| /* apps/speed.c */ |
| /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) |
| * All rights reserved. |
| * |
| * This package is an SSL implementation written |
| * by Eric Young (eay@cryptsoft.com). |
| * The implementation was written so as to conform with Netscapes SSL. |
| * |
| * This library is free for commercial and non-commercial use as long as |
| * the following conditions are aheared to. The following conditions |
| * apply to all code found in this distribution, be it the RC4, RSA, |
| * lhash, DES, etc., code; not just the SSL code. The SSL documentation |
| * included with this distribution is covered by the same copyright terms |
| * except that the holder is Tim Hudson (tjh@cryptsoft.com). |
| * |
| * Copyright remains Eric Young's, and as such any Copyright notices in |
| * the code are not to be removed. |
| * If this package is used in a product, Eric Young should be given attribution |
| * as the author of the parts of the library used. |
| * This can be in the form of a textual message at program startup or |
| * in documentation (online or textual) provided with the package. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. All advertising materials mentioning features or use of this software |
| * must display the following acknowledgement: |
| * "This product includes cryptographic software written by |
| * Eric Young (eay@cryptsoft.com)" |
| * The word 'cryptographic' can be left out if the rouines from the library |
| * being used are not cryptographic related :-). |
| * 4. If you include any Windows specific code (or a derivative thereof) from |
| * the apps directory (application code) you must include an acknowledgement: |
| * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| * |
| * The licence and distribution terms for any publically available version or |
| * derivative of this code cannot be changed. i.e. this code cannot simply be |
| * copied and put under another distribution licence |
| * [including the GNU Public Licence.] |
| */ |
| /* ==================================================================== |
| * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED. |
| * |
| * Portions of the attached software ("Contribution") are developed by |
| * SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project. |
| * |
| * The Contribution is licensed pursuant to the OpenSSL open source |
| * license provided above. |
| * |
| * The ECDH and ECDSA speed test software is originally written by |
| * Sumit Gupta of Sun Microsystems Laboratories. |
| * |
| */ |
| |
| /* most of this code has been pilfered from my libdes speed.c program */ |
| |
| #ifndef OPENSSL_NO_SPEED |
| |
| # undef SECONDS |
| # define SECONDS 3 |
| # define RSA_SECONDS 10 |
| # define DSA_SECONDS 10 |
| # define ECDSA_SECONDS 10 |
| # define ECDH_SECONDS 10 |
| |
| /* 11-Sep-92 Andrew Daviel Support for Silicon Graphics IRIX added */ |
| /* 06-Apr-92 Luke Brennan Support for VMS and add extra signal calls */ |
| |
| # undef PROG |
| # define PROG speed_main |
| |
| # include <stdio.h> |
| # include <stdlib.h> |
| |
| # include <string.h> |
| # include <math.h> |
| # include "apps.h" |
| # ifdef OPENSSL_NO_STDIO |
| # define APPS_WIN16 |
| # endif |
| # include <openssl/crypto.h> |
| # include <openssl/rand.h> |
| # include <openssl/err.h> |
| # include <openssl/evp.h> |
| # include <openssl/objects.h> |
| # if !defined(OPENSSL_SYS_MSDOS) |
| # include OPENSSL_UNISTD |
| # endif |
| |
| # ifndef OPENSSL_SYS_NETWARE |
| # include <signal.h> |
| # endif |
| |
| # if defined(_WIN32) || defined(__CYGWIN__) |
| # include <windows.h> |
| # if defined(__CYGWIN__) && !defined(_WIN32) |
| /* |
| * <windows.h> should define _WIN32, which normally is mutually exclusive |
| * with __CYGWIN__, but if it didn't... |
| */ |
| # define _WIN32 |
| /* this is done because Cygwin alarm() fails sometimes. */ |
| # endif |
| # endif |
| |
| # include <openssl/bn.h> |
| # ifndef OPENSSL_NO_DES |
| # include <openssl/des.h> |
| # endif |
| # ifndef OPENSSL_NO_AES |
| # include <openssl/aes.h> |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| # include <openssl/camellia.h> |
| # endif |
| # ifndef OPENSSL_NO_MD2 |
| # include <openssl/md2.h> |
| # endif |
| # ifndef OPENSSL_NO_MDC2 |
| # include <openssl/mdc2.h> |
| # endif |
| # ifndef OPENSSL_NO_MD4 |
| # include <openssl/md4.h> |
| # endif |
| # ifndef OPENSSL_NO_MD5 |
| # include <openssl/md5.h> |
| # endif |
| # ifndef OPENSSL_NO_HMAC |
| # include <openssl/hmac.h> |
| # endif |
| # include <openssl/evp.h> |
| # ifndef OPENSSL_NO_SHA |
| # include <openssl/sha.h> |
| # endif |
| # ifndef OPENSSL_NO_RIPEMD |
| # include <openssl/ripemd.h> |
| # endif |
| # ifndef OPENSSL_NO_WHIRLPOOL |
| # include <openssl/whrlpool.h> |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| # include <openssl/rc4.h> |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| # include <openssl/rc5.h> |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| # include <openssl/rc2.h> |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| # include <openssl/idea.h> |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| # include <openssl/seed.h> |
| # endif |
| # ifndef OPENSSL_NO_BF |
| # include <openssl/blowfish.h> |
| # endif |
| # ifndef OPENSSL_NO_CAST |
| # include <openssl/cast.h> |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| # include <openssl/rsa.h> |
| # include "./testrsa.h" |
| # endif |
| # include <openssl/x509.h> |
| # ifndef OPENSSL_NO_DSA |
| # include <openssl/dsa.h> |
| # include "./testdsa.h" |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| # include <openssl/ecdsa.h> |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| # include <openssl/ecdh.h> |
| # endif |
| # include <openssl/modes.h> |
| |
| # ifdef OPENSSL_FIPS |
| # ifdef OPENSSL_DOING_MAKEDEPEND |
| # undef AES_set_encrypt_key |
| # undef AES_set_decrypt_key |
| # undef DES_set_key_unchecked |
| # endif |
| # define BF_set_key private_BF_set_key |
| # define CAST_set_key private_CAST_set_key |
| # define idea_set_encrypt_key private_idea_set_encrypt_key |
| # define SEED_set_key private_SEED_set_key |
| # define RC2_set_key private_RC2_set_key |
| # define RC4_set_key private_RC4_set_key |
| # define DES_set_key_unchecked private_DES_set_key_unchecked |
| # define AES_set_encrypt_key private_AES_set_encrypt_key |
| # define AES_set_decrypt_key private_AES_set_decrypt_key |
| # define Camellia_set_key private_Camellia_set_key |
| # endif |
| |
| # ifndef HAVE_FORK |
| # if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_MACINTOSH_CLASSIC) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE) |
| # define HAVE_FORK 0 |
| # else |
| # define HAVE_FORK 1 |
| # endif |
| # endif |
| |
| # if HAVE_FORK |
| # undef NO_FORK |
| # else |
| # define NO_FORK |
| # endif |
| |
| # undef BUFSIZE |
| # define BUFSIZE ((long)1024*8+1) |
| static volatile int run = 0; |
| |
| static int mr = 0; |
| static int usertime = 1; |
| |
| static double Time_F(int s); |
| static void print_message(const char *s, long num, int length); |
| static void pkey_print_message(const char *str, const char *str2, |
| long num, int bits, int sec); |
| static void print_result(int alg, int run_no, int count, double time_used); |
| # ifndef NO_FORK |
| static int do_multi(int multi); |
| # endif |
| |
| # define ALGOR_NUM 30 |
| # define SIZE_NUM 5 |
| # define RSA_NUM 4 |
| # define DSA_NUM 3 |
| |
| # define EC_NUM 16 |
| # define MAX_ECDH_SIZE 256 |
| |
| static const char *names[ALGOR_NUM] = { |
| "md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4", |
| "des cbc", "des ede3", "idea cbc", "seed cbc", |
| "rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc", |
| "aes-128 cbc", "aes-192 cbc", "aes-256 cbc", |
| "camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc", |
| "evp", "sha256", "sha512", "whirlpool", |
| "aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash" |
| }; |
| |
| static double results[ALGOR_NUM][SIZE_NUM]; |
| static int lengths[SIZE_NUM] = { 16, 64, 256, 1024, 8 * 1024 }; |
| |
| # ifndef OPENSSL_NO_RSA |
| static double rsa_results[RSA_NUM][2]; |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| static double dsa_results[DSA_NUM][2]; |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| static double ecdsa_results[EC_NUM][2]; |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| static double ecdh_results[EC_NUM][1]; |
| # endif |
| |
| # if defined(OPENSSL_NO_DSA) && !(defined(OPENSSL_NO_ECDSA) && defined(OPENSSL_NO_ECDH)) |
| static const char rnd_seed[] = |
| "string to make the random number generator think it has entropy"; |
| static int rnd_fake = 0; |
| # endif |
| |
| # ifdef SIGALRM |
| # if defined(__STDC__) || defined(sgi) || defined(_AIX) |
| # define SIGRETTYPE void |
| # else |
| # define SIGRETTYPE int |
| # endif |
| |
| static SIGRETTYPE sig_done(int sig); |
