| |
| /* |
| * Copyright (c) 2012 The WebM project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "vp9/common/vp9_common.h" |
| #include "vp9/common/vp9_pred_common.h" |
| #include "vp9/common/vp9_seg_common.h" |
| |
| // Returns a context number for the given MB prediction signal |
| int vp9_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const int left_type = left_mi && is_inter_block(left_mi) ? |
| left_mi->interp_filter : SWITCHABLE_FILTERS; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const int above_type = above_mi && is_inter_block(above_mi) ? |
| above_mi->interp_filter : SWITCHABLE_FILTERS; |
| |
| if (left_type == above_type) |
| return left_type; |
| else if (left_type == SWITCHABLE_FILTERS) |
| return above_type; |
| else if (above_type == SWITCHABLE_FILTERS) |
| return left_type; |
| else |
| return SWITCHABLE_FILTERS; |
| } |
| |
| int vp9_get_reference_mode_context(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int ctx; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const int has_above = !!above_mi; |
| const int has_left = !!left_mi; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| if (!has_second_ref(above_mi) && !has_second_ref(left_mi)) |
| // neither edge uses comp pred (0/1) |
| ctx = (above_mi->ref_frame[0] == cm->comp_fixed_ref) ^ |
| (left_mi->ref_frame[0] == cm->comp_fixed_ref); |
| else if (!has_second_ref(above_mi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (above_mi->ref_frame[0] == cm->comp_fixed_ref || |
| !is_inter_block(above_mi)); |
| else if (!has_second_ref(left_mi)) |
| // one of two edges uses comp pred (2/3) |
| ctx = 2 + (left_mi->ref_frame[0] == cm->comp_fixed_ref || |
| !is_inter_block(left_mi)); |
| else // both edges use comp pred (4) |
| ctx = 4; |
| } else if (has_above || has_left) { // one edge available |
| const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; |
| |
| if (!has_second_ref(edge_mi)) |
| // edge does not use comp pred (0/1) |
| ctx = edge_mi->ref_frame[0] == cm->comp_fixed_ref; |
| else |
| // edge uses comp pred (3) |
| ctx = 3; |
| } else { // no edges available (1) |
| ctx = 1; |
| } |
| assert(ctx >= 0 && ctx < COMP_INTER_CONTEXTS); |
| return ctx; |
| } |
| |
| // Returns a context number for the given MB prediction signal |
| int vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, |
| const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const int above_in_image = !!above_mi; |
| const int left_in_image = !!left_mi; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; |
| const int var_ref_idx = !fix_ref_idx; |
| |
| if (above_in_image && left_in_image) { // both edges available |
| const int above_intra = !is_inter_block(above_mi); |
| const int left_intra = !is_inter_block(left_mi); |
| |
| if (above_intra && left_intra) { // intra/intra (2) |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter |
| const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; |
| |
| if (!has_second_ref(edge_mi)) // single pred (1/3) |
| pred_context = 1 + 2 * (edge_mi->ref_frame[0] != cm->comp_var_ref[1]); |
| else // comp pred (1/3) |
| pred_context = 1 + 2 * (edge_mi->ref_frame[var_ref_idx] |
| != cm->comp_var_ref[1]); |
| } else { // inter/inter |
| const int l_sg = !has_second_ref(left_mi); |
| const int a_sg = !has_second_ref(above_mi); |
| const MV_REFERENCE_FRAME vrfa = a_sg ? above_mi->ref_frame[0] |
| : above_mi->ref_frame[var_ref_idx]; |
| const MV_REFERENCE_FRAME vrfl = l_sg ? left_mi->ref_frame[0] |
| : left_mi->ref_frame[var_ref_idx]; |
| |
| if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { |
| pred_context = 0; |
| } else if (l_sg && a_sg) { // single/single |
| if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || |
| (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) |
| pred_context = 4; |
| else if (vrfa == vrfl) |
| pred_context = 3; |
| else |
| pred_context = 1; |
| } else if (l_sg || a_sg) { // single/comp |
| const MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; |
| const MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; |
| if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) |
| pred_context = 1; |
| else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) |
| pred_context = 2; |
| else |
| pred_context = 4; |
| } else if (vrfa == vrfl) { // comp/comp |
| pred_context = 4; |
| } else { |
| pred_context = 2; |
| } |
| } |
| } else if (above_in_image || left_in_image) { // one edge available |
| const MODE_INFO *edge_mi = above_in_image ? above_mi : left_mi; |
| |
| if (!is_inter_block(edge_mi)) { |
| pred_context = 2; |
| } else { |
| if (has_second_ref(edge_mi)) |
| pred_context = 4 * (edge_mi->ref_frame[var_ref_idx] |
| != cm->comp_var_ref[1]); |
| else |
| pred_context = 3 * (edge_mi->ref_frame[0] != cm->comp_var_ref[1]); |
| } |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| |
| return pred_context; |
| } |
| |
| int vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const int has_above = !!above_mi; |
