| /// @ref gtc_ulp |
| /// @file glm/gtc/ulp.inl |
| /// |
| /// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| /// |
| /// Developed at SunPro, a Sun Microsystems, Inc. business. |
| /// Permission to use, copy, modify, and distribute this |
| /// software is freely granted, provided that this notice |
| /// is preserved. |
| |
| #include "../detail/type_int.hpp" |
| #include <cmath> |
| #include <cfloat> |
| #include <limits> |
| |
| #if(GLM_COMPILER & GLM_COMPILER_VC) |
| # pragma warning(push) |
| # pragma warning(disable : 4127) |
| #endif |
| |
| typedef union |
| { |
| float value; |
| /* FIXME: Assumes 32 bit int. */ |
| unsigned int word; |
| } ieee_float_shape_type; |
| |
| typedef union |
| { |
| double value; |
| struct |
| { |
| glm::detail::int32 lsw; |
| glm::detail::int32 msw; |
| } parts; |
| } ieee_double_shape_type; |
| |
| #define GLM_EXTRACT_WORDS(ix0,ix1,d) \ |
| do { \ |
| ieee_double_shape_type ew_u; \ |
| ew_u.value = (d); \ |
| (ix0) = ew_u.parts.msw; \ |
| (ix1) = ew_u.parts.lsw; \ |
| } while (0) |
| |
| #define GLM_GET_FLOAT_WORD(i,d) \ |
| do { \ |
| ieee_float_shape_type gf_u; \ |
| gf_u.value = (d); \ |
| (i) = gf_u.word; \ |
| } while (0) |
| |
| #define GLM_SET_FLOAT_WORD(d,i) \ |
| do { \ |
| ieee_float_shape_type sf_u; \ |
| sf_u.word = (i); \ |
| (d) = sf_u.value; \ |
| } while (0) |
| |
| #define GLM_INSERT_WORDS(d,ix0,ix1) \ |
| do { \ |
| ieee_double_shape_type iw_u; \ |
| iw_u.parts.msw = (ix0); \ |
| iw_u.parts.lsw = (ix1); \ |
| (d) = iw_u.value; \ |
| } while (0) |
| |
| namespace glm{ |
| namespace detail |
| { |
| GLM_FUNC_QUALIFIER float nextafterf(float x, float y) |
| { |
| volatile float t; |
| glm::detail::int32 hx, hy, ix, iy; |
| |
| GLM_GET_FLOAT_WORD(hx, x); |
| GLM_GET_FLOAT_WORD(hy, y); |
| ix = hx&0x7fffffff; // |x| |
| iy = hy&0x7fffffff; // |y| |
| |
| if((ix>0x7f800000) || // x is nan |
| (iy>0x7f800000)) // y is nan |
| return x+y; |
| if(x==y) return y; // x=y, return y |
| if(ix==0) { // x == 0 |
| GLM_SET_FLOAT_WORD(x,(hy&0x80000000)|1);// return +-minsubnormal |
| t = x*x; |
| if(t==x) return t; else return x; // raise underflow flag |
| } |
| if(hx>=0) { // x > 0 |
| if(hx>hy) { // x > y, x -= ulp |
| hx -= 1; |
| } else { // x < y, x += ulp |
| hx += 1; |
| } |
| } else { // x < 0 |
| if(hy>=0||hx>hy){ // x < y, x -= ulp |
| hx -= 1; |
| } else { // x > y, x += ulp |
| hx += 1; |
| } |
| } |
| hy = hx&0x7f800000; |
| if(hy>=0x7f800000) return x+x; // overflow |
| if(hy<0x00800000) { // underflow |
| t = x*x; |
| if(t!=x) { // raise underflow flag |
| GLM_SET_FLOAT_WORD(y,hx); |
| return y; |
| } |
| } |
| GLM_SET_FLOAT_WORD(x,hx); |
| return x; |
| } |
| |
| GLM_FUNC_QUALIFIER double nextafter(double x, double y) |
| { |
| volatile double t; |
| glm::detail::int32 hx, hy, ix, iy; |
| glm::detail::uint32 lx, ly; |
| |
| GLM_EXTRACT_WORDS(hx, lx, x); |
| GLM_EXTRACT_WORDS(hy, ly, y); |
| ix = hx & 0x7fffffff; // |x| |
| iy = hy & 0x7fffffff; // |y| |
| |
| if(((ix>=0x7ff00000)&&((ix-0x7ff00000)|lx)!=0) || // x is nan |
| ((iy>=0x7ff00000)&&((iy-0x7ff00000)|ly)!=0)) // y is nan |
| return x+y; |
| if(x==y) return y; // x=y, return y |
| if((ix|lx)==0) { // x == 0 |
| GLM_INSERT_WORDS(x, hy & 0x80000000, 1); // return +-minsubnormal |
| t = x*x; |
| if(t==x) return t; else return x; // raise underflow flag |
| } |
| if(hx>=0) { // x > 0 |
| if(hx>hy||((hx==hy)&&(lx>ly))) { // x > y, x -= ulp |
| if(lx==0) hx -= 1; |
| lx -= 1; |
| } else { // x < y, x += ulp |
| lx += 1; |
| if(lx==0) hx += 1; |
| } |
| } else { // x < 0 |
| if(hy>=0||hx>hy||((hx==hy)&&(lx>ly))){// x < y, x -= ulp |
| if(lx==0) hx -= 1; |
| lx -= 1; |
| } else { // x > y, x += ulp |
| lx += 1; |
| if(lx==0) hx += 1; |
| } |
| } |
| hy = hx&0x7ff00000; |
| if(hy>=0x7ff00000) return x+x; // overflow |
| if(hy<0x00100000) { // underflow |
| t = x*x; |
| if(t!=x) { // raise underflow flag |
| GLM_INSERT_WORDS(y,hx,lx); |
| return y; |
| } |
| } |
| GLM_INSERT_WORDS(x,hx,lx); |
| return x; |
| } |
| }//namespace detail |
| }//namespace glm |
| |
| #if(GLM_COMPILER & GLM_COMPILER_VC) |
| # pragma warning(pop) |
| #endif |
| |
| namespace glm |
| { |
| template <> |
| GLM_FUNC_QUALIFIER float next_float(float const & x) |
| { |
| # if GLM_HAS_CXX11_STL |
