| /* |
| * Copyright (c) 2010 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "./vpx_config.h" |
| #include "./vpx_dsp_rtcd.h" |
| #include "vp9/common/vp9_loopfilter.h" |
| #include "vp9/common/vp9_onyxc_int.h" |
| #include "vp9/common/vp9_reconinter.h" |
| #include "vpx_dsp/vpx_dsp_common.h" |
| #include "vpx_mem/vpx_mem.h" |
| #include "vpx_ports/mem.h" |
| |
| #include "vp9/common/vp9_seg_common.h" |
| |
| // 64 bit masks for left transform size. Each 1 represents a position where |
| // we should apply a loop filter across the left border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_16X16-> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // 10101010 |
| // |
| // A loopfilter should be applied to every other 8x8 horizontally. |
| static const uint64_t left_64x64_txform_mask[TX_SIZES]= { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x5555555555555555ULL, // TX_16x16 |
| 0x1111111111111111ULL, // TX_32x32 |
| }; |
| |
| // 64 bit masks for above transform size. Each 1 represents a position where |
| // we should apply a loop filter across the top border of an 8x8 block |
| // boundary. |
| // |
| // In the case of TX_32x32 -> ( in low order byte first we end up with |
| // a mask that looks like this |
| // |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 11111111 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // |
| // A loopfilter should be applied to every other 4 the row vertically. |
| static const uint64_t above_64x64_txform_mask[TX_SIZES]= { |
| 0xffffffffffffffffULL, // TX_4X4 |
| 0xffffffffffffffffULL, // TX_8x8 |
| 0x00ff00ff00ff00ffULL, // TX_16x16 |
| 0x000000ff000000ffULL, // TX_32x32 |
| }; |
| |
| // 64 bit masks for prediction sizes (left). Each 1 represents a position |
| // where left border of an 8x8 block. These are aligned to the right most |
| // appropriate bit, and then shifted into place. |
| // |
| // In the case of TX_16x32 -> ( low order byte first ) we end up with |
| // a mask that looks like this : |
| // |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 10000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| // 00000000 |
| static const uint64_t left_prediction_mask[BLOCK_SIZES] = { |
| 0x0000000000000001ULL, // BLOCK_4X4, |
| 0x0000000000000001ULL, // BLOCK_4X8, |
| 0x0000000000000001ULL, // BLOCK_8X4, |
| 0x0000000000000001ULL, // BLOCK_8X8, |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000001ULL, // BLOCK_16X8, |
| 0x0000000000000101ULL, // BLOCK_16X16, |
| 0x0000000001010101ULL, // BLOCK_16X32, |
| 0x0000000000000101ULL, // BLOCK_32X16, |
| 0x0000000001010101ULL, // BLOCK_32X32, |
| 0x0101010101010101ULL, // BLOCK_32X64, |
| 0x0000000001010101ULL, // BLOCK_64X32, |
| 0x0101010101010101ULL, // BLOCK_64X64 |
| }; |
| |
| // 64 bit mask to shift and set for each prediction size. |
| static const uint64_t above_prediction_mask[BLOCK_SIZES] = { |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000001ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000003ULL, // BLOCK_16X16 |
| 0x0000000000000003ULL, // BLOCK_16X32, |
| 0x000000000000000fULL, // BLOCK_32X16, |
| 0x000000000000000fULL, // BLOCK_32X32, |
| 0x000000000000000fULL, // BLOCK_32X64, |
| 0x00000000000000ffULL, // BLOCK_64X32, |
| 0x00000000000000ffULL, // BLOCK_64X64 |
| }; |
| // 64 bit mask to shift and set for each prediction size. A bit is set for |
| // each 8x8 block that would be in the left most block of the given block |
| // size in the 64x64 block. |
| static const uint64_t size_mask[BLOCK_SIZES] = { |
| 0x0000000000000001ULL, // BLOCK_4X4 |
| 0x0000000000000001ULL, // BLOCK_4X8 |
| 0x0000000000000001ULL, // BLOCK_8X4 |
| 0x0000000000000001ULL, // BLOCK_8X8 |
| 0x0000000000000101ULL, // BLOCK_8X16, |
| 0x0000000000000003ULL, // BLOCK_16X8 |
| 0x0000000000000303ULL, // BLOCK_16X16 |
| 0x0000000003030303ULL, // BLOCK_16X32, |
| 0x0000000000000f0fULL, // BLOCK_32X16, |
| 0x000000000f0f0f0fULL, // BLOCK_32X32, |
| 0x0f0f0f0f0f0f0f0fULL, // BLOCK_32X64, |
| 0x00000000ffffffffULL, // BLOCK_64X32, |
| 0xffffffffffffffffULL, // BLOCK_64X64 |
| }; |
| |
| // These are used for masking the left and above borders. |
| static const uint64_t left_border = 0x1111111111111111ULL; |
| static const uint64_t above_border = 0x000000ff000000ffULL; |
| |
| // 16 bit masks for uv transform sizes. |
| static const uint16_t left_64x64_txform_mask_uv[TX_SIZES]= { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x5555, // TX_16x16 |
| 0x1111, // TX_32x32 |
| }; |
| |
| static const uint16_t above_64x64_txform_mask_uv[TX_SIZES]= { |
| 0xffff, // TX_4X4 |
| 0xffff, // TX_8x8 |
| 0x0f0f, // TX_16x16 |
| 0x000f, // TX_32x32 |
| }; |
| |
| // 16 bit left mask to shift and set for each uv prediction size. |
| static const uint16_t left_prediction_mask_uv[BLOCK_SIZES] = { |
| 0x0001, // BLOCK_4X4, |
| 0x0001, // BLOCK_4X8, |
| 0x0001, // BLOCK_8X4, |
| 0x0001, // BLOCK_8X8, |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8, |
| 0x0001, // BLOCK_16X16, |
| 0x0011, // BLOCK_16X32, |
| 0x0001, // BLOCK_32X16, |
| 0x0011, // BLOCK_32X32, |
| 0x1111, // BLOCK_32X64 |
| 0x0011, // BLOCK_64X32, |
| 0x1111, // BLOCK_64X64 |
| }; |
| // 16 bit above mask to shift and set for uv each prediction size. |
| static const uint16_t above_prediction_mask_uv[BLOCK_SIZES] = { |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0001, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0003, // BLOCK_32X32, |
| 0x0003, // BLOCK_32X64, |
| 0x000f, // BLOCK_64X32, |
| 0x000f, // BLOCK_64X64 |
| }; |
| |
| // 64 bit mask to shift and set for each uv prediction size |
| static const uint16_t size_mask_uv[BLOCK_SIZES] = { |
| 0x0001, // BLOCK_4X4 |
| 0x0001, // BLOCK_4X8 |
| 0x0001, // BLOCK_8X4 |
| 0x0001, // BLOCK_8X8 |
| 0x0001, // BLOCK_8X16, |
| 0x0001, // BLOCK_16X8 |
| 0x0001, // BLOCK_16X16 |
| 0x0011, // BLOCK_16X32, |
| 0x0003, // BLOCK_32X16, |
| 0x0033, // BLOCK_32X32, |
| 0x3333, // BLOCK_32X64, |
| 0x00ff, // BLOCK_64X32, |
| 0xffff, // BLOCK_64X64 |
| }; |
| static const uint16_t left_border_uv = 0x1111; |
| static const uint16_t above_border_uv = 0x000f; |
| |
| static const int mode_lf_lut[MB_MODE_COUNT] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES |
| 1, 1, 0, 1 // INTER_MODES (ZEROMV == 0) |
| }; |
| |
| static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { |
| int lvl; |
| |
| // For each possible value for the loop filter fill out limits |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { |
