive stacked squares.
AddStackedSquares(&rt, 100);
// Now add 100 negative stacked squares.
for (int i = 101; i <= 200; ++i) {
rt.Insert(Rect(100 - i, 100 - i, i - 100, i - 100), 301 - i);
ValidateRTree(&rt);
}
// Now remove half of the negative squares.
for (int i = 101; i <= 150; ++i) {
rt.Remove(301 - i);
ValidateRTree(&rt);
}
// Queries should return 100 positive and 50 negative stacked squares.
RT::Matches results;
Rect test_rect(-1, -1, 2, 2);
rt.AppendIntersectingRecords(test_rect, &results);
EXPECT_EQ(150U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertEmptyRectReplacementRemovesKey) {
RT rt(10, 31);
AddStackedSquares(&rt, 50);
ValidateRTree(&rt);
// Replace last square with empty rect.
rt.Insert(Rect(), 50);
ValidateRTree(&rt);
// Now query large area to get all rects in tree.
RT::Matches results;
Rect test_rect(0, 0, 100, 100);
rt.AppendIntersectingRecords(test_rect, &results);
// Should only be 49 rects in tree.
EXPECT_EQ(49U, results.size());
VerifyAllKeys(results);
}
TEST_F(RTreeTest, InsertReplacementMaintainsTree) {
RT rt(2, 5);
AddStackedSquares(&rt, 100);
ValidateRTree(&rt);
for (int i = 1; i <= 100; ++i) {
rt.Insert(Rect(0, 0, 0, 0), i);
ValidateRTree(&rt);
}
}
} // namespace math
} // namespace cobalt