| return std::nextafter(x, std::numeric_limits<float>::max()); |
| # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) |
| return detail::nextafterf(x, FLT_MAX); |
| # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) |
| return __builtin_nextafterf(x, FLT_MAX); |
| # else |
| return nextafterf(x, FLT_MAX); |
| # endif |
| } |
| |
| template <> |
| GLM_FUNC_QUALIFIER double next_float(double const & x) |
| { |
| # if GLM_HAS_CXX11_STL |
| return std::nextafter(x, std::numeric_limits<double>::max()); |
| # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) |
| return detail::nextafter(x, std::numeric_limits<double>::max()); |
| # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) |
| return __builtin_nextafter(x, FLT_MAX); |
| # else |
| return nextafter(x, DBL_MAX); |
| # endif |
| } |
| |
| template<typename T, precision P, template<typename, precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x) |
| { |
| vecType<T, P> Result(uninitialize); |
| for(length_t i = 0, n = Result.length(); i < n; ++i) |
| Result[i] = next_float(x[i]); |
| return Result; |
| } |
| |
| GLM_FUNC_QUALIFIER float prev_float(float const & x) |
| { |
| # if GLM_HAS_CXX11_STL |
| return std::nextafter(x, std::numeric_limits<float>::min()); |
| # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) |
| return detail::nextafterf(x, FLT_MIN); |
| # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) |
| return __builtin_nextafterf(x, FLT_MIN); |
| # else |
| return nextafterf(x, FLT_MIN); |
| # endif |
| } |
| |
| GLM_FUNC_QUALIFIER double prev_float(double const & x) |
| { |
| # if GLM_HAS_CXX11_STL |
| return std::nextafter(x, std::numeric_limits<double>::min()); |
| # elif((GLM_COMPILER & GLM_COMPILER_VC) || ((GLM_COMPILER & GLM_COMPILER_INTEL) && (GLM_PLATFORM & GLM_PLATFORM_WINDOWS))) |
| return _nextafter(x, DBL_MIN); |
| # elif(GLM_PLATFORM & GLM_PLATFORM_ANDROID) |
| return __builtin_nextafter(x, DBL_MIN); |
| # else |
| return nextafter(x, DBL_MIN); |
| # endif |
| } |
| |
| template<typename T, precision P, template<typename, precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x) |
| { |
| vecType<T, P> Result(uninitialize); |
| for(length_t i = 0, n = Result.length(); i < n; ++i) |
| Result[i] = prev_float(x[i]); |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER T next_float(T const & x, uint const & ulps) |
| { |
| T temp = x; |
| for(uint i = 0; i < ulps; ++i) |
| temp = next_float(temp); |
| return temp; |
| } |
| |
| template<typename T, precision P, template<typename, precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> next_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) |
| { |
| vecType<T, P> Result(uninitialize); |
| for(length_t i = 0, n = Result.length(); i < n; ++i) |
| Result[i] = next_float(x[i], ulps[i]); |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER T prev_float(T const & x, uint const & ulps) |
| { |
| T temp = x; |
| for(uint i = 0; i < ulps; ++i) |
| temp = prev_float(temp); |
| return temp; |
| } |
| |
| template<typename T, precision P, template<typename, precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<T, P> prev_float(vecType<T, P> const & x, vecType<uint, P> const & ulps) |
| { |
| vecType<T, P> Result(uninitialize); |
| for(length_t i = 0, n = Result.length(); i < n; ++i) |
| Result[i] = prev_float(x[i], ulps[i]); |
| return Result; |
| } |
| |
| template <typename T> |
| GLM_FUNC_QUALIFIER uint float_distance(T const & x, T const & y) |
| { |
| uint ulp = 0; |
| |
| if(x < y) |
| { |
| T temp = x; |
| while(temp != y)// && ulp < std::numeric_limits<std::size_t>::max()) |
| { |
| ++ulp; |
| temp = next_float(temp); |
| } |
| } |
| else if(y < x) |
| { |
| T temp = y; |
| while(temp != x)// && ulp < std::numeric_limits<std::size_t>::max()) |
| { |
| ++ulp; |
| temp = next_float(temp); |
| } |
| } |
| else // == |
| { |
| |
| } |
| |
| return ulp; |
| } |
| |
| template<typename T, precision P, template<typename, precision> class vecType> |
| GLM_FUNC_QUALIFIER vecType<uint, P> float_distance(vecType<T, P> const & x, vecType<T, P> const & y) |
| { |
| vecType<uint, P> Result(uninitialize); |
| for(length_t i = 0, n = Result.length(); i < n; ++i) |
| Result[i] = float_distance(x[i], y[i]); |
| return Result; |
| } |
| }//namespace glm |