| // Set loop filter parameters that control sharpness. |
| int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); |
| |
| if (sharpness_lvl > 0) { |
| if (block_inside_limit > (9 - sharpness_lvl)) |
| block_inside_limit = (9 - sharpness_lvl); |
| } |
| |
| if (block_inside_limit < 1) |
| block_inside_limit = 1; |
| |
| memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); |
| memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), |
| SIMD_WIDTH); |
| } |
| } |
| |
| static uint8_t get_filter_level(const loop_filter_info_n *lfi_n, |
| const MODE_INFO *mi) { |
| return lfi_n->lvl[mi->segment_id][mi->ref_frame[0]] |
| [mode_lf_lut[mi->mode]]; |
| } |
| |
| void vp9_loop_filter_init(VP9_COMMON *cm) { |
| loop_filter_info_n *lfi = &cm->lf_info; |
| struct loopfilter *lf = &cm->lf; |
| int lvl; |
| |
| // init limits for given sharpness |
| update_sharpness(lfi, lf->sharpness_level); |
| lf->last_sharpness_level = lf->sharpness_level; |
| |
| // init hev threshold const vectors |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) |
| memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); |
| } |
| |
| void vp9_loop_filter_frame_init(VP9_COMMON *cm, int default_filt_lvl) { |
| int seg_id; |
| // n_shift is the multiplier for lf_deltas |
| // the multiplier is 1 for when filter_lvl is between 0 and 31; |
| // 2 when filter_lvl is between 32 and 63 |
| const int scale = 1 << (default_filt_lvl >> 5); |
| loop_filter_info_n *const lfi = &cm->lf_info; |
| struct loopfilter *const lf = &cm->lf; |
| const struct segmentation *const seg = &cm->seg; |
| |
| // update limits if sharpness has changed |
| if (lf->last_sharpness_level != lf->sharpness_level) { |
| update_sharpness(lfi, lf->sharpness_level); |
| lf->last_sharpness_level = lf->sharpness_level; |
| } |
| |
| for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { |
| int lvl_seg = default_filt_lvl; |
| if (segfeature_active(seg, seg_id, SEG_LVL_ALT_LF)) { |
| const int data = get_segdata(seg, seg_id, SEG_LVL_ALT_LF); |
| lvl_seg = clamp(seg->abs_delta == SEGMENT_ABSDATA ? |
| data : default_filt_lvl + data, |
| 0, MAX_LOOP_FILTER); |
| } |
| |
| if (!lf->mode_ref_delta_enabled) { |
| // we could get rid of this if we assume that deltas are set to |
| // zero when not in use; encoder always uses deltas |
| memset(lfi->lvl[seg_id], lvl_seg, sizeof(lfi->lvl[seg_id])); |
| } else { |
| int ref, mode; |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[seg_id][INTRA_FRAME][0] = clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < MAX_REF_FRAMES; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale |
| + lf->mode_deltas[mode] * scale; |
| lfi->lvl[seg_id][ref][mode] = clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| |
| static void filter_selectively_vert_row2(int subsampling_factor, |
| uint8_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl) { |
| const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff; |
| const int lfl_forward = subsampling_factor ? 4 : 8; |
| const unsigned int dual_one = 1 | (1 << lfl_forward); |
| unsigned int mask; |
| uint8_t *ss[2]; |
| ss[0] = s; |
| |
| for (mask = |
| (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff; |
| mask; mask = (mask & ~dual_one) >> 1) { |
| if (mask & dual_one) { |
| const loop_filter_thresh *lfis[2]; |
| lfis[0] = lfthr + *lfl; |
| lfis[1] = lfthr + *(lfl + lfl_forward); |
| ss[1] = ss[0] + 8 * pitch; |
| |
| if (mask_16x16 & dual_one) { |
| if ((mask_16x16 & dual_one) == dual_one) { |
| vpx_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, |
| lfis[0]->hev_thr); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)]; |
| vpx_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr); |
| } |
| } |
| |
| if (mask_8x8 & dual_one) { |
| if ((mask_8x8 & dual_one) == dual_one) { |
| vpx_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, |
| lfis[0]->hev_thr, lfis[1]->mblim, |
| lfis[1]->lim, lfis[1]->hev_thr); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)]; |
| vpx_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } |
| |
| if (mask_4x4 & dual_one) { |
| if ((mask_4x4 & dual_one) == dual_one) { |
| vpx_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, lfis[0]->lim, |
| lfis[0]->hev_thr, lfis[1]->mblim, |
| lfis[1]->lim, lfis[1]->hev_thr); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)]; |
| vpx_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } |
| |
| if (mask_4x4_int & dual_one) { |
| if ((mask_4x4_int & dual_one) == dual_one) { |
| vpx_lpf_vertical_4_dual(ss[0] + 4, pitch, lfis[0]->mblim, |
| lfis[0]->lim, lfis[0]->hev_thr, |
| lfis[1]->mblim, lfis[1]->lim, |
| lfis[1]->hev_thr); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)]; |
| vpx_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr); |
| } |
| } |
| } |
| |
| ss[0] += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void highbd_filter_selectively_vert_row2(int subsampling_factor, |
| uint16_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl, int bd) { |
| const int dual_mask_cutoff = subsampling_factor ? 0xff : 0xffff; |
| const int lfl_forward = subsampling_factor ? 4 : 8; |
| const unsigned int dual_one = 1 | (1 << lfl_forward); |
| unsigned int mask; |
| uint16_t *ss[2]; |
| ss[0] = s; |
| |
| for (mask = |
| (mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int) & dual_mask_cutoff; |
| mask; mask = (mask & ~dual_one) >> 1) { |
| if (mask & dual_one) { |
| const loop_filter_thresh *lfis[2]; |
| lfis[0] = lfthr + *lfl; |
| lfis[1] = lfthr + *(lfl + lfl_forward); |
| ss[1] = ss[0] + 8 * pitch; |
| |
| if (mask_16x16 & dual_one) { |
| if ((mask_16x16 & dual_one) == dual_one) { |
| vpx_highbd_lpf_vertical_16_dual(ss[0], pitch, lfis[0]->mblim, |
| lfis[0]->lim, lfis[0]->hev_thr, bd); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_16x16 & 1)]; |
| vpx_highbd_lpf_vertical_16(ss[!(mask_16x16 & 1)], pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| |
| if (mask_8x8 & dual_one) { |
| if ((mask_8x8 & dual_one) == dual_one) { |
| vpx_highbd_lpf_vertical_8_dual(ss[0], pitch, lfis[0]->mblim, |
| lfis[0]->lim, lfis[0]->hev_thr, |
| lfis[1]->mblim, lfis[1]->lim, |
| lfis[1]->hev_thr, bd); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_8x8 & 1)]; |
| vpx_highbd_lpf_vertical_8(ss[!(mask_8x8 & 1)], pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| |
| if (mask_4x4 & dual_one) { |
| if ((mask_4x4 & dual_one) == dual_one) { |
| vpx_highbd_lpf_vertical_4_dual(ss[0], pitch, lfis[0]->mblim, |
