blob: 63dc3a37aecfa7b8fbef67d3348739c57334e3f7 [file] [log] [blame]
/*
* Copyright 2015 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "GrFragmentProcessor.h"
#include "GrCoordTransform.h"
#include "GrPipeline.h"
#include "GrProcessorAnalysis.h"
#include "effects/GrConstColorProcessor.h"
#include "effects/GrXfermodeFragmentProcessor.h"
#include "glsl/GrGLSLFragmentProcessor.h"
#include "glsl/GrGLSLFragmentShaderBuilder.h"
#include "glsl/GrGLSLProgramDataManager.h"
#include "glsl/GrGLSLUniformHandler.h"
GrFragmentProcessor::~GrFragmentProcessor() {
// If we got here then our ref count must have reached zero, so we will have converted refs
// to pending executions for all children.
for (int i = 0; i < fChildProcessors.count(); ++i) {
fChildProcessors[i]->completedExecution();
}
}
bool GrFragmentProcessor::isEqual(const GrFragmentProcessor& that) const {
if (this->classID() != that.classID() ||
!this->hasSameSamplersAndAccesses(that)) {
return false;
}
if (!this->hasSameTransforms(that)) {
return false;
}
if (!this->onIsEqual(that)) {
return false;
}
if (this->numChildProcessors() != that.numChildProcessors()) {
return false;
}
for (int i = 0; i < this->numChildProcessors(); ++i) {
if (!this->childProcessor(i).isEqual(that.childProcessor(i))) {
return false;
}
}
return true;
}
GrGLSLFragmentProcessor* GrFragmentProcessor::createGLSLInstance() const {
GrGLSLFragmentProcessor* glFragProc = this->onCreateGLSLInstance();
glFragProc->fChildProcessors.push_back_n(fChildProcessors.count());
for (int i = 0; i < fChildProcessors.count(); ++i) {
glFragProc->fChildProcessors[i] = fChildProcessors[i]->createGLSLInstance();
}
return glFragProc;
}
void GrFragmentProcessor::addCoordTransform(const GrCoordTransform* transform) {
fCoordTransforms.push_back(transform);
fFlags |= kUsesLocalCoords_Flag;
SkDEBUGCODE(transform->setInProcessor();)
}
bool GrFragmentProcessor::instantiate(GrResourceProvider* resourceProvider) const {
if (!INHERITED::instantiate(resourceProvider)) {
return false;
}
for (int i = 0; i < this->numChildProcessors(); ++i) {
if (!this->childProcessor(i).instantiate(resourceProvider)) {
return false;
}
}
return true;
}
int GrFragmentProcessor::registerChildProcessor(sk_sp<GrFragmentProcessor> child) {
this->combineRequiredFeatures(*child);
if (child->usesLocalCoords()) {
fFlags |= kUsesLocalCoords_Flag;
}
int index = fChildProcessors.count();
fChildProcessors.push_back(child.release());
return index;
}
void GrFragmentProcessor::notifyRefCntIsZero() const {
// See comment above GrProgramElement for a detailed explanation of why we do this.