| static SIGRETTYPE sig_done(int sig) |
| { |
| signal(SIGALRM, sig_done); |
| run = 0; |
| # ifdef LINT |
| sig = sig; |
| # endif |
| } |
| # endif |
| |
| # define START 0 |
| # define STOP 1 |
| |
| # if defined(_WIN32) |
| |
| # if !defined(SIGALRM) |
| # define SIGALRM |
| # endif |
| static unsigned int lapse, schlock; |
| static void alarm_win32(unsigned int secs) |
| { |
| lapse = secs * 1000; |
| } |
| |
| # define alarm alarm_win32 |
| |
| static DWORD WINAPI sleepy(VOID * arg) |
| { |
| schlock = 1; |
| Sleep(lapse); |
| run = 0; |
| return 0; |
| } |
| |
| static double Time_F(int s) |
| { |
| if (s == START) { |
| HANDLE thr; |
| schlock = 0; |
| thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL); |
| if (thr == NULL) { |
| DWORD ret = GetLastError(); |
| BIO_printf(bio_err, "unable to CreateThread (%d)", ret); |
| ExitProcess(ret); |
| } |
| CloseHandle(thr); /* detach the thread */ |
| while (!schlock) |
| Sleep(0); /* scheduler spinlock */ |
| } |
| |
| return app_tminterval(s, usertime); |
| } |
| # else |
| |
| static double Time_F(int s) |
| { |
| return app_tminterval(s, usertime); |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDH |
| static const int KDF1_SHA1_len = 20; |
| static void *KDF1_SHA1(const void *in, size_t inlen, void *out, |
| size_t *outlen) |
| { |
| # ifndef OPENSSL_NO_SHA |
| if (*outlen < SHA_DIGEST_LENGTH) |
| return NULL; |
| else |
| *outlen = SHA_DIGEST_LENGTH; |
| return SHA1(in, inlen, out); |
| # else |
| return NULL; |
| # endif /* OPENSSL_NO_SHA */ |
| } |
| # endif /* OPENSSL_NO_ECDH */ |
| |
| int MAIN(int, char **); |
| |
| int MAIN(int argc, char **argv) |
| { |
| unsigned char *buf = NULL, *buf2 = NULL; |
| int mret = 1; |
| long count = 0, save_count = 0; |
| int i, j, k; |
| # if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA) |
| long rsa_count; |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| unsigned rsa_num; |
| # endif |
| unsigned char md[EVP_MAX_MD_SIZE]; |
| # ifndef OPENSSL_NO_MD2 |
| unsigned char md2[MD2_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_MDC2 |
| unsigned char mdc2[MDC2_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_MD4 |
| unsigned char md4[MD4_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_MD5 |
| unsigned char md5[MD5_DIGEST_LENGTH]; |
| unsigned char hmac[MD5_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_SHA |
| unsigned char sha[SHA_DIGEST_LENGTH]; |
| # ifndef OPENSSL_NO_SHA256 |
| unsigned char sha256[SHA256_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_SHA512 |
| unsigned char sha512[SHA512_DIGEST_LENGTH]; |
| # endif |
| # endif |
| # ifndef OPENSSL_NO_WHIRLPOOL |
| unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_RIPEMD |
| unsigned char rmd160[RIPEMD160_DIGEST_LENGTH]; |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| RC4_KEY rc4_ks; |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| RC5_32_KEY rc5_ks; |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| RC2_KEY rc2_ks; |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| IDEA_KEY_SCHEDULE idea_ks; |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| SEED_KEY_SCHEDULE seed_ks; |
| # endif |
| # ifndef OPENSSL_NO_BF |
| BF_KEY bf_ks; |
| # endif |
| # ifndef OPENSSL_NO_CAST |
| CAST_KEY cast_ks; |
| # endif |
| static const unsigned char key16[16] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 |
| }; |
| # ifndef OPENSSL_NO_AES |
| static const unsigned char key24[24] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| }; |
| static const unsigned char key32[32] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| }; |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| static const unsigned char ckey24[24] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 |
| }; |
| static const unsigned char ckey32[32] = { |
| 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, |
| 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, |
| 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, |
| 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56 |
| }; |
| # endif |
| # ifndef OPENSSL_NO_AES |
| # define MAX_BLOCK_SIZE 128 |
| # else |
| # define MAX_BLOCK_SIZE 64 |
| # endif |
| unsigned char DES_iv[8]; |
| unsigned char iv[2 * MAX_BLOCK_SIZE / 8]; |
| # ifndef OPENSSL_NO_DES |
| static DES_cblock key = |
| { 0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0 }; |
| static DES_cblock key2 = |
| { 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12 }; |
| static DES_cblock key3 = |
| { 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34 }; |
| DES_key_schedule sch; |
| DES_key_schedule sch2; |
| DES_key_schedule sch3; |
| # endif |
| # ifndef OPENSSL_NO_AES |
| AES_KEY aes_ks1, aes_ks2, aes_ks3; |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3; |
| # endif |
| # define D_MD2 0 |
| # define D_MDC2 1 |
| # define D_MD4 2 |
| # define D_MD5 3 |
| # define D_HMAC 4 |
| # define D_SHA1 5 |
| # define D_RMD160 6 |
| # define D_RC4 7 |
| # define D_CBC_DES 8 |
| # define D_EDE3_DES 9 |
| # define D_CBC_IDEA 10 |
| # define D_CBC_SEED 11 |
| # define D_CBC_RC2 12 |
| # define D_CBC_RC5 13 |
| # define D_CBC_BF 14 |
| # define D_CBC_CAST 15 |
| # define D_CBC_128_AES 16 |
| # define D_CBC_192_AES 17 |
| # define D_CBC_256_AES 18 |
| # define D_CBC_128_CML 19 |
| # define D_CBC_192_CML 20 |
| # define D_CBC_256_CML 21 |
| # define D_EVP 22 |
| # define D_SHA256 23 |
| # define D_SHA512 24 |
| # define D_WHIRLPOOL 25 |
| # define D_IGE_128_AES 26 |
| # define D_IGE_192_AES 27 |
| # define D_IGE_256_AES 28 |
| # define D_GHASH 29 |
| double d = 0.0; |
| long c[ALGOR_NUM][SIZE_NUM]; |
| # define R_DSA_512 0 |
| # define R_DSA_1024 1 |
| # define R_DSA_2048 2 |
| # define R_RSA_512 0 |
| # define R_RSA_1024 1 |
| # define R_RSA_2048 2 |
| # define R_RSA_4096 3 |
| |
| # define R_EC_P160 0 |
| # define R_EC_P192 1 |
| # define R_EC_P224 2 |
| # define R_EC_P256 3 |
| # define R_EC_P384 4 |
| # define R_EC_P521 5 |
| # define R_EC_K163 6 |
| # define R_EC_K233 7 |
| # define R_EC_K283 8 |
| # define R_EC_K409 9 |
| # define R_EC_K571 10 |
| # define R_EC_B163 11 |
| # define R_EC_B233 12 |
| # define R_EC_B283 13 |
| # define R_EC_B409 14 |
| # define R_EC_B571 15 |
| |
| # ifndef OPENSSL_NO_RSA |
| RSA *rsa_key[RSA_NUM]; |
| long rsa_c[RSA_NUM][2]; |
| static unsigned int rsa_bits[RSA_NUM] = { |
| 512, 1024, 2048, 4096 |
| }; |
| static unsigned char *rsa_data[RSA_NUM] = { |
| test512, test1024, test2048, test4096 |
| }; |
| static int rsa_data_length[RSA_NUM] = { |
| sizeof(test512), sizeof(test1024), |
| sizeof(test2048), sizeof(test4096) |
| }; |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| DSA *dsa_key[DSA_NUM]; |
| long dsa_c[DSA_NUM][2]; |
| static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 }; |
| # endif |
| # ifndef OPENSSL_NO_EC |
| /* |
| * We only test over the following curves as they are representative, To |
| * add tests over more curves, simply add the curve NID and curve name to |
| * the following arrays and increase the EC_NUM value accordingly. |
| */ |
| static unsigned int test_curves[EC_NUM] = { |
| /* Prime Curves */ |
| NID_secp160r1, |
| NID_X9_62_prime192v1, |
| NID_secp224r1, |
| NID_X9_62_prime256v1, |
| NID_secp384r1, |
| NID_secp521r1, |
| /* Binary Curves */ |
| NID_sect163k1, |
| NID_sect233k1, |
| NID_sect283k1, |
| NID_sect409k1, |
| NID_sect571k1, |
| NID_sect163r2, |
| NID_sect233r1, |
| NID_sect283r1, |
| NID_sect409r1, |
| NID_sect571r1 |
| }; |
| static const char *test_curves_names[EC_NUM] = { |
| /* Prime Curves */ |
| "secp160r1", |
| "nistp192", |
| "nistp224", |
| "nistp256", |
| "nistp384", |
| "nistp521", |
| /* Binary Curves */ |
| "nistk163", |
| "nistk233", |
| "nistk283", |
| "nistk409", |
| "nistk571", |
| "nistb163", |
| "nistb233", |
| "nistb283", |
| "nistb409", |
| "nistb571" |
| }; |
| static int test_curves_bits[EC_NUM] = { |
| 160, 192, 224, 256, 384, 521, |
| 163, 233, 283, 409, 571, |
| 163, 233, 283, 409, 571 |
| }; |
| |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDSA |
| unsigned char ecdsasig[256]; |
| unsigned int ecdsasiglen; |
| EC_KEY *ecdsa[EC_NUM]; |
| long ecdsa_c[EC_NUM][2]; |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDH |
| EC_KEY *ecdh_a[EC_NUM], *ecdh_b[EC_NUM]; |
| unsigned char secret_a[MAX_ECDH_SIZE], secret_b[MAX_ECDH_SIZE]; |
| int secret_size_a, secret_size_b; |
| int ecdh_checks = 0; |
| int secret_idx = 0; |
| long ecdh_c[EC_NUM][2]; |
| # endif |
| |
| int rsa_doit[RSA_NUM]; |
| int dsa_doit[DSA_NUM]; |
| # ifndef OPENSSL_NO_ECDSA |
| int ecdsa_doit[EC_NUM]; |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| int ecdh_doit[EC_NUM]; |
| # endif |
| int doit[ALGOR_NUM]; |
| int pr_header = 0; |
| const EVP_CIPHER *evp_cipher = NULL; |
| const EVP_MD *evp_md = NULL; |
| int decrypt = 0; |
| # ifndef NO_FORK |
| int multi = 0; |
| # endif |
| |
| # ifndef TIMES |