| lfis[0]->lim, lfis[0]->hev_thr, |
| lfis[1]->mblim, lfis[1]->lim, |
| lfis[1]->hev_thr, bd); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_4x4 & 1)]; |
| vpx_highbd_lpf_vertical_4(ss[!(mask_4x4 & 1)], pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| |
| if (mask_4x4_int & dual_one) { |
| if ((mask_4x4_int & dual_one) == dual_one) { |
| vpx_highbd_lpf_vertical_4_dual(ss[0] + 4, pitch, lfis[0]->mblim, |
| lfis[0]->lim, lfis[0]->hev_thr, |
| lfis[1]->mblim, lfis[1]->lim, |
| lfis[1]->hev_thr, bd); |
| } else { |
| const loop_filter_thresh *lfi = lfis[!(mask_4x4_int & 1)]; |
| vpx_highbd_lpf_vertical_4(ss[!(mask_4x4_int & 1)] + 4, pitch, |
| lfi->mblim, lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| } |
| |
| ss[0] += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| static void filter_selectively_horiz(uint8_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl) { |
| unsigned int mask; |
| int count; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; |
| mask; mask >>= count) { |
| count = 1; |
| if (mask & 1) { |
| const loop_filter_thresh *lfi = lfthr + *lfl; |
| |
| if (mask_16x16 & 1) { |
| if ((mask_16x16 & 3) == 3) { |
| vpx_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| count = 2; |
| } else { |
| vpx_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else if (mask_8x8 & 1) { |
| if ((mask_8x8 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfthr + *(lfl + 1); |
| |
| vpx_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| |
| if ((mask_4x4_int & 3) == 3) { |
| vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } else { |
| if (mask_4x4_int & 1) |
| vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| else if (mask_4x4_int & 2) |
| vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| vpx_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| |
| if (mask_4x4_int & 1) |
| vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfthr + *(lfl + 1); |
| |
| vpx_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr); |
| if ((mask_4x4_int & 3) == 3) { |
| vpx_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } else { |
| if (mask_4x4_int & 1) |
| vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| else if (mask_4x4_int & 2) |
| vpx_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr); |
| } |
| count = 2; |
| } else { |
| vpx_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| |
| if (mask_4x4_int & 1) |
| vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } else { |
| vpx_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr); |
| } |
| } |
| s += 8 * count; |
| lfl += count; |
| mask_16x16 >>= count; |
| mask_8x8 >>= count; |
| mask_4x4 >>= count; |
| mask_4x4_int >>= count; |
| } |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void highbd_filter_selectively_horiz(uint16_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl, int bd) { |
| unsigned int mask; |
| int count; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; |
| mask; mask >>= count) { |
| count = 1; |
| if (mask & 1) { |
| const loop_filter_thresh *lfi = lfthr + *lfl; |
| |
| if (mask_16x16 & 1) { |
| if ((mask_16x16 & 3) == 3) { |
| vpx_highbd_lpf_horizontal_edge_16(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| count = 2; |
| } else { |
| vpx_highbd_lpf_horizontal_edge_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } else if (mask_8x8 & 1) { |
| if ((mask_8x8 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfthr + *(lfl + 1); |
| |
| vpx_highbd_lpf_horizontal_8_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| |
| if ((mask_4x4_int & 3) == 3) { |
| vpx_highbd_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, |
| lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| } else { |
| if (mask_4x4_int & 1) { |
| vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } else if (mask_4x4_int & 2) { |
| vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| } |
| count = 2; |
| } else { |
| vpx_highbd_lpf_horizontal_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| |
| if (mask_4x4_int & 1) { |
| vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| } else if (mask_4x4 & 1) { |
| if ((mask_4x4 & 3) == 3) { |
| // Next block's thresholds. |
| const loop_filter_thresh *lfin = lfthr + *(lfl + 1); |
| |
| vpx_highbd_lpf_horizontal_4_dual(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| if ((mask_4x4_int & 3) == 3) { |
| vpx_highbd_lpf_horizontal_4_dual(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, |
| lfin->mblim, lfin->lim, |
| lfin->hev_thr, bd); |
| } else { |
| if (mask_4x4_int & 1) { |
| vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } else if (mask_4x4_int & 2) { |
| vpx_highbd_lpf_horizontal_4(s + 8 + 4 * pitch, pitch, lfin->mblim, |
| lfin->lim, lfin->hev_thr, bd); |
| } |
| } |
| count = 2; |
| } else { |
| vpx_highbd_lpf_horizontal_4(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| |
| if (mask_4x4_int & 1) { |
| vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, |
| lfi->lim, lfi->hev_thr, bd); |
| } |
| } |
| } else { |
| vpx_highbd_lpf_horizontal_4(s + 4 * pitch, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } |
| s += 8 * count; |
| lfl += count; |
| mask_16x16 >>= count; |
| mask_8x8 >>= count; |
| mask_4x4 >>= count; |
| mask_4x4_int >>= count; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| // This function ors into the current lfm structure, where to do loop |
| // filters for the specific mi we are looking at. It uses information |
| // including the block_size_type (32x16, 32x32, etc.), the transform size, |
| // whether there were any coefficients encoded, and the loop filter strength |
| // block we are currently looking at. Shift is used to position the |
| // 1's we produce. |
| static void build_masks(const loop_filter_info_n *const lfi_n, |
| const MODE_INFO *mi, const int shift_y, |
| const int shift_uv, |
| LOOP_FILTER_MASK *lfm) { |
| const BLOCK_SIZE block_size = mi->sb_type; |
| const TX_SIZE tx_size_y = mi->tx_size; |
| const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1); |
| const int filter_level = get_filter_level(lfi_n, mi); |
| uint64_t *const left_y = &lfm->left_y[tx_size_y]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| uint16_t *const left_uv = &lfm->left_uv[tx_size_uv]; |
| uint16_t *const above_uv = &lfm->above_uv[tx_size_uv]; |
| uint16_t *const int_4x4_uv = &lfm->int_4x4_uv; |
| int i; |
| |
