blob: 1f3372a0012cd3cb6c9c10c383fc158f2bffd52b [file] [log] [blame]
* Copyright 2016 Google Inc.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
#ifndef SkRasterPipeline_DEFINED
#define SkRasterPipeline_DEFINED
#include "SkArenaAlloc.h"
#include "SkImageInfo.h"
#include "SkNx.h"
#include "SkTArray.h"
#include "SkTypes.h"
#include <functional>
#include <vector>
struct SkJumper_constants;
struct SkJumper_Engine;
struct SkPM4f;
* SkRasterPipeline provides a cheap way to chain together a pixel processing pipeline.
* It's particularly designed for situations where the potential pipeline is extremely
* combinatoric: {N dst formats} x {M source formats} x {K mask formats} x {C transfer modes} ...
* No one wants to write specialized routines for all those combinations, and if we did, we'd
* end up bloating our code size dramatically. SkRasterPipeline stages can be chained together
* at runtime, so we can scale this problem linearly rather than combinatorically.
* Each stage is represented by a function conforming to a common interface and by an
* arbitrary context pointer. The stage funciton arguments and calling convention are
* designed to maximize the amount of data we can pass along the pipeline cheaply, and
* vary depending on CPU feature detection.
* If you'd like to see how this works internally, you want to start digging around src/jumper.
M(callback) \
M(move_src_dst) M(move_dst_src) \
M(clamp_0) M(clamp_1) M(clamp_a) M(clamp_a_dst) \
M(unpremul) M(premul) M(premul_dst) \
M(set_rgb) M(swap_rb) \
M(from_srgb) M(from_srgb_dst) M(to_srgb) \
M(black_color) M(white_color) M(uniform_color) \
M(seed_shader) M(dither) \
M(load_a8) M(load_a8_dst) M(store_a8) M(gather_a8) \
M(load_g8) M(load_g8_dst) M(gather_g8) \
M(load_565) M(load_565_dst) M(store_565) M(gather_565) \
M(load_4444) M(load_4444_dst) M(store_4444) M(gather_4444) \
M(load_f16) M(load_f16_dst) M(store_f16) M(gather_f16) \
M(load_f32) M(load_f32_dst) M(store_f32) \
M(load_8888) M(load_8888_dst) M(store_8888) M(gather_8888) \
M(load_bgra) M(load_bgra_dst) M(store_bgra) M(gather_bgra) \
M(load_u16_be) M(load_rgb_u16_be) M(store_u16_be) \
M(load_tables_u16_be) M(load_tables_rgb_u16_be) \
M(load_tables) M(load_rgba) M(store_rgba) \
M(scale_u8) M(scale_1_float) \
M(lerp_u8) M(lerp_565) M(lerp_1_float) \
M(dstatop) M(dstin) M(dstout) M(dstover) \
M(srcatop) M(srcin) M(srcout) M(srcover) \
M(clear) M(modulate) M(multiply) M(plus_) M(screen) M(xor_) \
M(colorburn) M(colordodge) M(darken) M(difference) \
M(exclusion) M(hardlight) M(lighten) M(overlay) M(softlight) \
M(hue) M(saturation) M(color) M(luminosity) \
M(srcover_rgba_8888) \
M(luminance_to_alpha) \
M(matrix_translate) M(matrix_scale_translate) \
M(matrix_2x3) M(matrix_3x4) M(matrix_4x5) M(matrix_4x3) \
M(matrix_perspective) \
M(parametric_r) M(parametric_g) M(parametric_b) \
M(parametric_a) \
M(table_r) M(table_g) M(table_b) M(table_a) \
M(lab_to_xyz) \
M(clamp_x) M(mirror_x) M(repeat_x) \
M(clamp_y) M(mirror_y) M(repeat_y) \
M(clamp_x_1) M(mirror_x_1) M(repeat_x_1) \
M(bilinear_nx) M(bilinear_px) M(bilinear_ny) M(bilinear_py) \
M(bicubic_n3x) M(bicubic_n1x) M(bicubic_p1x) M(bicubic_p3x) \
M(bicubic_n3y) M(bicubic_n1y) M(bicubic_p1y) M(bicubic_p3y) \
M(save_xy) M(accumulate) \
M(evenly_spaced_gradient) \
M(gauss_a_to_rgba) M(gradient) \
M(evenly_spaced_2_stop_gradient) \
M(xy_to_unit_angle) \
M(xy_to_radius) \
M(xy_to_2pt_conical_quadratic_min) \
M(xy_to_2pt_conical_quadratic_max) \
M(xy_to_2pt_conical_linear) \
M(mask_2pt_conical_degenerates) M(apply_vector_mask) \
M(byte_tables) M(byte_tables_rgb) \
M(rgb_to_hsl) M(hsl_to_rgb) \
class SkRasterPipeline {
explicit SkRasterPipeline(SkArenaAlloc*);
SkRasterPipeline(const SkRasterPipeline&) = delete;
SkRasterPipeline(SkRasterPipeline&&) = default;
SkRasterPipeline& operator=(const SkRasterPipeline&) = delete;
SkRasterPipeline& operator=(SkRasterPipeline&&) = default;
void reset();
enum StockStage {
#define M(stage) stage,
#undef M
void append(StockStage, void* = nullptr);
void append(StockStage stage, const void* ctx) { this->append(stage, const_cast<void*>(ctx)); }
// Append all stages to this pipeline.
void extend(const SkRasterPipeline&);
// Runs the pipeline walking x through [x,x+n).
void run(size_t x, size_t y, size_t n) const;
// Runs the pipeline in 2d from (x,y) inclusive to (x+w,y+h) exclusive.
void run_2d(size_t x, size_t y, size_t w, size_t h) const;
// Allocates a thunk which amortizes run() setup cost in alloc.
std::function<void(size_t, size_t, size_t)> compile() const;
void dump() const;
// Conversion from sRGB can be subtly tricky when premultiplication is involved.
// Use these helpers to keep things sane.
void append_from_srgb(SkAlphaType);
void append_from_srgb_dst(SkAlphaType);
// Appends a stage for the specified matrix. Tries to optimize the stage by analyzing
// the type of matrix.
void append_matrix(SkArenaAlloc*, const SkMatrix&);
// Appends a stage for the uniform color. Tries to optimize the stage based on the color.
void append_uniform_color(SkArenaAlloc*, const SkPM4f& color);
bool empty() const { return fStages == nullptr; }
struct StageList {
StageList* prev;
StockStage stage;
void* ctx;
const SkJumper_Engine& build_pipeline(void**) const;
void unchecked_append(StockStage, void*);
SkArenaAlloc* fAlloc;
StageList* fStages;
int fNumStages;
int fSlotsNeeded;
template <size_t bytes>
class SkRasterPipeline_ : public SkRasterPipeline {
: SkRasterPipeline(&fBuiltinAlloc) {}
SkSTArenaAlloc<bytes> fBuiltinAlloc;