| /* |
| * Copyright 2006 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| #ifndef SkScalar_DEFINED |
| #define SkScalar_DEFINED |
| |
| #include "../private/SkFloatingPoint.h" |
| |
| #undef SK_SCALAR_IS_FLOAT |
| #define SK_SCALAR_IS_FLOAT 1 |
| |
| typedef float SkScalar; |
| |
| #define SK_Scalar1 1.0f |
| #define SK_ScalarHalf 0.5f |
| #define SK_ScalarSqrt2 1.41421356f |
| #define SK_ScalarPI 3.14159265f |
| #define SK_ScalarTanPIOver8 0.414213562f |
| #define SK_ScalarRoot2Over2 0.707106781f |
| #define SK_ScalarMax 3.402823466e+38f |
| #define SK_ScalarInfinity SK_FloatInfinity |
| #define SK_ScalarNegativeInfinity SK_FloatNegativeInfinity |
| #define SK_ScalarNaN SK_FloatNaN |
| |
| #define SkScalarFloorToScalar(x) sk_float_floor(x) |
| #define SkScalarCeilToScalar(x) sk_float_ceil(x) |
| #define SkScalarRoundToScalar(x) sk_float_floor((x) + 0.5f) |
| #define SkScalarTruncToScalar(x) sk_float_trunc(x) |
| |
| #define SkScalarFloorToInt(x) sk_float_floor2int(x) |
| #define SkScalarCeilToInt(x) sk_float_ceil2int(x) |
| #define SkScalarRoundToInt(x) sk_float_round2int(x) |
| |
| #define SkScalarAbs(x) sk_float_abs(x) |
| #define SkScalarCopySign(x, y) sk_float_copysign(x, y) |
| #define SkScalarMod(x, y) sk_float_mod(x,y) |
| #define SkScalarSqrt(x) sk_float_sqrt(x) |
| #define SkScalarPow(b, e) sk_float_pow(b, e) |
| |
| #define SkScalarSin(radians) (float)sk_float_sin(radians) |
| #define SkScalarCos(radians) (float)sk_float_cos(radians) |
| #define SkScalarTan(radians) (float)sk_float_tan(radians) |
| #define SkScalarASin(val) (float)sk_float_asin(val) |
| #define SkScalarACos(val) (float)sk_float_acos(val) |
| #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) |
| #define SkScalarExp(x) (float)sk_float_exp(x) |
| #define SkScalarLog(x) (float)sk_float_log(x) |
| #define SkScalarLog2(x) (float)sk_float_log2(x) |
| |
| ////////////////////////////////////////////////////////////////////////////////////////////////// |
| |
| #define SkIntToScalar(x) static_cast<SkScalar>(x) |
| #define SkIntToFloat(x) static_cast<float>(x) |
| #define SkScalarTruncToInt(x) static_cast<int>(x) |
| |
| #define SkScalarToFloat(x) static_cast<float>(x) |
| #define SkFloatToScalar(x) static_cast<SkScalar>(x) |
| #define SkScalarToDouble(x) static_cast<double>(x) |
| #define SkDoubleToScalar(x) static_cast<SkScalar>(x) |
| |
| #define SK_ScalarMin (-SK_ScalarMax) |
| |
| static inline bool SkScalarIsNaN(SkScalar x) { return x != x; } |
| |
| /** Returns true if x is not NaN and not infinite |
| */ |
| static inline bool SkScalarIsFinite(SkScalar x) { |
| // We rely on the following behavior of infinities and nans |
| // 0 * finite --> 0 |
| // 0 * infinity --> NaN |
| // 0 * NaN --> NaN |
| SkScalar prod = x * 0; |
| // At this point, prod will either be NaN or 0 |
| return !SkScalarIsNaN(prod); |
| } |
| |
| static inline bool SkScalarsAreFinite(SkScalar a, SkScalar b) { |
| SkScalar prod = 0; |
| prod *= a; |
| prod *= b; |
| // At this point, prod will either be NaN or 0 |
| return !SkScalarIsNaN(prod); |
| } |
| |
| static inline bool SkScalarsAreFinite(const SkScalar array[], int count) { |
| SkScalar prod = 0; |
| for (int i = 0; i < count; ++i) { |
| prod *= array[i]; |
| } |
| // At this point, prod will either be NaN or 0 |
| return !SkScalarIsNaN(prod); |
| } |
| |
| /** |
| * Variant of SkScalarRoundToInt, that performs the rounding step (adding 0.5) explicitly using |
| * double, to avoid possibly losing the low bit(s) of the answer before calling floor(). |
| * |
| * This routine will likely be slower than SkScalarRoundToInt(), and should only be used when the |
| * extra precision is known to be valuable. |
| * |