| // If filter level is 0 we don't loop filter. |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| int index = shift_y; |
| for (i = 0; i < h; i++) { |
| memset(&lfm->lfl_y[index], filter_level, w); |
| index += 8; |
| } |
| } |
| |
| // These set 1 in the current block size for the block size edges. |
| // For instance if the block size is 32x16, we'll set: |
| // above = 1111 |
| // 0000 |
| // and |
| // left = 1000 |
| // = 1000 |
| // NOTE : In this example the low bit is left most ( 1000 ) is stored as |
| // 1, not 8... |
| // |
| // U and V set things on a 16 bit scale. |
| // |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; |
| |
| // If the block has no coefficients and is not intra we skip applying |
| // the loop filter on block edges. |
| if (mi->skip && is_inter_block(mi)) |
| return; |
| |
| // Here we are adding a mask for the transform size. The transform |
| // size mask is set to be correct for a 64x64 prediction block size. We |
| // mask to match the size of the block we are working on and then shift it |
| // into place.. |
| *above_y |= (size_mask[block_size] & |
| above_64x64_txform_mask[tx_size_y]) << shift_y; |
| *above_uv |= (size_mask_uv[block_size] & |
| above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
| |
| *left_y |= (size_mask[block_size] & |
| left_64x64_txform_mask[tx_size_y]) << shift_y; |
| *left_uv |= (size_mask_uv[block_size] & |
| left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
| |
| // Here we are trying to determine what to do with the internal 4x4 block |
| // boundaries. These differ from the 4x4 boundaries on the outside edge of |
| // an 8x8 in that the internal ones can be skipped and don't depend on |
| // the prediction block size. |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= size_mask[block_size] << shift_y; |
| |
| if (tx_size_uv == TX_4X4) |
| *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; |
| } |
| |
| // This function does the same thing as the one above with the exception that |
| // it only affects the y masks. It exists because for blocks < 16x16 in size, |
| // we only update u and v masks on the first block. |
| static void build_y_mask(const loop_filter_info_n *const lfi_n, |
| const MODE_INFO *mi, const int shift_y, |
| LOOP_FILTER_MASK *lfm) { |
| const BLOCK_SIZE block_size = mi->sb_type; |
| const TX_SIZE tx_size_y = mi->tx_size; |
| const int filter_level = get_filter_level(lfi_n, mi); |
| uint64_t *const left_y = &lfm->left_y[tx_size_y]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| int i; |
| |
| if (!filter_level) { |
| return; |
| } else { |
| const int w = num_8x8_blocks_wide_lookup[block_size]; |
| const int h = num_8x8_blocks_high_lookup[block_size]; |
| int index = shift_y; |
| for (i = 0; i < h; i++) { |
| memset(&lfm->lfl_y[index], filter_level, w); |
| index += 8; |
| } |
| } |
| |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| |
| if (mi->skip && is_inter_block(mi)) |
| return; |
| |
| *above_y |= (size_mask[block_size] & |
| above_64x64_txform_mask[tx_size_y]) << shift_y; |
| |
| *left_y |= (size_mask[block_size] & |
| left_64x64_txform_mask[tx_size_y]) << shift_y; |
| |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= size_mask[block_size] << shift_y; |
| } |
| |
| void vp9_adjust_mask(VP9_COMMON *const cm, const int mi_row, |
| const int mi_col, LOOP_FILTER_MASK *lfm) { |
| int i; |
| |
| // The largest loopfilter we have is 16x16 so we use the 16x16 mask |
| // for 32x32 transforms also. |
| lfm->left_y[TX_16X16] |= lfm->left_y[TX_32X32]; |
| lfm->above_y[TX_16X16] |= lfm->above_y[TX_32X32]; |
| lfm->left_uv[TX_16X16] |= lfm->left_uv[TX_32X32]; |
| lfm->above_uv[TX_16X16] |= lfm->above_uv[TX_32X32]; |
| |
| // We do at least 8 tap filter on every 32x32 even if the transform size |
| // is 4x4. So if the 4x4 is set on a border pixel add it to the 8x8 and |
| // remove it from the 4x4. |
| lfm->left_y[TX_8X8] |= lfm->left_y[TX_4X4] & left_border; |
| lfm->left_y[TX_4X4] &= ~left_border; |
| lfm->above_y[TX_8X8] |= lfm->above_y[TX_4X4] & above_border; |
| lfm->above_y[TX_4X4] &= ~above_border; |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_4X4] & left_border_uv; |
| lfm->left_uv[TX_4X4] &= ~left_border_uv; |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_4X4] & above_border_uv; |
| lfm->above_uv[TX_4X4] &= ~above_border_uv; |
| |
| // We do some special edge handling. |
| if (mi_row + MI_BLOCK_SIZE > cm->mi_rows) { |
| const uint64_t rows = cm->mi_rows - mi_row; |
| |
| // Each pixel inside the border gets a 1, |
| const uint64_t mask_y = (((uint64_t) 1 << (rows << 3)) - 1); |
| const uint16_t mask_uv = (((uint16_t) 1 << (((rows + 1) >> 1) << 2)) - 1); |
| |
| // Remove values completely outside our border. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->int_4x4_uv &= mask_uv; |
| |
| // We don't apply a wide loop filter on the last uv block row. If set |
| // apply the shorter one instead. |
| if (rows == 1) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16]; |
| lfm->above_uv[TX_16X16] = 0; |
| } |
| if (rows == 5) { |
| lfm->above_uv[TX_8X8] |= lfm->above_uv[TX_16X16] & 0xff00; |
| lfm->above_uv[TX_16X16] &= ~(lfm->above_uv[TX_16X16] & 0xff00); |
| } |
| } |
| |
| if (mi_col + MI_BLOCK_SIZE > cm->mi_cols) { |
| const uint64_t columns = cm->mi_cols - mi_col; |
| |
| // Each pixel inside the border gets a 1, the multiply copies the border |
| // to where we need it. |
| const uint64_t mask_y = (((1 << columns) - 1)) * 0x0101010101010101ULL; |
| const uint16_t mask_uv = ((1 << ((columns + 1) >> 1)) - 1) * 0x1111; |
| |
| // Internal edges are not applied on the last column of the image so |
| // we mask 1 more for the internal edges |
| const uint16_t mask_uv_int = ((1 << (columns >> 1)) - 1) * 0x1111; |
| |
| // Remove the bits outside the image edge. |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= mask_y; |
| lfm->above_y[i] &= mask_y; |
| lfm->left_uv[i] &= mask_uv; |
| lfm->above_uv[i] &= mask_uv; |
| } |
| lfm->int_4x4_y &= mask_y; |
| lfm->int_4x4_uv &= mask_uv_int; |
| |
| // We don't apply a wide loop filter on the last uv column. If set |
| // apply the shorter one instead. |
| if (columns == 1) { |
| lfm->left_uv[TX_8X8] |= lfm->left_uv[TX_16X16]; |
| lfm->left_uv[TX_16X16] = 0; |
| } |
| if (columns == 5) { |
| lfm->left_uv[TX_8X8] |= (lfm->left_uv[TX_16X16] & 0xcccc); |
| lfm->left_uv[TX_16X16] &= ~(lfm->left_uv[TX_16X16] & 0xcccc); |
| } |
| } |
| // We don't apply a loop filter on the first column in the image, mask that |