| usertime = -1; |
| # endif |
| |
| apps_startup(); |
| memset(results, 0, sizeof(results)); |
| # ifndef OPENSSL_NO_DSA |
| memset(dsa_key, 0, sizeof(dsa_key)); |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa[i] = NULL; |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| for (i = 0; i < EC_NUM; i++) { |
| ecdh_a[i] = NULL; |
| ecdh_b[i] = NULL; |
| } |
| # endif |
| |
| if (bio_err == NULL) |
| if ((bio_err = BIO_new(BIO_s_file())) != NULL) |
| BIO_set_fp(bio_err, stderr, BIO_NOCLOSE | BIO_FP_TEXT); |
| |
| if (!load_config(bio_err, NULL)) |
| goto end; |
| |
| # ifndef OPENSSL_NO_RSA |
| memset(rsa_key, 0, sizeof(rsa_key)); |
| for (i = 0; i < RSA_NUM; i++) |
| rsa_key[i] = NULL; |
| # endif |
| |
| if ((buf = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) { |
| BIO_printf(bio_err, "out of memory\n"); |
| goto end; |
| } |
| if ((buf2 = (unsigned char *)OPENSSL_malloc((int)BUFSIZE)) == NULL) { |
| BIO_printf(bio_err, "out of memory\n"); |
| goto end; |
| } |
| |
| memset(c, 0, sizeof(c)); |
| memset(DES_iv, 0, sizeof(DES_iv)); |
| memset(iv, 0, sizeof(iv)); |
| |
| for (i = 0; i < ALGOR_NUM; i++) |
| doit[i] = 0; |
| for (i = 0; i < RSA_NUM; i++) |
| rsa_doit[i] = 0; |
| for (i = 0; i < DSA_NUM; i++) |
| dsa_doit[i] = 0; |
| # ifndef OPENSSL_NO_ECDSA |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 0; |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 0; |
| # endif |
| |
| j = 0; |
| argc--; |
| argv++; |
| while (argc) { |
| if ((argc > 0) && (strcmp(*argv, "-elapsed") == 0)) { |
| usertime = 0; |
| j--; /* Otherwise, -elapsed gets confused with an |
| * algorithm. */ |
| } else if ((argc > 0) && (strcmp(*argv, "-evp") == 0)) { |
| argc--; |
| argv++; |
| if (argc == 0) { |
| BIO_printf(bio_err, "no EVP given\n"); |
| goto end; |
| } |
| evp_cipher = EVP_get_cipherbyname(*argv); |
| if (!evp_cipher) { |
| evp_md = EVP_get_digestbyname(*argv); |
| } |
| if (!evp_cipher && !evp_md) { |
| BIO_printf(bio_err, "%s is an unknown cipher or digest\n", |
| *argv); |
| goto end; |
| } |
| doit[D_EVP] = 1; |
| } else if (argc > 0 && !strcmp(*argv, "-decrypt")) { |
| decrypt = 1; |
| j--; /* Otherwise, -elapsed gets confused with an |
| * algorithm. */ |
| } |
| # ifndef OPENSSL_NO_ENGINE |
| else if ((argc > 0) && (strcmp(*argv, "-engine") == 0)) { |
| argc--; |
| argv++; |
| if (argc == 0) { |
| BIO_printf(bio_err, "no engine given\n"); |
| goto end; |
| } |
| setup_engine(bio_err, *argv, 0); |
| /* |
| * j will be increased again further down. We just don't want |
| * speed to confuse an engine with an algorithm, especially when |
| * none is given (which means all of them should be run) |
| */ |
| j--; |
| } |
| # endif |
| # ifndef NO_FORK |
| else if ((argc > 0) && (strcmp(*argv, "-multi") == 0)) { |
| argc--; |
| argv++; |
| if (argc == 0) { |
| BIO_printf(bio_err, "no multi count given\n"); |
| goto end; |
| } |
| multi = atoi(argv[0]); |
| if (multi <= 0) { |
| BIO_printf(bio_err, "bad multi count\n"); |
| goto end; |
| } |
| j--; /* Otherwise, -mr gets confused with an |
| * algorithm. */ |
| } |
| # endif |
| else if (argc > 0 && !strcmp(*argv, "-mr")) { |
| mr = 1; |
| j--; /* Otherwise, -mr gets confused with an |
| * algorithm. */ |
| } else |
| # ifndef OPENSSL_NO_MD2 |
| if (strcmp(*argv, "md2") == 0) |
| doit[D_MD2] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_MDC2 |
| if (strcmp(*argv, "mdc2") == 0) |
| doit[D_MDC2] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_MD4 |
| if (strcmp(*argv, "md4") == 0) |
| doit[D_MD4] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_MD5 |
| if (strcmp(*argv, "md5") == 0) |
| doit[D_MD5] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_MD5 |
| if (strcmp(*argv, "hmac") == 0) |
| doit[D_HMAC] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_SHA |
| if (strcmp(*argv, "sha1") == 0) |
| doit[D_SHA1] = 1; |
| else if (strcmp(*argv, "sha") == 0) |
| doit[D_SHA1] = 1, doit[D_SHA256] = 1, doit[D_SHA512] = 1; |
| else |
| # ifndef OPENSSL_NO_SHA256 |
| if (strcmp(*argv, "sha256") == 0) |
| doit[D_SHA256] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_SHA512 |
| if (strcmp(*argv, "sha512") == 0) |
| doit[D_SHA512] = 1; |
| else |
| # endif |
| # endif |
| # ifndef OPENSSL_NO_WHIRLPOOL |
| if (strcmp(*argv, "whirlpool") == 0) |
| doit[D_WHIRLPOOL] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_RIPEMD |
| if (strcmp(*argv, "ripemd") == 0) |
| doit[D_RMD160] = 1; |
| else if (strcmp(*argv, "rmd160") == 0) |
| doit[D_RMD160] = 1; |
| else if (strcmp(*argv, "ripemd160") == 0) |
| doit[D_RMD160] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| if (strcmp(*argv, "rc4") == 0) |
| doit[D_RC4] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_DES |
| if (strcmp(*argv, "des-cbc") == 0) |
| doit[D_CBC_DES] = 1; |
| else if (strcmp(*argv, "des-ede3") == 0) |
| doit[D_EDE3_DES] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_AES |
| if (strcmp(*argv, "aes-128-cbc") == 0) |
| doit[D_CBC_128_AES] = 1; |
| else if (strcmp(*argv, "aes-192-cbc") == 0) |
| doit[D_CBC_192_AES] = 1; |
| else if (strcmp(*argv, "aes-256-cbc") == 0) |
| doit[D_CBC_256_AES] = 1; |
| else if (strcmp(*argv, "aes-128-ige") == 0) |
| doit[D_IGE_128_AES] = 1; |
| else if (strcmp(*argv, "aes-192-ige") == 0) |
| doit[D_IGE_192_AES] = 1; |
| else if (strcmp(*argv, "aes-256-ige") == 0) |
| doit[D_IGE_256_AES] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| if (strcmp(*argv, "camellia-128-cbc") == 0) |
| doit[D_CBC_128_CML] = 1; |
| else if (strcmp(*argv, "camellia-192-cbc") == 0) |
| doit[D_CBC_192_CML] = 1; |
| else if (strcmp(*argv, "camellia-256-cbc") == 0) |
| doit[D_CBC_256_CML] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| # if 0 /* was: #ifdef RSAref */ |
| if (strcmp(*argv, "rsaref") == 0) { |
| RSA_set_default_openssl_method(RSA_PKCS1_RSAref()); |
| j--; |
| } else |
| # endif |
| # ifndef RSA_NULL |
| if (strcmp(*argv, "openssl") == 0) { |
| RSA_set_default_method(RSA_PKCS1_SSLeay()); |
| j--; |
| } else |
| # endif |
| # endif /* !OPENSSL_NO_RSA */ |
| if (strcmp(*argv, "dsa512") == 0) |
| dsa_doit[R_DSA_512] = 2; |
| else if (strcmp(*argv, "dsa1024") == 0) |
| dsa_doit[R_DSA_1024] = 2; |
| else if (strcmp(*argv, "dsa2048") == 0) |
| dsa_doit[R_DSA_2048] = 2; |
| else if (strcmp(*argv, "rsa512") == 0) |
| rsa_doit[R_RSA_512] = 2; |
| else if (strcmp(*argv, "rsa1024") == 0) |
| rsa_doit[R_RSA_1024] = 2; |
| else if (strcmp(*argv, "rsa2048") == 0) |
| rsa_doit[R_RSA_2048] = 2; |
| else if (strcmp(*argv, "rsa4096") == 0) |
| rsa_doit[R_RSA_4096] = 2; |
| else |
| # ifndef OPENSSL_NO_RC2 |
| if (strcmp(*argv, "rc2-cbc") == 0) |
| doit[D_CBC_RC2] = 1; |
| else if (strcmp(*argv, "rc2") == 0) |
| doit[D_CBC_RC2] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| if (strcmp(*argv, "rc5-cbc") == 0) |
| doit[D_CBC_RC5] = 1; |
| else if (strcmp(*argv, "rc5") == 0) |
| doit[D_CBC_RC5] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| if (strcmp(*argv, "idea-cbc") == 0) |
| doit[D_CBC_IDEA] = 1; |
| else if (strcmp(*argv, "idea") == 0) |
| doit[D_CBC_IDEA] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| if (strcmp(*argv, "seed-cbc") == 0) |
| doit[D_CBC_SEED] = 1; |
| else if (strcmp(*argv, "seed") == 0) |
| doit[D_CBC_SEED] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_BF |
| if (strcmp(*argv, "bf-cbc") == 0) |
| doit[D_CBC_BF] = 1; |
| else if (strcmp(*argv, "blowfish") == 0) |
| doit[D_CBC_BF] = 1; |
| else if (strcmp(*argv, "bf") == 0) |
| doit[D_CBC_BF] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_CAST |
| if (strcmp(*argv, "cast-cbc") == 0) |
| doit[D_CBC_CAST] = 1; |
| else if (strcmp(*argv, "cast") == 0) |
| doit[D_CBC_CAST] = 1; |
| else if (strcmp(*argv, "cast5") == 0) |
| doit[D_CBC_CAST] = 1; |
| else |
| # endif |
| # ifndef OPENSSL_NO_DES |
| if (strcmp(*argv, "des") == 0) { |
| doit[D_CBC_DES] = 1; |
| doit[D_EDE3_DES] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_AES |
| if (strcmp(*argv, "aes") == 0) { |
| doit[D_CBC_128_AES] = 1; |
| doit[D_CBC_192_AES] = 1; |
| doit[D_CBC_256_AES] = 1; |
| } else if (strcmp(*argv, "ghash") == 0) { |
| doit[D_GHASH] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| if (strcmp(*argv, "camellia") == 0) { |
| doit[D_CBC_128_CML] = 1; |
| doit[D_CBC_192_CML] = 1; |
| doit[D_CBC_256_CML] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| if (strcmp(*argv, "rsa") == 0) { |
| rsa_doit[R_RSA_512] = 1; |
| rsa_doit[R_RSA_1024] = 1; |
| rsa_doit[R_RSA_2048] = 1; |
| rsa_doit[R_RSA_4096] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| if (strcmp(*argv, "dsa") == 0) { |
| dsa_doit[R_DSA_512] = 1; |
| dsa_doit[R_DSA_1024] = 1; |
| dsa_doit[R_DSA_2048] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| if (strcmp(*argv, "ecdsap160") == 0) |
| ecdsa_doit[R_EC_P160] = 2; |
| else if (strcmp(*argv, "ecdsap192") == 0) |
| ecdsa_doit[R_EC_P192] = 2; |