for (int i = 0; i < fChildProcessors.count(); ++i) {
fChildProcessors[i]->addPendingExecution();
fChildProcessors[i]->unref();
}
}
bool GrFragmentProcessor::hasSameTransforms(const GrFragmentProcessor& that) const {
if (this->numCoordTransforms() != that.numCoordTransforms()) {
return false;
}
int count = this->numCoordTransforms();
for (int i = 0; i < count; ++i) {
if (!this->coordTransform(i).hasSameEffectAs(that.coordTransform(i))) {
return false;
}
}
return true;
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::MulOutputByInputAlpha(
sk_sp<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
return GrXfermodeFragmentProcessor::MakeFromDstProcessor(std::move(fp), SkBlendMode::kDstIn);
}
namespace {
class PremulInputFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make() {
return sk_sp<GrFragmentProcessor>(new PremulInputFragmentProcessor);
}
const char* name() const override { return "PremultiplyInput"; }
private:
PremulInputFragmentProcessor()
: INHERITED(kPreservesOpaqueInput_OptimizationFlag |
kConstantOutputForConstantInput_OptimizationFlag) {
this->initClassID<PremulInputFragmentProcessor>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
fragBuilder->codeAppendf("%s.rgb *= %s.a;",
args.fOutputColor, args.fInputColor);
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GrColor4f constantOutputForConstantInput(GrColor4f input) const override {
return input.premul();
}
typedef GrFragmentProcessor INHERITED;
};
class UnpremulInputFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make() {
return sk_sp<GrFragmentProcessor>(new UnpremulInputFragmentProcessor);
}
const char* name() const override { return "UnpremultiplyInput"; }
private:
UnpremulInputFragmentProcessor()
: INHERITED(kPreservesOpaqueInput_OptimizationFlag |
kConstantOutputForConstantInput_OptimizationFlag) {
this->initClassID<UnpremulInputFragmentProcessor>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, args.fInputColor);
fragBuilder->codeAppendf("float invAlpha = %s.a <= 0.0 ? 0.0 : 1.0 / %s.a;",
args.fInputColor, args.fInputColor);
fragBuilder->codeAppendf("%s.rgb *= invAlpha;", args.fOutputColor);
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GrColor4f constantOutputForConstantInput(GrColor4f input) const override {
return input.unpremul();
}
typedef GrFragmentProcessor INHERITED;
};
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::PremulInput(sk_sp<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
sk_sp<GrFragmentProcessor> fpPipeline[] = { PremulInputFragmentProcessor::Make(), fp};
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::PremulOutput(sk_sp<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
sk_sp<GrFragmentProcessor> fpPipeline[] = { fp, PremulInputFragmentProcessor::Make() };
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::UnpremulOutput(sk_sp<GrFragmentProcessor> fp) {
if (!fp) {
return nullptr;
}
sk_sp<GrFragmentProcessor> fpPipeline[] = { fp, UnpremulInputFragmentProcessor::Make() };
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::SwizzleOutput(sk_sp<GrFragmentProcessor> fp,
const GrSwizzle& swizzle) {
class SwizzleFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(const GrSwizzle& swizzle) {
return sk_sp<GrFragmentProcessor>(new SwizzleFragmentProcessor(swizzle));
}
const char* name() const override { return "Swizzle"; }
const GrSwizzle& swizzle() const { return fSwizzle; }
private:
SwizzleFragmentProcessor(const GrSwizzle& swizzle)
: INHERITED(kAll_OptimizationFlags)
, fSwizzle(swizzle) {
this->initClassID<SwizzleFragmentProcessor>();
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
const SwizzleFragmentProcessor& sfp = args.fFp.cast<SwizzleFragmentProcessor>();
const GrSwizzle& swizzle = sfp.swizzle();
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
fragBuilder->codeAppendf("%s = %s.%s;",
args.fOutputColor, args.fInputColor, swizzle.c_str());
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder* b) const override {
b->add32(fSwizzle.asKey());
}
bool onIsEqual(const GrFragmentProcessor& other) const override {
const SwizzleFragmentProcessor& sfp = other.cast<SwizzleFragmentProcessor>();
return fSwizzle == sfp.fSwizzle;
}
GrColor4f constantOutputForConstantInput(GrColor4f input) const override {
return fSwizzle.applyTo(input);
}
GrSwizzle fSwizzle;
typedef GrFragmentProcessor INHERITED;
};
if (!fp) {
return nullptr;
}
if (GrSwizzle::RGBA() == swizzle) {
return fp;
}
