| // Copyright 2016 Google Inc. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "cobalt/renderer/smoothed_value.h" |
| |
| #include <algorithm> |
| #include <cmath> |
| #include <limits> |
| |
| namespace cobalt { |
| namespace renderer { |
| |
| SmoothedValue::SmoothedValue(base::TimeDelta time_to_converge, |
| base::optional<double> max_slope_magnitude) |
| : time_to_converge_(time_to_converge), |
| previous_derivative_(0), |
| max_slope_magnitude_(max_slope_magnitude) { |
| DCHECK(base::TimeDelta() < time_to_converge_); |
| DCHECK(!max_slope_magnitude_ || *max_slope_magnitude_ > 0); |
| } |
| |
| void SmoothedValue::SetTarget(double target, const base::TimeTicks& time) { |
| // Determine the current derivative and value. |
| double current_derivative = GetCurrentDerivative(time); |
| base::optional<double> current_value; |
| if (target_) { |
| current_value = GetValueAtTime(time); |
| } |
| |
| // Set the previous derivative and value to the current derivative and value. |
| previous_derivative_ = current_derivative; |
| previous_value_ = current_value; |
| |
| target_ = target; |
| target_set_time_ = time; |
| } |
| |
| void SmoothedValue::SnapToTarget() { |
| previous_value_ = base::nullopt; |
| previous_derivative_ = 0; |
| } |
| |
| double SmoothedValue::GetValueAtTime(const base::TimeTicks& time) const { |
| if (!previous_value_) { |
| // If only one target has ever been set, simply return it. |
| return *target_; |
| } |
| |
| // Compute the current value based off of a cubic bezier curve. |
| double t = SmoothedValue::t(time); |
| double one_minus_t = 1 - t; |
| double P0 = SmoothedValue::P0(); |
| double P1 = SmoothedValue::P1(); |
| double P2 = SmoothedValue::P2(); |
| double P3 = SmoothedValue::P3(); |
| |
| return one_minus_t * one_minus_t * one_minus_t * P0 + |
| 3 * one_minus_t * one_minus_t * t * P1 + 3 * one_minus_t * t * t * P2 + |
| t * t * t * P3; |
| } |
| |
| double SmoothedValue::t(const base::TimeTicks& time) const { |
| DCHECK(target_) << "SetTarget() must have been called previously."; |
| |
| base::TimeDelta time_diff = time - target_set_time_; |
| double time_to_converge_in_seconds = time_to_converge_.InSecondsF(); |
| |
| // Enforce any maximum slope constraints (which can result in overriding the |
| // time to converge). |
| if (max_slope_magnitude_) { |
| double largest_slope = GetDerivativeWithLargestMagnitude(); |
| if (largest_slope == std::numeric_limits<double>::infinity() || |
| largest_slope == -std::numeric_limits<double>::infinity()) { |
| // If we can have a slope of infinity, then just don't move. |
| return 0; |
| } |
| |
| // If we find that our smoothing curve's maximum slope would result in a |
| // slope greater than the maximum slope constraint, stretch the time to |
| // converge in order to meet the slope constraint. This can result in |
| // overriding the user-provided time to converge. |
| double unconstrained_largest_slope = |
| largest_slope / time_to_converge_in_seconds; |
| if (unconstrained_largest_slope < -*max_slope_magnitude_) { |
| time_to_converge_in_seconds = |
| -largest_slope / *max_slope_magnitude_; |
| } else if (unconstrained_largest_slope > *max_slope_magnitude_) { |
| time_to_converge_in_seconds = |
| largest_slope / *max_slope_magnitude_; |
| } |
| } |
| |
| double t = time_diff.InSecondsF() / time_to_converge_in_seconds; |
| |
| DCHECK_LE(0, t); |
| |
| return std::max(std::min(t, 1.0), 0.0); |
| } |
| |
| double SmoothedValue::P1() const { |
| // See comments in header for why P1() is calculated this way. |
| return *previous_value_ + previous_derivative_ / 3.0f; |
| } |
| |
| double SmoothedValue::P2() const { |
| // See comments in header for why P2() is calculated this way. |
| return P3(); |
| } |
| |
| namespace { |
| double EvaluateCubicBezierDerivative(double P0, double P1, double P2, double P3, |
| double t) { |
| double one_minus_t = 1 - t; |
| return 3 * one_minus_t * one_minus_t * (P1 - P0) + |
| 6 * one_minus_t * t * (P2 - P1) + 3 * t * t * (P3 - P2); |
| } |
| } |
| |
| double SmoothedValue::GetCurrentDerivative(const base::TimeTicks& time) const { |
| if (!previous_value_) { |
| // If only one target has ever been set, return 0 as our derivative. |
| return 0; |
| } |
| |
| double t = SmoothedValue::t(time); |
| double P0 = SmoothedValue::P0(); |
| double P1 = SmoothedValue::P1(); |
| double P2 = SmoothedValue::P2(); |
| double P3 = SmoothedValue::P3(); |
| |
| return EvaluateCubicBezierDerivative(P0, P1, P2, P3, t); |
| } |
| |
| double SmoothedValue::GetDerivativeWithLargestMagnitude() const { |
| double P0 = SmoothedValue::P0(); |
| double P1 = SmoothedValue::P1(); |
| double P2 = SmoothedValue::P2(); |
| double P3 = SmoothedValue::P3(); |
| |
| // Since our spline is a cubic function, it will have a single inflection |
| // point where its derivative is 0 (or infinite if |
| // numerator = denominator = 0). This function finds that single inflection |
| // point and stores the value in |t|. We then evaluate the derivative at |
| // that inflection point, and at the beginning and end of the [0, 1] segment. |
| // We then compare the results and return the derivative with the largest |
| // magnitude. |
| |
| // Compute the location of the inflection point by setting the second |
| // derivative to zero and solving. |
| double numerator = (P2 - 2 * P1 + P0); |
| double denominator = (-P3 + 3 * P2 - 3 * P1 + P0); |
| double t; |
| if (numerator == 0) { |
| t = 0; |
| } else if (denominator == 0.0) { |
| double numerator_sign = (numerator >= 0 ? 1.0 : -1.0); |
| return numerator_sign * std::numeric_limits<double>::infinity(); |
| } else { |
| t = numerator / denominator; |
| } |
| |
| // Evaluate the value of the derivative at each critical point. |
| double at_inflection_point = EvaluateCubicBezierDerivative(P0, P1, P2, P3, t); |
| double at_start = EvaluateCubicBezierDerivative(P0, P1, P2, P3, 0); |
| double at_end = EvaluateCubicBezierDerivative(P0, P1, P2, P3, 1); |
| |
| if (std::abs(at_inflection_point) > std::abs(at_start)) { |
| if (std::abs(at_inflection_point) > std::abs(at_end)) { |
| return at_inflection_point; |
| } else { |
| return at_end; |
| } |
| } else { |
| if (std::abs(at_start) > std::abs(at_end)) { |
| return at_start; |
| } else { |
| return at_end; |
| } |
| } |
| } |
| |
| } // namespace renderer |
| } // namespace cobalt |