| // out. |
| if (mi_col == 0) { |
| for (i = 0; i < TX_32X32; i++) { |
| lfm->left_y[i] &= 0xfefefefefefefefeULL; |
| lfm->left_uv[i] &= 0xeeee; |
| } |
| } |
| |
| // Assert if we try to apply 2 different loop filters at the same position. |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_8X8])); |
| assert(!(lfm->left_y[TX_16X16] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->left_y[TX_8X8] & lfm->left_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->left_y[TX_16X16])); |
| assert(!(lfm->left_uv[TX_16X16]&lfm->left_uv[TX_8X8])); |
| assert(!(lfm->left_uv[TX_16X16] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->left_uv[TX_8X8] & lfm->left_uv[TX_4X4])); |
| assert(!(lfm->int_4x4_uv & lfm->left_uv[TX_16X16])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_8X8])); |
| assert(!(lfm->above_y[TX_16X16] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->above_y[TX_8X8] & lfm->above_y[TX_4X4])); |
| assert(!(lfm->int_4x4_y & lfm->above_y[TX_16X16])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_8X8])); |
| assert(!(lfm->above_uv[TX_16X16] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->above_uv[TX_8X8] & lfm->above_uv[TX_4X4])); |
| assert(!(lfm->int_4x4_uv & lfm->above_uv[TX_16X16])); |
| } |
| |
| // This function sets up the bit masks for the entire 64x64 region represented |
| // by mi_row, mi_col. |
| void vp9_setup_mask(VP9_COMMON *const cm, const int mi_row, const int mi_col, |
| MODE_INFO **mi, const int mode_info_stride, |
| LOOP_FILTER_MASK *lfm) { |
| int idx_32, idx_16, idx_8; |
| const loop_filter_info_n *const lfi_n = &cm->lf_info; |
| MODE_INFO **mip = mi; |
| MODE_INFO **mip2 = mi; |
| |
| // These are offsets to the next mi in the 64x64 block. It is what gets |
| // added to the mi ptr as we go through each loop. It helps us to avoid |
| // setting up special row and column counters for each index. The last step |
| // brings us out back to the starting position. |
| const int offset_32[] = {4, (mode_info_stride << 2) - 4, 4, |
| -(mode_info_stride << 2) - 4}; |
| const int offset_16[] = {2, (mode_info_stride << 1) - 2, 2, |
| -(mode_info_stride << 1) - 2}; |
| const int offset[] = {1, mode_info_stride - 1, 1, -mode_info_stride - 1}; |
| |
| // Following variables represent shifts to position the current block |
| // mask over the appropriate block. A shift of 36 to the left will move |
| // the bits for the final 32 by 32 block in the 64x64 up 4 rows and left |
| // 4 rows to the appropriate spot. |
| const int shift_32_y[] = {0, 4, 32, 36}; |
| const int shift_16_y[] = {0, 2, 16, 18}; |
| const int shift_8_y[] = {0, 1, 8, 9}; |
| const int shift_32_uv[] = {0, 2, 8, 10}; |
| const int shift_16_uv[] = {0, 1, 4, 5}; |
| const int max_rows = (mi_row + MI_BLOCK_SIZE > cm->mi_rows ? |
| cm->mi_rows - mi_row : MI_BLOCK_SIZE); |
| const int max_cols = (mi_col + MI_BLOCK_SIZE > cm->mi_cols ? |
| cm->mi_cols - mi_col : MI_BLOCK_SIZE); |
| |
| vp9_zero(*lfm); |
| assert(mip[0] != NULL); |
| |
| switch (mip[0]->sb_type) { |
| case BLOCK_64X64: |
| build_masks(lfi_n, mip[0] , 0, 0, lfm); |
| break; |
| case BLOCK_64X32: |
| build_masks(lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + mode_info_stride * 4; |
| if (4 >= max_rows) |
| break; |
| build_masks(lfi_n, mip2[0], 32, 8, lfm); |
| break; |
| case BLOCK_32X64: |
| build_masks(lfi_n, mip[0], 0, 0, lfm); |
| mip2 = mip + 4; |
| if (4 >= max_cols) |
| break; |
| build_masks(lfi_n, mip2[0], 4, 2, lfm); |
| break; |
| default: |
| for (idx_32 = 0; idx_32 < 4; mip += offset_32[idx_32], ++idx_32) { |
| const int shift_y = shift_32_y[idx_32]; |
| const int shift_uv = shift_32_uv[idx_32]; |
| const int mi_32_col_offset = ((idx_32 & 1) << 2); |
| const int mi_32_row_offset = ((idx_32 >> 1) << 2); |
| if (mi_32_col_offset >= max_cols || mi_32_row_offset >= max_rows) |
| continue; |
| switch (mip[0]->sb_type) { |
| case BLOCK_32X32: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| break; |
| case BLOCK_32X16: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| if (mi_32_row_offset + 2 >= max_rows) |
| continue; |
| mip2 = mip + mode_info_stride * 2; |
| build_masks(lfi_n, mip2[0], shift_y + 16, shift_uv + 4, lfm); |
| break; |
| case BLOCK_16X32: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| if (mi_32_col_offset + 2 >= max_cols) |
| continue; |
| mip2 = mip + 2; |
| build_masks(lfi_n, mip2[0], shift_y + 2, shift_uv + 1, lfm); |
| break; |
| default: |
| for (idx_16 = 0; idx_16 < 4; mip += offset_16[idx_16], ++idx_16) { |
| const int shift_y = shift_32_y[idx_32] + shift_16_y[idx_16]; |
| const int shift_uv = shift_32_uv[idx_32] + shift_16_uv[idx_16]; |
| const int mi_16_col_offset = mi_32_col_offset + |
| ((idx_16 & 1) << 1); |
| const int mi_16_row_offset = mi_32_row_offset + |
| ((idx_16 >> 1) << 1); |
| |
| if (mi_16_col_offset >= max_cols || mi_16_row_offset >= max_rows) |
| continue; |
| |
| switch (mip[0]->sb_type) { |
| case BLOCK_16X16: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| break; |
| case BLOCK_16X8: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| if (mi_16_row_offset + 1 >= max_rows) |
| continue; |
| mip2 = mip + mode_info_stride; |
| build_y_mask(lfi_n, mip2[0], shift_y+8, lfm); |
| break; |
| case BLOCK_8X16: |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| if (mi_16_col_offset +1 >= max_cols) |
| continue; |
| mip2 = mip + 1; |
| build_y_mask(lfi_n, mip2[0], shift_y+1, lfm); |
| break; |
| default: { |
| const int shift_y = shift_32_y[idx_32] + |
| shift_16_y[idx_16] + |
| shift_8_y[0]; |
| build_masks(lfi_n, mip[0], shift_y, shift_uv, lfm); |
| mip += offset[0]; |
| for (idx_8 = 1; idx_8 < 4; mip += offset[idx_8], ++idx_8) { |
| const int shift_y = shift_32_y[idx_32] + |
| shift_16_y[idx_16] + |
| shift_8_y[idx_8]; |
| const int mi_8_col_offset = mi_16_col_offset + |
| ((idx_8 & 1)); |
| const int mi_8_row_offset = mi_16_row_offset + |
| ((idx_8 >> 1)); |
| |
| if (mi_8_col_offset >= max_cols || |
| mi_8_row_offset >= max_rows) |
| continue; |
| build_y_mask(lfi_n, mip[0], shift_y, lfm); |
| } |
| break; |
| } |
| } |
| } |
| break; |
| } |
| } |
| break; |
| } |
| } |
| |
| static void filter_selectively_vert(uint8_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl) { |
| unsigned int mask; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; |
| mask; mask >>= 1) { |
| const loop_filter_thresh *lfi = lfthr + *lfl; |