| else if (strcmp(*argv, "ecdsap224") == 0) |
| ecdsa_doit[R_EC_P224] = 2; |
| else if (strcmp(*argv, "ecdsap256") == 0) |
| ecdsa_doit[R_EC_P256] = 2; |
| else if (strcmp(*argv, "ecdsap384") == 0) |
| ecdsa_doit[R_EC_P384] = 2; |
| else if (strcmp(*argv, "ecdsap521") == 0) |
| ecdsa_doit[R_EC_P521] = 2; |
| else if (strcmp(*argv, "ecdsak163") == 0) |
| ecdsa_doit[R_EC_K163] = 2; |
| else if (strcmp(*argv, "ecdsak233") == 0) |
| ecdsa_doit[R_EC_K233] = 2; |
| else if (strcmp(*argv, "ecdsak283") == 0) |
| ecdsa_doit[R_EC_K283] = 2; |
| else if (strcmp(*argv, "ecdsak409") == 0) |
| ecdsa_doit[R_EC_K409] = 2; |
| else if (strcmp(*argv, "ecdsak571") == 0) |
| ecdsa_doit[R_EC_K571] = 2; |
| else if (strcmp(*argv, "ecdsab163") == 0) |
| ecdsa_doit[R_EC_B163] = 2; |
| else if (strcmp(*argv, "ecdsab233") == 0) |
| ecdsa_doit[R_EC_B233] = 2; |
| else if (strcmp(*argv, "ecdsab283") == 0) |
| ecdsa_doit[R_EC_B283] = 2; |
| else if (strcmp(*argv, "ecdsab409") == 0) |
| ecdsa_doit[R_EC_B409] = 2; |
| else if (strcmp(*argv, "ecdsab571") == 0) |
| ecdsa_doit[R_EC_B571] = 2; |
| else if (strcmp(*argv, "ecdsa") == 0) { |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 1; |
| } else |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| if (strcmp(*argv, "ecdhp160") == 0) |
| ecdh_doit[R_EC_P160] = 2; |
| else if (strcmp(*argv, "ecdhp192") == 0) |
| ecdh_doit[R_EC_P192] = 2; |
| else if (strcmp(*argv, "ecdhp224") == 0) |
| ecdh_doit[R_EC_P224] = 2; |
| else if (strcmp(*argv, "ecdhp256") == 0) |
| ecdh_doit[R_EC_P256] = 2; |
| else if (strcmp(*argv, "ecdhp384") == 0) |
| ecdh_doit[R_EC_P384] = 2; |
| else if (strcmp(*argv, "ecdhp521") == 0) |
| ecdh_doit[R_EC_P521] = 2; |
| else if (strcmp(*argv, "ecdhk163") == 0) |
| ecdh_doit[R_EC_K163] = 2; |
| else if (strcmp(*argv, "ecdhk233") == 0) |
| ecdh_doit[R_EC_K233] = 2; |
| else if (strcmp(*argv, "ecdhk283") == 0) |
| ecdh_doit[R_EC_K283] = 2; |
| else if (strcmp(*argv, "ecdhk409") == 0) |
| ecdh_doit[R_EC_K409] = 2; |
| else if (strcmp(*argv, "ecdhk571") == 0) |
| ecdh_doit[R_EC_K571] = 2; |
| else if (strcmp(*argv, "ecdhb163") == 0) |
| ecdh_doit[R_EC_B163] = 2; |
| else if (strcmp(*argv, "ecdhb233") == 0) |
| ecdh_doit[R_EC_B233] = 2; |
| else if (strcmp(*argv, "ecdhb283") == 0) |
| ecdh_doit[R_EC_B283] = 2; |
| else if (strcmp(*argv, "ecdhb409") == 0) |
| ecdh_doit[R_EC_B409] = 2; |
| else if (strcmp(*argv, "ecdhb571") == 0) |
| ecdh_doit[R_EC_B571] = 2; |
| else if (strcmp(*argv, "ecdh") == 0) { |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 1; |
| } else |
| # endif |
| { |
| BIO_printf(bio_err, "Error: bad option or value\n"); |
| BIO_printf(bio_err, "\n"); |
| BIO_printf(bio_err, "Available values:\n"); |
| # ifndef OPENSSL_NO_MD2 |
| BIO_printf(bio_err, "md2 "); |
| # endif |
| # ifndef OPENSSL_NO_MDC2 |
| BIO_printf(bio_err, "mdc2 "); |
| # endif |
| # ifndef OPENSSL_NO_MD4 |
| BIO_printf(bio_err, "md4 "); |
| # endif |
| # ifndef OPENSSL_NO_MD5 |
| BIO_printf(bio_err, "md5 "); |
| # ifndef OPENSSL_NO_HMAC |
| BIO_printf(bio_err, "hmac "); |
| # endif |
| # endif |
| # ifndef OPENSSL_NO_SHA1 |
| BIO_printf(bio_err, "sha1 "); |
| # endif |
| # ifndef OPENSSL_NO_SHA256 |
| BIO_printf(bio_err, "sha256 "); |
| # endif |
| # ifndef OPENSSL_NO_SHA512 |
| BIO_printf(bio_err, "sha512 "); |
| # endif |
| # ifndef OPENSSL_NO_WHIRLPOOL |
| BIO_printf(bio_err, "whirlpool"); |
| # endif |
| # ifndef OPENSSL_NO_RIPEMD160 |
| BIO_printf(bio_err, "rmd160"); |
| # endif |
| # if !defined(OPENSSL_NO_MD2) || !defined(OPENSSL_NO_MDC2) || \ |
| !defined(OPENSSL_NO_MD4) || !defined(OPENSSL_NO_MD5) || \ |
| !defined(OPENSSL_NO_SHA1) || !defined(OPENSSL_NO_RIPEMD160) || \ |
| !defined(OPENSSL_NO_WHIRLPOOL) |
| BIO_printf(bio_err, "\n"); |
| # endif |
| |
| # ifndef OPENSSL_NO_IDEA |
| BIO_printf(bio_err, "idea-cbc "); |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| BIO_printf(bio_err, "seed-cbc "); |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| BIO_printf(bio_err, "rc2-cbc "); |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| BIO_printf(bio_err, "rc5-cbc "); |
| # endif |
| # ifndef OPENSSL_NO_BF |
| BIO_printf(bio_err, "bf-cbc"); |
| # endif |
| # if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || !defined(OPENSSL_NO_RC2) || \ |
| !defined(OPENSSL_NO_BF) || !defined(OPENSSL_NO_RC5) |
| BIO_printf(bio_err, "\n"); |
| # endif |
| # ifndef OPENSSL_NO_DES |
| BIO_printf(bio_err, "des-cbc des-ede3 "); |
| # endif |
| # ifndef OPENSSL_NO_AES |
| BIO_printf(bio_err, "aes-128-cbc aes-192-cbc aes-256-cbc "); |
| BIO_printf(bio_err, "aes-128-ige aes-192-ige aes-256-ige "); |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| BIO_printf(bio_err, "\n"); |
| BIO_printf(bio_err, |
| "camellia-128-cbc camellia-192-cbc camellia-256-cbc "); |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| BIO_printf(bio_err, "rc4"); |
| # endif |
| BIO_printf(bio_err, "\n"); |
| |
| # ifndef OPENSSL_NO_RSA |
| BIO_printf(bio_err, "rsa512 rsa1024 rsa2048 rsa4096\n"); |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| BIO_printf(bio_err, "dsa512 dsa1024 dsa2048\n"); |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| BIO_printf(bio_err, "ecdsap160 ecdsap192 ecdsap224 " |
| "ecdsap256 ecdsap384 ecdsap521\n"); |
| BIO_printf(bio_err, |
| "ecdsak163 ecdsak233 ecdsak283 ecdsak409 ecdsak571\n"); |
| BIO_printf(bio_err, |
| "ecdsab163 ecdsab233 ecdsab283 ecdsab409 ecdsab571\n"); |
| BIO_printf(bio_err, "ecdsa\n"); |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| BIO_printf(bio_err, "ecdhp160 ecdhp192 ecdhp224 " |
| "ecdhp256 ecdhp384 ecdhp521\n"); |
| BIO_printf(bio_err, |
| "ecdhk163 ecdhk233 ecdhk283 ecdhk409 ecdhk571\n"); |
| BIO_printf(bio_err, |
| "ecdhb163 ecdhb233 ecdhb283 ecdhb409 ecdhb571\n"); |
| BIO_printf(bio_err, "ecdh\n"); |
| # endif |
| |
| # ifndef OPENSSL_NO_IDEA |
| BIO_printf(bio_err, "idea "); |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| BIO_printf(bio_err, "seed "); |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| BIO_printf(bio_err, "rc2 "); |
| # endif |
| # ifndef OPENSSL_NO_DES |
| BIO_printf(bio_err, "des "); |
| # endif |
| # ifndef OPENSSL_NO_AES |
| BIO_printf(bio_err, "aes "); |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| BIO_printf(bio_err, "camellia "); |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| BIO_printf(bio_err, "rsa "); |
| # endif |
| # ifndef OPENSSL_NO_BF |
| BIO_printf(bio_err, "blowfish"); |
| # endif |
| # if !defined(OPENSSL_NO_IDEA) || !defined(OPENSSL_NO_SEED) || \ |
| !defined(OPENSSL_NO_RC2) || !defined(OPENSSL_NO_DES) || \ |
| !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_BF) || \ |
| !defined(OPENSSL_NO_AES) || !defined(OPENSSL_NO_CAMELLIA) |
| BIO_printf(bio_err, "\n"); |
| # endif |
| |
| BIO_printf(bio_err, "\n"); |
| BIO_printf(bio_err, "Available options:\n"); |
| # if defined(TIMES) || defined(USE_TOD) |
| BIO_printf(bio_err, "-elapsed " |
| "measure time in real time instead of CPU user time.\n"); |
| # endif |
| # ifndef OPENSSL_NO_ENGINE |
| BIO_printf(bio_err, |
| "-engine e " |
| "use engine e, possibly a hardware device.\n"); |
| # endif |
| BIO_printf(bio_err, "-evp e " "use EVP e.\n"); |
| BIO_printf(bio_err, |
| "-decrypt " |
| "time decryption instead of encryption (only EVP).\n"); |
| BIO_printf(bio_err, |
| "-mr " |
| "produce machine readable output.\n"); |
| # ifndef NO_FORK |
| BIO_printf(bio_err, |
| "-multi n " "run n benchmarks in parallel.\n"); |
| # endif |
| goto end; |
| } |
| argc--; |
| argv++; |
| j++; |
| } |
| |
| # ifndef NO_FORK |
| if (multi && do_multi(multi)) |
| goto show_res; |
| # endif |
| |
| if (j == 0) { |
| for (i = 0; i < ALGOR_NUM; i++) { |
| if (i != D_EVP) |
| doit[i] = 1; |
| } |
| for (i = 0; i < RSA_NUM; i++) |
| rsa_doit[i] = 1; |
| for (i = 0; i < DSA_NUM; i++) |
| dsa_doit[i] = 1; |
| # ifndef OPENSSL_NO_ECDSA |
| for (i = 0; i < EC_NUM; i++) |
| ecdsa_doit[i] = 1; |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| for (i = 0; i < EC_NUM; i++) |
| ecdh_doit[i] = 1; |
| # endif |
| } |
| for (i = 0; i < ALGOR_NUM; i++) |
| if (doit[i]) |
| pr_header++; |
| |
| if (usertime == 0 && !mr) |
| BIO_printf(bio_err, |
| "You have chosen to measure elapsed time " |
| "instead of user CPU time.\n"); |
| |
| # ifndef OPENSSL_NO_RSA |
| for (i = 0; i < RSA_NUM; i++) { |
| const unsigned char *p; |
| |
| p = rsa_data[i]; |
| rsa_key[i] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[i]); |
| if (rsa_key[i] == NULL) { |
| BIO_printf(bio_err, "internal error loading RSA key number %d\n", |
| i); |
| goto end; |
| } |
| # if 0 |
| else { |
| BIO_printf(bio_err, |
| mr ? "+RK:%d:" |
| : "Loaded RSA key, %d bit modulus and e= 0x", |
| BN_num_bits(rsa_key[i]->n)); |
| BN_print(bio_err, rsa_key[i]->e); |
| BIO_printf(bio_err, "\n"); |
| } |
| # endif |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| dsa_key[0] = get_dsa512(); |