| const int has_left = !!left_mi; |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mi); |
| const int left_intra = !is_inter_block(left_mi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; |
| if (!has_second_ref(edge_mi)) |
| pred_context = 4 * (edge_mi->ref_frame[0] == LAST_FRAME); |
| else |
| pred_context = 1 + (edge_mi->ref_frame[0] == LAST_FRAME || |
| edge_mi->ref_frame[1] == LAST_FRAME); |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mi); |
| const int left_has_second = has_second_ref(left_mi); |
| const MV_REFERENCE_FRAME above0 = above_mi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { |
| pred_context = 1 + (above0 == LAST_FRAME || above1 == LAST_FRAME || |
| left0 == LAST_FRAME || left1 == LAST_FRAME); |
| } else if (above_has_second || left_has_second) { |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == LAST_FRAME) |
| pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| else |
| pred_context = (crf1 == LAST_FRAME || crf2 == LAST_FRAME); |
| } else { |
| pred_context = 2 * (above0 == LAST_FRAME) + 2 * (left0 == LAST_FRAME); |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; |
| if (!is_inter_block(edge_mi)) { // intra |
| pred_context = 2; |
| } else { // inter |
| if (!has_second_ref(edge_mi)) |
| pred_context = 4 * (edge_mi->ref_frame[0] == LAST_FRAME); |
| else |
| pred_context = 1 + (edge_mi->ref_frame[0] == LAST_FRAME || |
| edge_mi->ref_frame[1] == LAST_FRAME); |
| } |
| } else { // no edges available |
| pred_context = 2; |
| } |
| |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |
| |
| int vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { |
| int pred_context; |
| const MODE_INFO *const above_mi = xd->above_mi; |
| const MODE_INFO *const left_mi = xd->left_mi; |
| const int has_above = !!above_mi; |
| const int has_left = !!left_mi; |
| |
| // Note: |
| // The mode info data structure has a one element border above and to the |
| // left of the entries corresponding to real macroblocks. |
| // The prediction flags in these dummy entries are initialized to 0. |
| if (has_above && has_left) { // both edges available |
| const int above_intra = !is_inter_block(above_mi); |
| const int left_intra = !is_inter_block(left_mi); |
| |
| if (above_intra && left_intra) { // intra/intra |
| pred_context = 2; |
| } else if (above_intra || left_intra) { // intra/inter or inter/intra |
| const MODE_INFO *edge_mi = above_intra ? left_mi : above_mi; |
| if (!has_second_ref(edge_mi)) { |
| if (edge_mi->ref_frame[0] == LAST_FRAME) |
| pred_context = 3; |
| else |
| pred_context = 4 * (edge_mi->ref_frame[0] == GOLDEN_FRAME); |
| } else { |
| pred_context = 1 + 2 * (edge_mi->ref_frame[0] == GOLDEN_FRAME || |
| edge_mi->ref_frame[1] == GOLDEN_FRAME); |
| } |
| } else { // inter/inter |
| const int above_has_second = has_second_ref(above_mi); |
| const int left_has_second = has_second_ref(left_mi); |
| const MV_REFERENCE_FRAME above0 = above_mi->ref_frame[0]; |
| const MV_REFERENCE_FRAME above1 = above_mi->ref_frame[1]; |
| const MV_REFERENCE_FRAME left0 = left_mi->ref_frame[0]; |
| const MV_REFERENCE_FRAME left1 = left_mi->ref_frame[1]; |
| |
| if (above_has_second && left_has_second) { |
| if (above0 == left0 && above1 == left1) |
| pred_context = 3 * (above0 == GOLDEN_FRAME || |
| above1 == GOLDEN_FRAME || |
| left0 == GOLDEN_FRAME || |
| left1 == GOLDEN_FRAME); |
| else |
| pred_context = 2; |
| } else if (above_has_second || left_has_second) { |
| const MV_REFERENCE_FRAME rfs = !above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf1 = above_has_second ? above0 : left0; |
| const MV_REFERENCE_FRAME crf2 = above_has_second ? above1 : left1; |
| |
| if (rfs == GOLDEN_FRAME) |
| pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| else if (rfs == ALTREF_FRAME) |
| pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; |
| else |
| pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); |
| } else { |
| if (above0 == LAST_FRAME && left0 == LAST_FRAME) { |
| pred_context = 3; |
| } else if (above0 == LAST_FRAME || left0 == LAST_FRAME) { |
| const MV_REFERENCE_FRAME edge0 = (above0 == LAST_FRAME) ? left0 |
| : above0; |
| pred_context = 4 * (edge0 == GOLDEN_FRAME); |
| } else { |
| pred_context = 2 * (above0 == GOLDEN_FRAME) + |
| 2 * (left0 == GOLDEN_FRAME); |
| } |
| } |
| } |
| } else if (has_above || has_left) { // one edge available |
| const MODE_INFO *edge_mi = has_above ? above_mi : left_mi; |
| |
| if (!is_inter_block(edge_mi) || |
| (edge_mi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mi))) |
| pred_context = 2; |
| else if (!has_second_ref(edge_mi)) |
| pred_context = 4 * (edge_mi->ref_frame[0] == GOLDEN_FRAME); |
| else |
| pred_context = 3 * (edge_mi->ref_frame[0] == GOLDEN_FRAME || |
| edge_mi->ref_frame[1] == GOLDEN_FRAME); |
| } else { // no edges available (2) |
| pred_context = 2; |
| } |
| assert(pred_context >= 0 && pred_context < REF_CONTEXTS); |
| return pred_context; |
| } |