| |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| vpx_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } else if (mask_8x8 & 1) { |
| vpx_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } else if (mask_4x4 & 1) { |
| vpx_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| } |
| } |
| if (mask_4x4_int & 1) |
| vpx_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, lfi->hev_thr); |
| s += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| static void highbd_filter_selectively_vert(uint16_t *s, int pitch, |
| unsigned int mask_16x16, |
| unsigned int mask_8x8, |
| unsigned int mask_4x4, |
| unsigned int mask_4x4_int, |
| const loop_filter_thresh *lfthr, |
| const uint8_t *lfl, int bd) { |
| unsigned int mask; |
| |
| for (mask = mask_16x16 | mask_8x8 | mask_4x4 | mask_4x4_int; |
| mask; mask >>= 1) { |
| const loop_filter_thresh *lfi = lfthr + *lfl; |
| |
| if (mask & 1) { |
| if (mask_16x16 & 1) { |
| vpx_highbd_lpf_vertical_16(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } else if (mask_8x8 & 1) { |
| vpx_highbd_lpf_vertical_8(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } else if (mask_4x4 & 1) { |
| vpx_highbd_lpf_vertical_4(s, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| } |
| } |
| if (mask_4x4_int & 1) |
| vpx_highbd_lpf_vertical_4(s + 4, pitch, lfi->mblim, lfi->lim, |
| lfi->hev_thr, bd); |
| s += 8; |
| lfl += 1; |
| mask_16x16 >>= 1; |
| mask_8x8 >>= 1; |
| mask_4x4 >>= 1; |
| mask_4x4_int >>= 1; |
| } |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| void vp9_filter_block_plane_non420(VP9_COMMON *cm, |
| struct macroblockd_plane *plane, |
| MODE_INFO **mi_8x8, |
| int mi_row, int mi_col) { |
| const int ss_x = plane->subsampling_x; |
| const int ss_y = plane->subsampling_y; |
| const int row_step = 1 << ss_y; |
| const int col_step = 1 << ss_x; |
| const int row_step_stride = cm->mi_stride * row_step; |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t* const dst0 = dst->buf; |
| unsigned int mask_16x16[MI_BLOCK_SIZE] = {0}; |
| unsigned int mask_8x8[MI_BLOCK_SIZE] = {0}; |
| unsigned int mask_4x4[MI_BLOCK_SIZE] = {0}; |
| unsigned int mask_4x4_int[MI_BLOCK_SIZE] = {0}; |
| uint8_t lfl[MI_BLOCK_SIZE * MI_BLOCK_SIZE]; |
| int r, c; |
| |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { |
| unsigned int mask_16x16_c = 0; |
| unsigned int mask_8x8_c = 0; |
| unsigned int mask_4x4_c = 0; |
| unsigned int border_mask; |
| |
| // Determine the vertical edges that need filtering |
| for (c = 0; c < MI_BLOCK_SIZE && mi_col + c < cm->mi_cols; c += col_step) { |
| const MODE_INFO *mi = mi_8x8[c]; |
| const BLOCK_SIZE sb_type = mi[0].sb_type; |
| const int skip_this = mi[0].skip && is_inter_block(mi); |
| // left edge of current unit is block/partition edge -> no skip |
| const int block_edge_left = (num_4x4_blocks_wide_lookup[sb_type] > 1) ? |
| !(c & (num_8x8_blocks_wide_lookup[sb_type] - 1)) : 1; |
| const int skip_this_c = skip_this && !block_edge_left; |
| // top edge of current unit is block/partition edge -> no skip |
| const int block_edge_above = (num_4x4_blocks_high_lookup[sb_type] > 1) ? |
| !(r & (num_8x8_blocks_high_lookup[sb_type] - 1)) : 1; |
| const int skip_this_r = skip_this && !block_edge_above; |
| const TX_SIZE tx_size = get_uv_tx_size(mi, plane); |
| const int skip_border_4x4_c = ss_x && mi_col + c == cm->mi_cols - 1; |
| const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; |
| |
| // Filter level can vary per MI |
| if (!(lfl[(r << 3) + (c >> ss_x)] = |
| get_filter_level(&cm->lf_info, mi))) |
| continue; |
| |
| // Build masks based on the transform size of each block |
| if (tx_size == TX_32X32) { |
| if (!skip_this_c && ((c >> ss_x) & 3) == 0) { |
| if (!skip_border_4x4_c) |
| mask_16x16_c |= 1 << (c >> ss_x); |
| else |
| mask_8x8_c |= 1 << (c >> ss_x); |
| } |
| if (!skip_this_r && ((r >> ss_y) & 3) == 0) { |
| if (!skip_border_4x4_r) |
| mask_16x16[r] |= 1 << (c >> ss_x); |
| else |
| mask_8x8[r] |= 1 << (c >> ss_x); |
| } |
| } else if (tx_size == TX_16X16) { |
| if (!skip_this_c && ((c >> ss_x) & 1) == 0) { |
| if (!skip_border_4x4_c) |
| mask_16x16_c |= 1 << (c >> ss_x); |
| else |
| mask_8x8_c |= 1 << (c >> ss_x); |
| } |
| if (!skip_this_r && ((r >> ss_y) & 1) == 0) { |
| if (!skip_border_4x4_r) |
| mask_16x16[r] |= 1 << (c >> ss_x); |
| else |
| mask_8x8[r] |= 1 << (c >> ss_x); |
| } |
| } else { |
| // force 8x8 filtering on 32x32 boundaries |
| if (!skip_this_c) { |
| if (tx_size == TX_8X8 || ((c >> ss_x) & 3) == 0) |
| mask_8x8_c |= 1 << (c >> ss_x); |
| else |
| mask_4x4_c |= 1 << (c >> ss_x); |
| } |
| |
| if (!skip_this_r) { |
| if (tx_size == TX_8X8 || ((r >> ss_y) & 3) == 0) |
| mask_8x8[r] |= 1 << (c >> ss_x); |
| else |
| mask_4x4[r] |= 1 << (c >> ss_x); |
| } |
| |
| if (!skip_this && tx_size < TX_8X8 && !skip_border_4x4_c) |
| mask_4x4_int[r] |= 1 << (c >> ss_x); |
| } |
| } |
| |
| // Disable filtering on the leftmost column |
| border_mask = ~(mi_col == 0); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_vert(CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, |
| mask_16x16_c & border_mask, |
| mask_8x8_c & border_mask, |
| mask_4x4_c & border_mask, |
| mask_4x4_int[r], |
| cm->lf_info.lfthr, &lfl[r << 3], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_vert(dst->buf, dst->stride, |
| mask_16x16_c & border_mask, |
| mask_8x8_c & border_mask, |
| mask_4x4_c & border_mask, |
| mask_4x4_int[r], |
| cm->lf_info.lfthr, &lfl[r << 3]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| dst->buf += 8 * dst->stride; |
| mi_8x8 += row_step_stride; |
| } |
| |
| // Now do horizontal pass |
| dst->buf = dst0; |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += row_step) { |
| const int skip_border_4x4_r = ss_y && mi_row + r == cm->mi_rows - 1; |
| const unsigned int mask_4x4_int_r = skip_border_4x4_r ? 0 : mask_4x4_int[r]; |
| |
| unsigned int mask_16x16_r; |
| unsigned int mask_8x8_r; |
| unsigned int mask_4x4_r; |
| |
| if (mi_row + r == 0) { |
| mask_16x16_r = 0; |
| mask_8x8_r = 0; |
| mask_4x4_r = 0; |
| } else { |
| mask_16x16_r = mask_16x16[r]; |
| mask_8x8_r = mask_8x8[r]; |
| mask_4x4_r = mask_4x4[r]; |
| } |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, |
| mask_16x16_r, |
| mask_8x8_r, |
| mask_4x4_r, |
| mask_4x4_int_r, |
| cm->lf_info.lfthr, &lfl[r << 3], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, |
| mask_16x16_r, |
| mask_8x8_r, |
| mask_4x4_r, |
| mask_4x4_int_r, |