| dsa_key[1] = get_dsa1024(); |
| dsa_key[2] = get_dsa2048(); |
| # endif |
| |
| # ifndef OPENSSL_NO_DES |
| DES_set_key_unchecked(&key, &sch); |
| DES_set_key_unchecked(&key2, &sch2); |
| DES_set_key_unchecked(&key3, &sch3); |
| # endif |
| # ifndef OPENSSL_NO_AES |
| AES_set_encrypt_key(key16, 128, &aes_ks1); |
| AES_set_encrypt_key(key24, 192, &aes_ks2); |
| AES_set_encrypt_key(key32, 256, &aes_ks3); |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| Camellia_set_key(key16, 128, &camellia_ks1); |
| Camellia_set_key(ckey24, 192, &camellia_ks2); |
| Camellia_set_key(ckey32, 256, &camellia_ks3); |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| idea_set_encrypt_key(key16, &idea_ks); |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| SEED_set_key(key16, &seed_ks); |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| RC4_set_key(&rc4_ks, 16, key16); |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| RC2_set_key(&rc2_ks, 16, key16, 128); |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| RC5_32_set_key(&rc5_ks, 16, key16, 12); |
| # endif |
| # ifndef OPENSSL_NO_BF |
| BF_set_key(&bf_ks, 16, key16); |
| # endif |
| # ifndef OPENSSL_NO_CAST |
| CAST_set_key(&cast_ks, 16, key16); |
| # endif |
| # ifndef OPENSSL_NO_RSA |
| memset(rsa_c, 0, sizeof(rsa_c)); |
| # endif |
| # ifndef SIGALRM |
| # ifndef OPENSSL_NO_DES |
| BIO_printf(bio_err, "First we calculate the approximate speed ...\n"); |
| count = 10; |
| do { |
| long it; |
| count *= 2; |
| Time_F(START); |
| for (it = count; it; it--) |
| DES_ecb_encrypt((DES_cblock *)buf, |
| (DES_cblock *)buf, &sch, DES_ENCRYPT); |
| d = Time_F(STOP); |
| } while (d < 3); |
| save_count = count; |
| c[D_MD2][0] = count / 10; |
| c[D_MDC2][0] = count / 10; |
| c[D_MD4][0] = count; |
| c[D_MD5][0] = count; |
| c[D_HMAC][0] = count; |
| c[D_SHA1][0] = count; |
| c[D_RMD160][0] = count; |
| c[D_RC4][0] = count * 5; |
| c[D_CBC_DES][0] = count; |
| c[D_EDE3_DES][0] = count / 3; |
| c[D_CBC_IDEA][0] = count; |
| c[D_CBC_SEED][0] = count; |
| c[D_CBC_RC2][0] = count; |
| c[D_CBC_RC5][0] = count; |
| c[D_CBC_BF][0] = count; |
| c[D_CBC_CAST][0] = count; |
| c[D_CBC_128_AES][0] = count; |
| c[D_CBC_192_AES][0] = count; |
| c[D_CBC_256_AES][0] = count; |
| c[D_CBC_128_CML][0] = count; |
| c[D_CBC_192_CML][0] = count; |
| c[D_CBC_256_CML][0] = count; |
| c[D_SHA256][0] = count; |
| c[D_SHA512][0] = count; |
| c[D_WHIRLPOOL][0] = count; |
| c[D_IGE_128_AES][0] = count; |
| c[D_IGE_192_AES][0] = count; |
| c[D_IGE_256_AES][0] = count; |
| c[D_GHASH][0] = count; |
| |
| for (i = 1; i < SIZE_NUM; i++) { |
| c[D_MD2][i] = c[D_MD2][0] * 4 * lengths[0] / lengths[i]; |
| c[D_MDC2][i] = c[D_MDC2][0] * 4 * lengths[0] / lengths[i]; |
| c[D_MD4][i] = c[D_MD4][0] * 4 * lengths[0] / lengths[i]; |
| c[D_MD5][i] = c[D_MD5][0] * 4 * lengths[0] / lengths[i]; |
| c[D_HMAC][i] = c[D_HMAC][0] * 4 * lengths[0] / lengths[i]; |
| c[D_SHA1][i] = c[D_SHA1][0] * 4 * lengths[0] / lengths[i]; |
| c[D_RMD160][i] = c[D_RMD160][0] * 4 * lengths[0] / lengths[i]; |
| c[D_SHA256][i] = c[D_SHA256][0] * 4 * lengths[0] / lengths[i]; |
| c[D_SHA512][i] = c[D_SHA512][0] * 4 * lengths[0] / lengths[i]; |
| c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * lengths[0] / lengths[i]; |
| } |
| for (i = 1; i < SIZE_NUM; i++) { |
| long l0, l1; |
| |
| l0 = (long)lengths[i - 1]; |
| l1 = (long)lengths[i]; |
| c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1; |
| c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1; |
| c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1; |
| c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1; |
| c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1; |
| c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1; |
| c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1; |
| c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1; |
| c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1; |
| c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1; |
| c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1; |
| c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1; |
| c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1; |
| c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1; |
| c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1; |
| c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1; |
| c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1; |
| c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1; |
| } |
| # ifndef OPENSSL_NO_RSA |
| rsa_c[R_RSA_512][0] = count / 2000; |
| rsa_c[R_RSA_512][1] = count / 400; |
| for (i = 1; i < RSA_NUM; i++) { |
| rsa_c[i][0] = rsa_c[i - 1][0] / 8; |
| rsa_c[i][1] = rsa_c[i - 1][1] / 4; |
| if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0)) |
| rsa_doit[i] = 0; |
| else { |
| if (rsa_c[i][0] == 0) { |
| rsa_c[i][0] = 1; |
| rsa_c[i][1] = 20; |
| } |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_DSA |
| dsa_c[R_DSA_512][0] = count / 1000; |
| dsa_c[R_DSA_512][1] = count / 1000 / 2; |
| for (i = 1; i < DSA_NUM; i++) { |
| dsa_c[i][0] = dsa_c[i - 1][0] / 4; |
| dsa_c[i][1] = dsa_c[i - 1][1] / 4; |
| if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0)) |
| dsa_doit[i] = 0; |
| else { |
| if (dsa_c[i] == 0) { |
| dsa_c[i][0] = 1; |
| dsa_c[i][1] = 1; |
| } |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDSA |
| ecdsa_c[R_EC_P160][0] = count / 1000; |
| ecdsa_c[R_EC_P160][1] = count / 1000 / 2; |
| for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| ecdsa_c[R_EC_K163][0] = count / 1000; |
| ecdsa_c[R_EC_K163][1] = count / 1000 / 2; |
| for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| ecdsa_c[R_EC_B163][0] = count / 1000; |
| ecdsa_c[R_EC_B163][1] = count / 1000 / 2; |
| for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2; |
| ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2; |
| if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0)) |
| ecdsa_doit[i] = 0; |
| else { |
| if (ecdsa_c[i] == 0) { |
| ecdsa_c[i][0] = 1; |
| ecdsa_c[i][1] = 1; |
| } |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDH |
| ecdh_c[R_EC_P160][0] = count / 1000; |
| ecdh_c[R_EC_P160][1] = count / 1000; |
| for (i = R_EC_P192; i <= R_EC_P521; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| ecdh_c[R_EC_K163][0] = count / 1000; |
| ecdh_c[R_EC_K163][1] = count / 1000; |
| for (i = R_EC_K233; i <= R_EC_K571; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| ecdh_c[R_EC_B163][0] = count / 1000; |
| ecdh_c[R_EC_B163][1] = count / 1000; |
| for (i = R_EC_B233; i <= R_EC_B571; i++) { |
| ecdh_c[i][0] = ecdh_c[i - 1][0] / 2; |
| ecdh_c[i][1] = ecdh_c[i - 1][1] / 2; |
| if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0)) |
| ecdh_doit[i] = 0; |
| else { |
| if (ecdh_c[i] == 0) { |
| ecdh_c[i][0] = 1; |
| ecdh_c[i][1] = 1; |
| } |
| } |
| } |
| # endif |
| |
| # define COND(d) (count < (d)) |
| # define COUNT(d) (d) |
| # else |
| /* not worth fixing */ |
| # error "You cannot disable DES on systems without SIGALRM." |
| # endif /* OPENSSL_NO_DES */ |
| # else |
| # define COND(c) (run && count<0x7fffffff) |
| # define COUNT(d) (count) |
| # ifndef _WIN32 |
| signal(SIGALRM, sig_done); |
| # endif |
| # endif /* SIGALRM */ |
| |
| # ifndef OPENSSL_NO_MD2 |
| if (doit[D_MD2]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_MD2], c[D_MD2][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_MD2][j]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[j], &(md2[0]), NULL, |
| EVP_md2(), NULL); |
| d = Time_F(STOP); |
| print_result(D_MD2, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_MDC2 |
| if (doit[D_MDC2]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_MDC2], c[D_MDC2][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_MDC2][j]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[j], &(mdc2[0]), NULL, |
| EVP_mdc2(), NULL); |
| d = Time_F(STOP); |
| print_result(D_MDC2, j, count, d); |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_MD4 |
| if (doit[D_MD4]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_MD4], c[D_MD4][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_MD4][j]); count++) |
| EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md4[0]), |
| NULL, EVP_md4(), NULL); |
| d = Time_F(STOP); |
| print_result(D_MD4, j, count, d); |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_MD5 |
| if (doit[D_MD5]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_MD5], c[D_MD5][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_MD5][j]); count++) |
| EVP_Digest(&(buf[0]), (unsigned long)lengths[j], &(md5[0]), |
| NULL, EVP_get_digestbyname("md5"), NULL); |
| d = Time_F(STOP); |
| print_result(D_MD5, j, count, d); |
| } |
| } |
| # endif |
| |
| # if !defined(OPENSSL_NO_MD5) && !defined(OPENSSL_NO_HMAC) |
| if (doit[D_HMAC]) { |
| HMAC_CTX hctx; |
| |
| HMAC_CTX_init(&hctx); |
| HMAC_Init_ex(&hctx, (unsigned char *)"This is a key...", |