| * In particular, this catches the following case: |
| * SkScalar x = 0.49999997; |
| * int ix = SkScalarRoundToInt(x); |
| * SkASSERT(0 == ix); // <--- fails |
| * ix = SkDScalarRoundToInt(x); |
| * SkASSERT(0 == ix); // <--- succeeds |
| */ |
| static inline int SkDScalarRoundToInt(SkScalar x) { |
| double xx = x; |
| xx += 0.5; |
| return (int)floor(xx); |
| } |
| |
| /** Returns the fractional part of the scalar. */ |
| static inline SkScalar SkScalarFraction(SkScalar x) { |
| return x - SkScalarTruncToScalar(x); |
| } |
| |
| static inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { |
| x = SkTMin(x, max); |
| x = SkTMax<SkScalar>(x, 0); |
| return x; |
| } |
| |
| static inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { |
| return SkTPin(x, min, max); |
| } |
| |
| SkScalar SkScalarSinCos(SkScalar radians, SkScalar* cosValue); |
| |
| static inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } |
| |
| #define SkScalarInvert(x) (SK_Scalar1 / (x)) |
| #define SkScalarFastInvert(x) (SK_Scalar1 / (x)) |
| #define SkScalarAve(a, b) (((a) + (b)) * SK_ScalarHalf) |
| #define SkScalarHalf(a) ((a) * SK_ScalarHalf) |
| |
| #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) |
| #define SkRadiansToDegrees(radians) ((radians) * (180 / SK_ScalarPI)) |
| |
| static inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } |
| static inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } |
| |
| static inline bool SkScalarIsInt(SkScalar x) { |
| return x == (SkScalar)(int)x; |
| } |
| |
| /** |
| * Returns -1 || 0 || 1 depending on the sign of value: |
| * -1 if x < 0 |
| * 0 if x == 0 |
| * 1 if x > 0 |
| */ |
| static inline int SkScalarSignAsInt(SkScalar x) { |
| return x < 0 ? -1 : (x > 0); |
| } |
| |
| // Scalar result version of above |
| static inline SkScalar SkScalarSignAsScalar(SkScalar x) { |
| return x < 0 ? -SK_Scalar1 : ((x > 0) ? SK_Scalar1 : 0); |
| } |
| |
| #define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) |
| |
| static inline bool SkScalarNearlyZero(SkScalar x, |
| SkScalar tolerance = SK_ScalarNearlyZero) { |
| SkASSERT(tolerance >= 0); |
| return SkScalarAbs(x) <= tolerance; |
| } |
| |
| static inline bool SkScalarNearlyEqual(SkScalar x, SkScalar y, |
| SkScalar tolerance = SK_ScalarNearlyZero) { |
| SkASSERT(tolerance >= 0); |
| return SkScalarAbs(x-y) <= tolerance; |
| } |
| |
| /** Linearly interpolate between A and B, based on t. |
| If t is 0, return A |
| If t is 1, return B |
| else interpolate. |
| t must be [0..SK_Scalar1] |
| */ |
| static inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) { |
| SkASSERT(t >= 0 && t <= SK_Scalar1); |
| return A + (B - A) * t; |
| } |
| |
| /** Interpolate along the function described by (keys[length], values[length]) |
| for the passed searchKey. SearchKeys outside the range keys[0]-keys[Length] |
| clamp to the min or max value. This function was inspired by a desire |
| to change the multiplier for thickness in fakeBold; therefore it assumes |
| the number of pairs (length) will be small, and a linear search is used. |
| Repeated keys are allowed for discontinuous functions (so long as keys is |
| monotonically increasing), and if key is the value of a repeated scalar in |
| keys, the first one will be used. However, that may change if a binary |
| search is used. |
| */ |
| SkScalar SkScalarInterpFunc(SkScalar searchKey, const SkScalar keys[], |
| const SkScalar values[], int length); |
| |
| /* |
| * Helper to compare an array of scalars. |
| */ |
| static inline bool SkScalarsEqual(const SkScalar a[], const SkScalar b[], int n) { |
| SkASSERT(n >= 0); |
| for (int i = 0; i < n; ++i) { |
| if (a[i] != b[i]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| #endif |