| cm->lf_info.lfthr, &lfl[r << 3]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| dst->buf += 8 * dst->stride; |
| } |
| } |
| |
| void vp9_filter_block_plane_ss00(VP9_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, |
| LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r; |
| uint64_t mask_16x16 = lfm->left_y[TX_16X16]; |
| uint64_t mask_8x8 = lfm->left_y[TX_8X8]; |
| uint64_t mask_4x4 = lfm->left_y[TX_4X4]; |
| uint64_t mask_4x4_int = lfm->int_4x4_y; |
| |
| assert(plane->subsampling_x == 0 && plane->subsampling_y == 0); |
| |
| // Vertical pass: do 2 rows at one time |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) { |
| // Disable filtering on the leftmost column. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_vert_row2(plane->subsampling_x, |
| CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, |
| (unsigned int)mask_16x16, |
| (unsigned int)mask_8x8, |
| (unsigned int)mask_4x4, |
| (unsigned int)mask_4x4_int, |
| cm->lf_info.lfthr, |
| &lfm->lfl_y[r << 3], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_vert_row2(plane->subsampling_x, dst->buf, dst->stride, |
| (unsigned int)mask_16x16, |
| (unsigned int)mask_8x8, |
| (unsigned int)mask_4x4, |
| (unsigned int)mask_4x4_int, |
| cm->lf_info.lfthr, &lfm->lfl_y[r << 3]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| dst->buf += 16 * dst->stride; |
| mask_16x16 >>= 16; |
| mask_8x8 >>= 16; |
| mask_4x4 >>= 16; |
| mask_4x4_int >>= 16; |
| } |
| |
| // Horizontal pass |
| dst->buf = dst0; |
| mask_16x16 = lfm->above_y[TX_16X16]; |
| mask_8x8 = lfm->above_y[TX_8X8]; |
| mask_4x4 = lfm->above_y[TX_4X4]; |
| mask_4x4_int = lfm->int_4x4_y; |
| |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r++) { |
| unsigned int mask_16x16_r; |
| unsigned int mask_8x8_r; |
| unsigned int mask_4x4_r; |
| |
| if (mi_row + r == 0) { |
| mask_16x16_r = 0; |
| mask_8x8_r = 0; |
| mask_4x4_r = 0; |
| } else { |
| mask_16x16_r = mask_16x16 & 0xff; |
| mask_8x8_r = mask_8x8 & 0xff; |
| mask_4x4_r = mask_4x4 & 0xff; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int & 0xff, |
| cm->lf_info.lfthr, &lfm->lfl_y[r << 3], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int & 0xff, |
| cm->lf_info.lfthr, &lfm->lfl_y[r << 3]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| dst->buf += 8 * dst->stride; |
| mask_16x16 >>= 8; |
| mask_8x8 >>= 8; |
| mask_4x4 >>= 8; |
| mask_4x4_int >>= 8; |
| } |
| } |
| |
| void vp9_filter_block_plane_ss11(VP9_COMMON *const cm, |
| struct macroblockd_plane *const plane, |
| int mi_row, |
| LOOP_FILTER_MASK *lfm) { |
| struct buf_2d *const dst = &plane->dst; |
| uint8_t *const dst0 = dst->buf; |
| int r, c; |
| uint8_t lfl_uv[16]; |
| |
| uint16_t mask_16x16 = lfm->left_uv[TX_16X16]; |
| uint16_t mask_8x8 = lfm->left_uv[TX_8X8]; |
| uint16_t mask_4x4 = lfm->left_uv[TX_4X4]; |
| uint16_t mask_4x4_int = lfm->int_4x4_uv; |
| |
| assert(plane->subsampling_x == 1 && plane->subsampling_y == 1); |
| |
| // Vertical pass: do 2 rows at one time |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 4) { |
| for (c = 0; c < (MI_BLOCK_SIZE >> 1); c++) { |
| lfl_uv[(r << 1) + c] = lfm->lfl_y[(r << 3) + (c << 1)]; |
| lfl_uv[((r + 2) << 1) + c] = lfm->lfl_y[((r + 2) << 3) + (c << 1)]; |
| } |
| |
| // Disable filtering on the leftmost column. |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_vert_row2(plane->subsampling_x, |
| CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, |
| (unsigned int)mask_16x16, |
| (unsigned int)mask_8x8, |
| (unsigned int)mask_4x4, |
| (unsigned int)mask_4x4_int, |
| cm->lf_info.lfthr, &lfl_uv[r << 1], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_vert_row2(plane->subsampling_x, dst->buf, dst->stride, |
| (unsigned int)mask_16x16, |
| (unsigned int)mask_8x8, |
| (unsigned int)mask_4x4, |
| (unsigned int)mask_4x4_int, |
| cm->lf_info.lfthr, &lfl_uv[r << 1]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| dst->buf += 16 * dst->stride; |
| mask_16x16 >>= 8; |
| mask_8x8 >>= 8; |
| mask_4x4 >>= 8; |
| mask_4x4_int >>= 8; |
| } |
| |
| // Horizontal pass |
| dst->buf = dst0; |
| mask_16x16 = lfm->above_uv[TX_16X16]; |
| mask_8x8 = lfm->above_uv[TX_8X8]; |
| mask_4x4 = lfm->above_uv[TX_4X4]; |
| mask_4x4_int = lfm->int_4x4_uv; |
| |
| for (r = 0; r < MI_BLOCK_SIZE && mi_row + r < cm->mi_rows; r += 2) { |
| const int skip_border_4x4_r = mi_row + r == cm->mi_rows - 1; |
| const unsigned int mask_4x4_int_r = |
| skip_border_4x4_r ? 0 : (mask_4x4_int & 0xf); |
| unsigned int mask_16x16_r; |
| unsigned int mask_8x8_r; |
| unsigned int mask_4x4_r; |
| |
| if (mi_row + r == 0) { |
| mask_16x16_r = 0; |
| mask_8x8_r = 0; |
| mask_4x4_r = 0; |
| } else { |
| mask_16x16_r = mask_16x16 & 0xf; |
| mask_8x8_r = mask_8x8 & 0xf; |
| mask_4x4_r = mask_4x4 & 0xf; |
| } |
| |
| #if CONFIG_VP9_HIGHBITDEPTH |
| if (cm->use_highbitdepth) { |
| highbd_filter_selectively_horiz(CONVERT_TO_SHORTPTR(dst->buf), |
| dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int_r, |
| cm->lf_info.lfthr, &lfl_uv[r << 1], |
| (int)cm->bit_depth); |
| } else { |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| filter_selectively_horiz(dst->buf, dst->stride, mask_16x16_r, mask_8x8_r, |
| mask_4x4_r, mask_4x4_int_r, cm->lf_info.lfthr, |
| &lfl_uv[r << 1]); |
| #if CONFIG_VP9_HIGHBITDEPTH |
| } |
| #endif // CONFIG_VP9_HIGHBITDEPTH |
| |
| dst->buf += 8 * dst->stride; |
| mask_16x16 >>= 4; |
| mask_8x8 >>= 4; |
| mask_4x4 >>= 4; |
| mask_4x4_int >>= 4; |
| } |
| } |
| |
| static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, VP9_COMMON *cm, |
| struct macroblockd_plane planes[MAX_MB_PLANE], |
| int start, int stop, int y_only) { |
| const int num_planes = y_only ? 1 : MAX_MB_PLANE; |
| enum lf_path path; |
| int mi_row, mi_col; |
| |
| if (y_only) |
| path = LF_PATH_444; |
| else if (planes[1].subsampling_y == 1 && planes[1].subsampling_x == 1) |
| path = LF_PATH_420; |
| else if (planes[1].subsampling_y == 0 && planes[1].subsampling_x == 0) |
| path = LF_PATH_444; |
| else |
| path = LF_PATH_SLOW; |
| |
| for (mi_row = start; mi_row < stop; mi_row += MI_BLOCK_SIZE) { |
| MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; |
| LOOP_FILTER_MASK *lfm = get_lfm(&cm->lf, mi_row, 0); |
| |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE, ++lfm) { |
| int plane; |
| |
| vp9_setup_dst_planes(planes, frame_buffer, mi_row, mi_col); |
| |
| // TODO(jimbankoski): For 444 only need to do y mask. |
| vp9_adjust_mask(cm, mi_row, mi_col, lfm); |
| |