| 16, EVP_md5(), NULL); |
| |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_HMAC], c[D_HMAC][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_HMAC][j]); count++) { |
| HMAC_Init_ex(&hctx, NULL, 0, NULL, NULL); |
| HMAC_Update(&hctx, buf, lengths[j]); |
| HMAC_Final(&hctx, &(hmac[0]), NULL); |
| } |
| d = Time_F(STOP); |
| print_result(D_HMAC, j, count, d); |
| } |
| HMAC_CTX_cleanup(&hctx); |
| } |
| # endif |
| # ifndef OPENSSL_NO_SHA |
| if (doit[D_SHA1]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_SHA1], c[D_SHA1][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_SHA1][j]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[j], &(sha[0]), NULL, |
| EVP_sha1(), NULL); |
| d = Time_F(STOP); |
| print_result(D_SHA1, j, count, d); |
| } |
| } |
| # ifndef OPENSSL_NO_SHA256 |
| if (doit[D_SHA256]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_SHA256], c[D_SHA256][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_SHA256][j]); count++) |
| SHA256(buf, lengths[j], sha256); |
| d = Time_F(STOP); |
| print_result(D_SHA256, j, count, d); |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_SHA512 |
| if (doit[D_SHA512]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_SHA512], c[D_SHA512][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_SHA512][j]); count++) |
| SHA512(buf, lengths[j], sha512); |
| d = Time_F(STOP); |
| print_result(D_SHA512, j, count, d); |
| } |
| } |
| # endif |
| # endif |
| |
| # ifndef OPENSSL_NO_WHIRLPOOL |
| if (doit[D_WHIRLPOOL]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_WHIRLPOOL][j]); count++) |
| WHIRLPOOL(buf, lengths[j], whirlpool); |
| d = Time_F(STOP); |
| print_result(D_WHIRLPOOL, j, count, d); |
| } |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_RIPEMD |
| if (doit[D_RMD160]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_RMD160], c[D_RMD160][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_RMD160][j]); count++) |
| EVP_Digest(buf, (unsigned long)lengths[j], &(rmd160[0]), NULL, |
| EVP_ripemd160(), NULL); |
| d = Time_F(STOP); |
| print_result(D_RMD160, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| if (doit[D_RC4]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_RC4], c[D_RC4][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_RC4][j]); count++) |
| RC4(&rc4_ks, (unsigned int)lengths[j], buf, buf); |
| d = Time_F(STOP); |
| print_result(D_RC4, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_DES |
| if (doit[D_CBC_DES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_DES], c[D_CBC_DES][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_DES][j]); count++) |
| DES_ncbc_encrypt(buf, buf, lengths[j], &sch, |
| &DES_iv, DES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_DES, j, count, d); |
| } |
| } |
| |
| if (doit[D_EDE3_DES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_EDE3_DES], c[D_EDE3_DES][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_EDE3_DES][j]); count++) |
| DES_ede3_cbc_encrypt(buf, buf, lengths[j], |
| &sch, &sch2, &sch3, |
| &DES_iv, DES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_EDE3_DES, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_AES |
| if (doit[D_CBC_128_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_128_AES][j]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &aes_ks1, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_128_AES, j, count, d); |
| } |
| } |
| if (doit[D_CBC_192_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_192_AES][j]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &aes_ks2, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_192_AES, j, count, d); |
| } |
| } |
| if (doit[D_CBC_256_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_256_AES][j]); count++) |
| AES_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &aes_ks3, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_256_AES, j, count, d); |
| } |
| } |
| |
| if (doit[D_IGE_128_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_IGE_128_AES][j]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[j], &aes_ks1, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_IGE_128_AES, j, count, d); |
| } |
| } |
| if (doit[D_IGE_192_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_IGE_192_AES][j]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[j], &aes_ks2, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_IGE_192_AES, j, count, d); |
| } |
| } |
| if (doit[D_IGE_256_AES]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_IGE_256_AES][j]); count++) |
| AES_ige_encrypt(buf, buf2, |
| (unsigned long)lengths[j], &aes_ks3, |
| iv, AES_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_IGE_256_AES, j, count, d); |
| } |
| } |
| if (doit[D_GHASH]) { |
| GCM128_CONTEXT *ctx = |
| CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt); |
| CRYPTO_gcm128_setiv(ctx, (unsigned char *)"0123456789ab", 12); |
| |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_GHASH], c[D_GHASH][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_GHASH][j]); count++) |
| CRYPTO_gcm128_aad(ctx, buf, lengths[j]); |
| d = Time_F(STOP); |
| print_result(D_GHASH, j, count, d); |
| } |
| CRYPTO_gcm128_release(ctx); |
| } |
| # endif |
| # ifndef OPENSSL_NO_CAMELLIA |
| if (doit[D_CBC_128_CML]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_128_CML][j]); count++) |
| Camellia_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &camellia_ks1, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_128_CML, j, count, d); |
| } |
| } |
| if (doit[D_CBC_192_CML]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_192_CML][j]); count++) |
| Camellia_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &camellia_ks2, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_192_CML, j, count, d); |
| } |
| } |
| if (doit[D_CBC_256_CML]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][j], |
| lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_256_CML][j]); count++) |
| Camellia_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &camellia_ks3, |
| iv, CAMELLIA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_256_CML, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| if (doit[D_CBC_IDEA]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_IDEA][j]); count++) |
| idea_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &idea_ks, |
| iv, IDEA_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_IDEA, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_SEED |
| if (doit[D_CBC_SEED]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_SEED], c[D_CBC_SEED][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_SEED][j]); count++) |
| SEED_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &seed_ks, iv, 1); |
| d = Time_F(STOP); |
| print_result(D_CBC_SEED, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_RC2 |
| if (doit[D_CBC_RC2]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_RC2], c[D_CBC_RC2][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_RC2][j]); count++) |
| RC2_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &rc2_ks, |
| iv, RC2_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_RC2, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_RC5 |
| if (doit[D_CBC_RC5]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_RC5], c[D_CBC_RC5][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_RC5][j]); count++) |
| RC5_32_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &rc5_ks, |
| iv, RC5_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_RC5, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_BF |
| if (doit[D_CBC_BF]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_BF], c[D_CBC_BF][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_BF][j]); count++) |
| BF_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &bf_ks, |
| iv, BF_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_BF, j, count, d); |
| } |
| } |
| # endif |
| # ifndef OPENSSL_NO_CAST |
| if (doit[D_CBC_CAST]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| print_message(names[D_CBC_CAST], c[D_CBC_CAST][j], lengths[j]); |
| Time_F(START); |
| for (count = 0, run = 1; COND(c[D_CBC_CAST][j]); count++) |
| CAST_cbc_encrypt(buf, buf, |
| (unsigned long)lengths[j], &cast_ks, |
| iv, CAST_ENCRYPT); |
| d = Time_F(STOP); |
| print_result(D_CBC_CAST, j, count, d); |
| } |
| } |
| # endif |
| |
| if (doit[D_EVP]) { |
| for (j = 0; j < SIZE_NUM; j++) { |
| if (evp_cipher) { |
| EVP_CIPHER_CTX ctx; |
| int outl; |
| |
| names[D_EVP] = OBJ_nid2ln(evp_cipher->nid); |
| /* |
| * -O3 -fschedule-insns messes up an optimization here! |
| * names[D_EVP] somehow becomes NULL |
| */ |
| print_message(names[D_EVP], save_count, lengths[j]); |
| |
| EVP_CIPHER_CTX_init(&ctx); |
| if (decrypt) |
| EVP_DecryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
| else |
| EVP_EncryptInit_ex(&ctx, evp_cipher, NULL, key16, iv); |
| EVP_CIPHER_CTX_set_padding(&ctx, 0); |
| |
| Time_F(START); |
| if (decrypt) |
| for (count = 0, run = 1; |
| COND(save_count * 4 * lengths[0] / lengths[j]); |
| count++) |
| EVP_DecryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
| else |
| for (count = 0, run = 1; |
| COND(save_count * 4 * lengths[0] / lengths[j]); |
| count++) |
| EVP_EncryptUpdate(&ctx, buf, &outl, buf, lengths[j]); |
| if (decrypt) |
| EVP_DecryptFinal_ex(&ctx, buf, &outl); |
| else |
| EVP_EncryptFinal_ex(&ctx, buf, &outl); |
| d = Time_F(STOP); |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| } |
| if (evp_md) { |
| names[D_EVP] = OBJ_nid2ln(evp_md->type); |
| print_message(names[D_EVP], save_count, lengths[j]); |
| |
| Time_F(START); |
| for (count = 0, run = 1; |
| COND(save_count * 4 * lengths[0] / lengths[j]); count++) |
| EVP_Digest(buf, lengths[j], &(md[0]), NULL, evp_md, NULL); |
| |
| d = Time_F(STOP); |
| } |
| print_result(D_EVP, j, count, d); |
| } |
| } |
| |
| RAND_pseudo_bytes(buf, 36); |
| # ifndef OPENSSL_NO_RSA |
| for (j = 0; j < RSA_NUM; j++) { |
| int ret; |
| if (!rsa_doit[j]) |
| continue; |
| ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, &rsa_num, rsa_key[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, |
| "RSA sign failure. No RSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("private", "rsa", |
| rsa_c[j][0], rsa_bits[j], RSA_SECONDS); |
| /* RSA_blinding_on(rsa_key[j],NULL); */ |
| Time_F(START); |
| for (count = 0, run = 1; COND(rsa_c[j][0]); count++) { |
| ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, |
| &rsa_num, rsa_key[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "RSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R1:%ld:%d:%.2f\n" |
| : "%ld %d bit private RSA's in %.2fs\n", |
| count, rsa_bits[j], d); |
| rsa_results[j][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| # if 1 |
| ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[j]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, |
| "RSA verify failure. No RSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_doit[j] = 0; |
| } else { |
| pkey_print_message("public", "rsa", |
| rsa_c[j][1], rsa_bits[j], RSA_SECONDS); |
| Time_F(START); |
| for (count = 0, run = 1; COND(rsa_c[j][1]); count++) { |
| ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, |
| rsa_num, rsa_key[j]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, "RSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R2:%ld:%d:%.2f\n" |
| : "%ld %d bit public RSA's in %.2fs\n", |
| count, rsa_bits[j], d); |
| rsa_results[j][1] = d / (double)count; |
| } |
| # endif |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (j++; j < RSA_NUM; j++) |
| rsa_doit[j] = 0; |
| } |
| } |
| # endif |
| |
| RAND_pseudo_bytes(buf, 20); |
| # ifndef OPENSSL_NO_DSA |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| rnd_fake = 1; |
| } |
| for (j = 0; j < DSA_NUM; j++) { |
| unsigned int kk; |
| int ret; |
| |
| if (!dsa_doit[j]) |
| continue; |
| |
| /* DSA_generate_key(dsa_key[j]); */ |
| /* DSA_sign_setup(dsa_key[j],NULL); */ |
| ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, |
| "DSA sign failure. No DSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("sign", "dsa", |
| dsa_c[j][0], dsa_bits[j], DSA_SECONDS); |
| Time_F(START); |
| for (count = 0, run = 1; COND(dsa_c[j][0]); count++) { |
| ret = DSA_sign(EVP_PKEY_DSA, buf, 20, buf2, &kk, dsa_key[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "DSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R3:%ld:%d:%.2f\n" |
| : "%ld %d bit DSA signs in %.2fs\n", |
| count, dsa_bits[j], d); |
| dsa_results[j][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, |
| "DSA verify failure. No DSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| dsa_doit[j] = 0; |
| } else { |
| pkey_print_message("verify", "dsa", |
| dsa_c[j][1], dsa_bits[j], DSA_SECONDS); |
| Time_F(START); |
| for (count = 0, run = 1; COND(dsa_c[j][1]); count++) { |
| ret = DSA_verify(EVP_PKEY_DSA, buf, 20, buf2, kk, dsa_key[j]); |
| if (ret <= 0) { |
| BIO_printf(bio_err, "DSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R4:%ld:%d:%.2f\n" |
| : "%ld %d bit DSA verify in %.2fs\n", |
| count, dsa_bits[j], d); |
| dsa_results[j][1] = d / (double)count; |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (j++; j < DSA_NUM; j++) |
| dsa_doit[j] = 0; |
| } |
| } |
| if (rnd_fake) |
| RAND_cleanup(); |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDSA |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| rnd_fake = 1; |
| } |
| for (j = 0; j < EC_NUM; j++) { |
| int ret; |
| |
| if (!ecdsa_doit[j]) |
| continue; /* Ignore Curve */ |
| ecdsa[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| if (ecdsa[j] == NULL) { |
| BIO_printf(bio_err, "ECDSA failure.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| # if 1 |
| EC_KEY_precompute_mult(ecdsa[j], NULL); |
| # endif |
| /* Perform ECDSA signature test */ |
| EC_KEY_generate_key(ecdsa[j]); |
| ret = ECDSA_sign(0, buf, 20, ecdsasig, &ecdsasiglen, ecdsa[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, |
| "ECDSA sign failure. No ECDSA sign will be done.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| pkey_print_message("sign", "ecdsa", |
| ecdsa_c[j][0], |
| test_curves_bits[j], ECDSA_SECONDS); |
| |
| Time_F(START); |
| for (count = 0, run = 1; COND(ecdsa_c[j][0]); count++) { |
| ret = ECDSA_sign(0, buf, 20, |
| ecdsasig, &ecdsasiglen, ecdsa[j]); |
| if (ret == 0) { |
| BIO_printf(bio_err, "ECDSA sign failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| |
| BIO_printf(bio_err, |
| mr ? "+R5:%ld:%d:%.2f\n" : |
| "%ld %d bit ECDSA signs in %.2fs \n", |
| count, test_curves_bits[j], d); |
| ecdsa_results[j][0] = d / (double)count; |
| rsa_count = count; |
| } |
| |
| /* Perform ECDSA verification test */ |
| ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, ecdsa[j]); |
| if (ret != 1) { |
| BIO_printf(bio_err, |
| "ECDSA verify failure. No ECDSA verify will be done.\n"); |
| ERR_print_errors(bio_err); |
| ecdsa_doit[j] = 0; |
| } else { |
| pkey_print_message("verify", "ecdsa", |
| ecdsa_c[j][1], |
| test_curves_bits[j], ECDSA_SECONDS); |
| Time_F(START); |
| for (count = 0, run = 1; COND(ecdsa_c[j][1]); count++) { |
| ret = |
| ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen, |
| ecdsa[j]); |
| if (ret != 1) { |
| BIO_printf(bio_err, "ECDSA verify failure\n"); |
| ERR_print_errors(bio_err); |
| count = 1; |
| break; |
| } |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R6:%ld:%d:%.2f\n" |
| : "%ld %d bit ECDSA verify in %.2fs\n", |
| count, test_curves_bits[j], d); |
| ecdsa_results[j][1] = d / (double)count; |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (j++; j < EC_NUM; j++) |
| ecdsa_doit[j] = 0; |
| } |
| } |
| } |
| if (rnd_fake) |
| RAND_cleanup(); |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDH |
| if (RAND_status() != 1) { |
| RAND_seed(rnd_seed, sizeof rnd_seed); |
| rnd_fake = 1; |
| } |
| for (j = 0; j < EC_NUM; j++) { |
| if (!ecdh_doit[j]) |
| continue; |
| ecdh_a[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| ecdh_b[j] = EC_KEY_new_by_curve_name(test_curves[j]); |
| if ((ecdh_a[j] == NULL) || (ecdh_b[j] == NULL)) { |
| BIO_printf(bio_err, "ECDH failure.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| /* generate two ECDH key pairs */ |
| if (!EC_KEY_generate_key(ecdh_a[j]) || |
| !EC_KEY_generate_key(ecdh_b[j])) { |
| BIO_printf(bio_err, "ECDH key generation failure.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } else { |
| /* |
| * If field size is not more than 24 octets, then use SHA-1 |
| * hash of result; otherwise, use result (see section 4.8 of |
| * draft-ietf-tls-ecc-03.txt). |
| */ |
| int field_size, outlen; |
| void *(*kdf) (const void *in, size_t inlen, void *out, |
| size_t *xoutlen); |
| field_size = |
| EC_GROUP_get_degree(EC_KEY_get0_group(ecdh_a[j])); |
| if (field_size <= 24 * 8) { |
| outlen = KDF1_SHA1_len; |
| kdf = KDF1_SHA1; |
| } else { |
| outlen = (field_size + 7) / 8; |
| kdf = NULL; |
| } |
| secret_size_a = |
| ECDH_compute_key(secret_a, outlen, |
| EC_KEY_get0_public_key(ecdh_b[j]), |
| ecdh_a[j], kdf); |
| secret_size_b = |
| ECDH_compute_key(secret_b, outlen, |
| EC_KEY_get0_public_key(ecdh_a[j]), |
| ecdh_b[j], kdf); |
| if (secret_size_a != secret_size_b) |
| ecdh_checks = 0; |
| else |
| ecdh_checks = 1; |
| |
| for (secret_idx = 0; (secret_idx < secret_size_a) |
| && (ecdh_checks == 1); secret_idx++) { |
| if (secret_a[secret_idx] != secret_b[secret_idx]) |
| ecdh_checks = 0; |
| } |
| |
| if (ecdh_checks == 0) { |
| BIO_printf(bio_err, "ECDH computations don't match.\n"); |
| ERR_print_errors(bio_err); |
| rsa_count = 1; |
| } |
| |
| pkey_print_message("", "ecdh", |
| ecdh_c[j][0], |
| test_curves_bits[j], ECDH_SECONDS); |
| Time_F(START); |
| for (count = 0, run = 1; COND(ecdh_c[j][0]); count++) { |
| ECDH_compute_key(secret_a, outlen, |