| vp9_filter_block_plane_ss00(cm, &planes[0], mi_row, lfm); |
| for (plane = 1; plane < num_planes; ++plane) { |
| switch (path) { |
| case LF_PATH_420: |
| vp9_filter_block_plane_ss11(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_444: |
| vp9_filter_block_plane_ss00(cm, &planes[plane], mi_row, lfm); |
| break; |
| case LF_PATH_SLOW: |
| vp9_filter_block_plane_non420(cm, &planes[plane], mi + mi_col, |
| mi_row, mi_col); |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| void vp9_loop_filter_frame(YV12_BUFFER_CONFIG *frame, |
| VP9_COMMON *cm, MACROBLOCKD *xd, |
| int frame_filter_level, |
| int y_only, int partial_frame) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| if (!frame_filter_level) return; |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| loop_filter_rows(frame, cm, xd->plane, start_mi_row, end_mi_row, y_only); |
| } |
| |
| // Used by the encoder to build the loopfilter masks. |
| // TODO(slavarnway): Do the encoder the same way the decoder does it and |
| // build the masks in line as part of the encode process. |
| void vp9_build_mask_frame(VP9_COMMON *cm, int frame_filter_level, |
| int partial_frame) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| int mi_col, mi_row; |
| if (!frame_filter_level) return; |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = VPXMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| |
| vp9_loop_filter_frame_init(cm, frame_filter_level); |
| |
| for (mi_row = start_mi_row; mi_row < end_mi_row; mi_row += MI_BLOCK_SIZE) { |
| MODE_INFO **mi = cm->mi_grid_visible + mi_row * cm->mi_stride; |
| for (mi_col = 0; mi_col < cm->mi_cols; mi_col += MI_BLOCK_SIZE) { |
| // vp9_setup_mask() zeros lfm |
| vp9_setup_mask(cm, mi_row, mi_col, mi + mi_col, cm->mi_stride, |
| get_lfm(&cm->lf, mi_row, mi_col)); |
| } |
| } |
| } |
| |
| // 8x8 blocks in a superblock. A "1" represents the first block in a 16x16 |
| // or greater area. |
| static const uint8_t first_block_in_16x16[8][8] = { |
| {1, 0, 1, 0, 1, 0, 1, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0}, |
| {1, 0, 1, 0, 1, 0, 1, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0}, |
| {1, 0, 1, 0, 1, 0, 1, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0}, |
| {1, 0, 1, 0, 1, 0, 1, 0}, |
| {0, 0, 0, 0, 0, 0, 0, 0} |
| }; |
| |
| // This function sets up the bit masks for a block represented |
| // by mi_row, mi_col in a 64x64 region. |
| // TODO(SJL): This function only works for yv12. |
| void vp9_build_mask(VP9_COMMON *cm, const MODE_INFO *mi, int mi_row, |
| int mi_col, int bw, int bh) { |
| const BLOCK_SIZE block_size = mi->sb_type; |
| const TX_SIZE tx_size_y = mi->tx_size; |
| const loop_filter_info_n *const lfi_n = &cm->lf_info; |
| const int filter_level = get_filter_level(lfi_n, mi); |
| const TX_SIZE tx_size_uv = get_uv_tx_size_impl(tx_size_y, block_size, 1, 1); |
| LOOP_FILTER_MASK *const lfm = get_lfm(&cm->lf, mi_row, mi_col); |
| uint64_t *const left_y = &lfm->left_y[tx_size_y]; |
| uint64_t *const above_y = &lfm->above_y[tx_size_y]; |
| uint64_t *const int_4x4_y = &lfm->int_4x4_y; |
| uint16_t *const left_uv = &lfm->left_uv[tx_size_uv]; |
| uint16_t *const above_uv = &lfm->above_uv[tx_size_uv]; |
| uint16_t *const int_4x4_uv = &lfm->int_4x4_uv; |
| const int row_in_sb = (mi_row & 7); |
| const int col_in_sb = (mi_col & 7); |
| const int shift_y = col_in_sb + (row_in_sb << 3); |
| const int shift_uv = (col_in_sb >> 1) + ((row_in_sb >> 1) << 2); |
| const int build_uv = first_block_in_16x16[row_in_sb][col_in_sb]; |
| |
| if (!filter_level) { |
| return; |
| } else { |
| int index = shift_y; |
| int i; |
| for (i = 0; i < bh; i++) { |
| memset(&lfm->lfl_y[index], filter_level, bw); |
| index += 8; |
| } |
| } |
| |
| // These set 1 in the current block size for the block size edges. |
| // For instance if the block size is 32x16, we'll set: |
| // above = 1111 |
| // 0000 |
| // and |
| // left = 1000 |
| // = 1000 |
| // NOTE : In this example the low bit is left most ( 1000 ) is stored as |
| // 1, not 8... |
| // |
| // U and V set things on a 16 bit scale. |
| // |
| *above_y |= above_prediction_mask[block_size] << shift_y; |
| *left_y |= left_prediction_mask[block_size] << shift_y; |
| |
| if (build_uv) { |
| *above_uv |= above_prediction_mask_uv[block_size] << shift_uv; |
| *left_uv |= left_prediction_mask_uv[block_size] << shift_uv; |
| } |
| |
| // If the block has no coefficients and is not intra we skip applying |
| // the loop filter on block edges. |
| if (mi->skip && is_inter_block(mi)) |
| return; |
| |
| // Add a mask for the transform size. The transform size mask is set to |
| // be correct for a 64x64 prediction block size. Mask to match the size of |
| // the block we are working on and then shift it into place. |
| *above_y |= (size_mask[block_size] & |
| above_64x64_txform_mask[tx_size_y]) << shift_y; |
| *left_y |= (size_mask[block_size] & |
| left_64x64_txform_mask[tx_size_y]) << shift_y; |
| |
| if (build_uv) { |
| *above_uv |= (size_mask_uv[block_size] & |
| above_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
| |
| *left_uv |= (size_mask_uv[block_size] & |
| left_64x64_txform_mask_uv[tx_size_uv]) << shift_uv; |
| } |
| |
| // Try to determine what to do with the internal 4x4 block boundaries. These |
| // differ from the 4x4 boundaries on the outside edge of an 8x8 in that the |
| // internal ones can be skipped and don't depend on the prediction block size. |
| if (tx_size_y == TX_4X4) |
| *int_4x4_y |= size_mask[block_size] << shift_y; |
| |
| if (build_uv && tx_size_uv == TX_4X4) |
| *int_4x4_uv |= (size_mask_uv[block_size] & 0xffff) << shift_uv; |
| } |
| |
| void vp9_loop_filter_data_reset( |
| LFWorkerData *lf_data, YV12_BUFFER_CONFIG *frame_buffer, |
| struct VP9Common *cm, const struct macroblockd_plane planes[MAX_MB_PLANE]) { |
| lf_data->frame_buffer = frame_buffer; |
| lf_data->cm = cm; |
| lf_data->start = 0; |
| lf_data->stop = 0; |
| lf_data->y_only = 0; |
| memcpy(lf_data->planes, planes, sizeof(lf_data->planes)); |
| } |
| |
| void vp9_reset_lfm(VP9_COMMON *const cm) { |
| if (cm->lf.filter_level) { |
| memset(cm->lf.lfm, 0, |
| ((cm->mi_rows + (MI_BLOCK_SIZE - 1)) >> 3) * cm->lf.lfm_stride * |
| sizeof(*cm->lf.lfm)); |
| } |
| } |
| |
| int vp9_loop_filter_worker(LFWorkerData *const lf_data, void *unused) { |
| (void)unused; |
| loop_filter_rows(lf_data->frame_buffer, lf_data->cm, lf_data->planes, |
| lf_data->start, lf_data->stop, lf_data->y_only); |
| return 1; |
| } |