| EC_KEY_get0_public_key(ecdh_b[j]), |
| ecdh_a[j], kdf); |
| } |
| d = Time_F(STOP); |
| BIO_printf(bio_err, |
| mr ? "+R7:%ld:%d:%.2f\n" : |
| "%ld %d-bit ECDH ops in %.2fs\n", count, |
| test_curves_bits[j], d); |
| ecdh_results[j][0] = d / (double)count; |
| rsa_count = count; |
| } |
| } |
| |
| if (rsa_count <= 1) { |
| /* if longer than 10s, don't do any more */ |
| for (j++; j < EC_NUM; j++) |
| ecdh_doit[j] = 0; |
| } |
| } |
| if (rnd_fake) |
| RAND_cleanup(); |
| # endif |
| # ifndef NO_FORK |
| show_res: |
| # endif |
| if (!mr) { |
| fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_VERSION)); |
| fprintf(stdout, "%s\n", SSLeay_version(SSLEAY_BUILT_ON)); |
| printf("options:"); |
| printf("%s ", BN_options()); |
| # ifndef OPENSSL_NO_MD2 |
| printf("%s ", MD2_options()); |
| # endif |
| # ifndef OPENSSL_NO_RC4 |
| printf("%s ", RC4_options()); |
| # endif |
| # ifndef OPENSSL_NO_DES |
| printf("%s ", DES_options()); |
| # endif |
| # ifndef OPENSSL_NO_AES |
| printf("%s ", AES_options()); |
| # endif |
| # ifndef OPENSSL_NO_IDEA |
| printf("%s ", idea_options()); |
| # endif |
| # ifndef OPENSSL_NO_BF |
| printf("%s ", BF_options()); |
| # endif |
| fprintf(stdout, "\n%s\n", SSLeay_version(SSLEAY_CFLAGS)); |
| } |
| |
| if (pr_header) { |
| if (mr) |
| fprintf(stdout, "+H"); |
| else { |
| fprintf(stdout, |
| "The 'numbers' are in 1000s of bytes per second processed.\n"); |
| fprintf(stdout, "type "); |
| } |
| for (j = 0; j < SIZE_NUM; j++) |
| fprintf(stdout, mr ? ":%d" : "%7d bytes", lengths[j]); |
| fprintf(stdout, "\n"); |
| } |
| |
| for (k = 0; k < ALGOR_NUM; k++) { |
| if (!doit[k]) |
| continue; |
| if (mr) |
| fprintf(stdout, "+F:%d:%s", k, names[k]); |
| else |
| fprintf(stdout, "%-13s", names[k]); |
| for (j = 0; j < SIZE_NUM; j++) { |
| if (results[k][j] > 10000 && !mr) |
| fprintf(stdout, " %11.2fk", results[k][j] / 1e3); |
| else |
| fprintf(stdout, mr ? ":%.2f" : " %11.2f ", results[k][j]); |
| } |
| fprintf(stdout, "\n"); |
| } |
| # ifndef OPENSSL_NO_RSA |
| j = 1; |
| for (k = 0; k < RSA_NUM; k++) { |
| if (!rsa_doit[k]) |
| continue; |
| if (j && !mr) { |
| printf("%18ssign verify sign/s verify/s\n", " "); |
| j = 0; |
| } |
| if (mr) |
| fprintf(stdout, "+F2:%u:%u:%f:%f\n", |
| k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]); |
| else |
| fprintf(stdout, "rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| rsa_bits[k], rsa_results[k][0], rsa_results[k][1], |
| 1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]); |
| } |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| j = 1; |
| for (k = 0; k < DSA_NUM; k++) { |
| if (!dsa_doit[k]) |
| continue; |
| if (j && !mr) { |
| printf("%18ssign verify sign/s verify/s\n", " "); |
| j = 0; |
| } |
| if (mr) |
| fprintf(stdout, "+F3:%u:%u:%f:%f\n", |
| k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]); |
| else |
| fprintf(stdout, "dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n", |
| dsa_bits[k], dsa_results[k][0], dsa_results[k][1], |
| 1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]); |
| } |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| j = 1; |
| for (k = 0; k < EC_NUM; k++) { |
| if (!ecdsa_doit[k]) |
| continue; |
| if (j && !mr) { |
| printf("%30ssign verify sign/s verify/s\n", " "); |
| j = 0; |
| } |
| |
| if (mr) |
| fprintf(stdout, "+F4:%u:%u:%f:%f\n", |
| k, test_curves_bits[k], |
| ecdsa_results[k][0], ecdsa_results[k][1]); |
| else |
| fprintf(stdout, |
| "%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n", |
| test_curves_bits[k], |
| test_curves_names[k], |
| ecdsa_results[k][0], ecdsa_results[k][1], |
| 1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]); |
| } |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDH |
| j = 1; |
| for (k = 0; k < EC_NUM; k++) { |
| if (!ecdh_doit[k]) |
| continue; |
| if (j && !mr) { |
| printf("%30sop op/s\n", " "); |
| j = 0; |
| } |
| if (mr) |
| fprintf(stdout, "+F5:%u:%u:%f:%f\n", |
| k, test_curves_bits[k], |
| ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| |
| else |
| fprintf(stdout, "%4u bit ecdh (%s) %8.4fs %8.1f\n", |
| test_curves_bits[k], |
| test_curves_names[k], |
| ecdh_results[k][0], 1.0 / ecdh_results[k][0]); |
| } |
| # endif |
| |
| mret = 0; |
| |
| end: |
| ERR_print_errors(bio_err); |
| if (buf != NULL) |
| OPENSSL_free(buf); |
| if (buf2 != NULL) |
| OPENSSL_free(buf2); |
| # ifndef OPENSSL_NO_RSA |
| for (i = 0; i < RSA_NUM; i++) |
| if (rsa_key[i] != NULL) |
| RSA_free(rsa_key[i]); |
| # endif |
| # ifndef OPENSSL_NO_DSA |
| for (i = 0; i < DSA_NUM; i++) |
| if (dsa_key[i] != NULL) |
| DSA_free(dsa_key[i]); |
| # endif |
| |
| # ifndef OPENSSL_NO_ECDSA |
| for (i = 0; i < EC_NUM; i++) |
| if (ecdsa[i] != NULL) |
| EC_KEY_free(ecdsa[i]); |
| # endif |
| # ifndef OPENSSL_NO_ECDH |
| for (i = 0; i < EC_NUM; i++) { |
| if (ecdh_a[i] != NULL) |
| EC_KEY_free(ecdh_a[i]); |
| if (ecdh_b[i] != NULL) |
| EC_KEY_free(ecdh_b[i]); |
| } |
| # endif |
| |
| apps_shutdown(); |
| OPENSSL_EXIT(mret); |
| } |
| |
| static void print_message(const char *s, long num, int length) |
| { |
| # ifdef SIGALRM |
| BIO_printf(bio_err, |
| mr ? "+DT:%s:%d:%d\n" |
| : "Doing %s for %ds on %d size blocks: ", s, SECONDS, length); |
| (void)BIO_flush(bio_err); |
| alarm(SECONDS); |
| # else |
| BIO_printf(bio_err, |
| mr ? "+DN:%s:%ld:%d\n" |
| : "Doing %s %ld times on %d size blocks: ", s, num, length); |
| (void)BIO_flush(bio_err); |
| # endif |
| # ifdef LINT |
| num = num; |
| # endif |
| } |
| |
| static void pkey_print_message(const char *str, const char *str2, long num, |
| int bits, int tm) |
| { |
| # ifdef SIGALRM |
| BIO_printf(bio_err, |
| mr ? "+DTP:%d:%s:%s:%d\n" |
| : "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm); |
| (void)BIO_flush(bio_err); |
| alarm(tm); |
| # else |
| BIO_printf(bio_err, |
| mr ? "+DNP:%ld:%d:%s:%s\n" |
| : "Doing %ld %d bit %s %s's: ", num, bits, str, str2); |
| (void)BIO_flush(bio_err); |
| # endif |
| # ifdef LINT |
| num = num; |
| # endif |
| } |
| |
| static void print_result(int alg, int run_no, int count, double time_used) |
| { |
| BIO_printf(bio_err, |
| mr ? "+R:%d:%s:%f\n" |
| : "%d %s's in %.2fs\n", count, names[alg], time_used); |
| results[alg][run_no] = ((double)count) / time_used * lengths[run_no]; |
| } |
| |
| # ifndef NO_FORK |
| static char *sstrsep(char **string, const char *delim) |
| { |
| char isdelim[256]; |
| char *token = *string; |
| |
| if (**string == 0) |
| return NULL; |
| |
| memset(isdelim, 0, sizeof isdelim); |
| isdelim[0] = 1; |
| |
| while (*delim) { |
| isdelim[(unsigned char)(*delim)] = 1; |
| delim++; |
| } |
| |
| while (!isdelim[(unsigned char)(**string)]) { |
| (*string)++; |
| } |
| |
| if (**string) { |
| **string = 0; |
| (*string)++; |
| } |
| |
| return token; |
| } |
| |
| static int do_multi(int multi) |
| { |
| int n; |
| int fd[2]; |
| int *fds; |
| static char sep[] = ":"; |
| |
| fds = malloc(multi * sizeof *fds); |
| for (n = 0; n < multi; ++n) { |
| if (pipe(fd) == -1) { |
| fprintf(stderr, "pipe failure\n"); |
| exit(1); |
| } |
| fflush(stdout); |
| fflush(stderr); |
| if (fork()) { |
| close(fd[1]); |
| fds[n] = fd[0]; |
| } else { |
| close(fd[0]); |
| close(1); |
| if (dup(fd[1]) == -1) { |
| fprintf(stderr, "dup failed\n"); |
| exit(1); |
| } |
| close(fd[1]); |
| mr = 1; |
| usertime = 0; |
| free(fds); |
| return 0; |
| } |
| printf("Forked child %d\n", n); |
| } |
| |
| /* for now, assume the pipe is long enough to take all the output */ |
| for (n = 0; n < multi; ++n) { |
| FILE *f; |
| char buf[1024]; |
| char *p; |
| |
| f = fdopen(fds[n], "r"); |
| while (fgets(buf, sizeof buf, f)) { |
| p = strchr(buf, '\n'); |
| if (p) |
| *p = '\0'; |
| if (buf[0] != '+') { |
| fprintf(stderr, "Don't understand line '%s' from child %d\n", |
| buf, n); |
| continue; |
| } |
| printf("Got: %s from %d\n", buf, n); |
| if (!strncmp(buf, "+F:", 3)) { |
| int alg; |
| int j; |
| |
| p = buf + 3; |
| alg = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| for (j = 0; j < SIZE_NUM; ++j) |
| results[alg][j] += atof(sstrsep(&p, sep)); |
| } else if (!strncmp(buf, "+F2:", 4)) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d); |
| else |
| rsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d); |
| else |
| rsa_results[k][1] = d; |
| } |
| # ifndef OPENSSL_NO_DSA |
| else if (!strncmp(buf, "+F3:", 4)) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d); |
| else |
| dsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d); |
| else |
| dsa_results[k][1] = d; |
| } |
| # endif |
| # ifndef OPENSSL_NO_ECDSA |
| else if (!strncmp(buf, "+F4:", 4)) { |
| int k; |
| double d; |
| |
| p = buf + 4; |
| k = atoi(sstrsep(&p, sep)); |
| sstrsep(&p, sep); |
| |
| d = atof(sstrsep(&p, sep)); |
| if (n) |
| ecdsa_results[k][0] = |
| 1 / (1 / ecdsa_results[k][0] + 1 / d); |
| else |
| ecdsa_results[k][0] = d; |
| |
| d = atof(sstrsep(&p, sep |