sk_sp<GrFragmentProcessor> fpPipeline[] = { fp, SwizzleFragmentProcessor::Make(swizzle) };
return GrFragmentProcessor::RunInSeries(fpPipeline, 2);
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::MakeInputPremulAndMulByOutput(
sk_sp<GrFragmentProcessor> fp) {
class PremulFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor> processor) {
return sk_sp<GrFragmentProcessor>(new PremulFragmentProcessor(std::move(processor)));
}
const char* name() const override { return "Premultiply"; }
private:
PremulFragmentProcessor(sk_sp<GrFragmentProcessor> processor)
: INHERITED(OptFlags(processor.get())) {
this->initClassID<PremulFragmentProcessor>();
this->registerChildProcessor(processor);
}
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder;
this->emitChild(0, args);
fragBuilder->codeAppendf("%s.rgb *= %s.rgb;", args.fOutputColor,
args.fInputColor);
fragBuilder->codeAppendf("%s *= %s.a;", args.fOutputColor, args.fInputColor);
}
};
return new GLFP;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
static OptimizationFlags OptFlags(const GrFragmentProcessor* inner) {
OptimizationFlags flags = kNone_OptimizationFlags;
if (inner->preservesOpaqueInput()) {
flags |= kPreservesOpaqueInput_OptimizationFlag;
}
if (inner->hasConstantOutputForConstantInput()) {
flags |= kConstantOutputForConstantInput_OptimizationFlag;
}
return flags;
}
GrColor4f constantOutputForConstantInput(GrColor4f input) const override {
GrColor4f childColor = ConstantOutputForConstantInput(this->childProcessor(0),
GrColor4f::OpaqueWhite());
return GrColor4f(input.fRGBA[3] * input.fRGBA[0] * childColor.fRGBA[0],
input.fRGBA[3] * input.fRGBA[1] * childColor.fRGBA[1],
input.fRGBA[3] * input.fRGBA[2] * childColor.fRGBA[2],
input.fRGBA[3] * childColor.fRGBA[3]);
}
typedef GrFragmentProcessor INHERITED;
};
if (!fp) {
return nullptr;
}
return PremulFragmentProcessor::Make(std::move(fp));
}
//////////////////////////////////////////////////////////////////////////////
sk_sp<GrFragmentProcessor> GrFragmentProcessor::OverrideInput(sk_sp<GrFragmentProcessor> fp,
GrColor4f color) {
class ReplaceInputFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor> child, GrColor4f color) {
return sk_sp<GrFragmentProcessor>(new ReplaceInputFragmentProcessor(std::move(child),
color));
}
const char* name() const override { return "Replace Color"; }
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
GLFP() : fHaveSetColor(false) {}
void emitCode(EmitArgs& args) override {
const char* colorName;
fColorUni = args.fUniformHandler->addUniform(kFragment_GrShaderFlag,
kVec4f_GrSLType,
kDefault_GrSLPrecision,
"Color", &colorName);
this->emitChild(0, colorName, args);
}
private:
void onSetData(const GrGLSLProgramDataManager& pdman,
const GrFragmentProcessor& fp) override {
GrColor4f color = fp.cast<ReplaceInputFragmentProcessor>().fColor;
if (!fHaveSetColor || color != fPreviousColor) {
pdman.set4fv(fColorUni, 1, color.fRGBA);
fPreviousColor = color;
fHaveSetColor = true;
}
}
GrGLSLProgramDataManager::UniformHandle fColorUni;
bool fHaveSetColor;
GrColor4f fPreviousColor;
};
return new GLFP;
}
private:
ReplaceInputFragmentProcessor(sk_sp<GrFragmentProcessor> child, GrColor4f color)
: INHERITED(OptFlags(child.get(), color)), fColor(color) {
this->initClassID<ReplaceInputFragmentProcessor>();
this->registerChildProcessor(std::move(child));
}
static OptimizationFlags OptFlags(const GrFragmentProcessor* child, GrColor4f color) {
OptimizationFlags childFlags = child->optimizationFlags();
OptimizationFlags flags = kNone_OptimizationFlags;
if (childFlags & kConstantOutputForConstantInput_OptimizationFlag) {
flags |= kConstantOutputForConstantInput_OptimizationFlag;
}
if ((childFlags & kPreservesOpaqueInput_OptimizationFlag) && color.isOpaque()) {
flags |= kPreservesOpaqueInput_OptimizationFlag;
}
return flags;
}
void onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override
{}
bool onIsEqual(const GrFragmentProcessor& that) const override {
return fColor == that.cast<ReplaceInputFragmentProcessor>().fColor;
}
GrColor4f constantOutputForConstantInput(GrColor4f) const override {
return ConstantOutputForConstantInput(this->childProcessor(0), fColor);
}
GrColor4f fColor;
typedef GrFragmentProcessor INHERITED;
};
if (!fp) {
return nullptr;
}
return ReplaceInputFragmentProcessor::Make(std::move(fp), color);
}
sk_sp<GrFragmentProcessor> GrFragmentProcessor::RunInSeries(sk_sp<GrFragmentProcessor>* series,
int cnt) {
class SeriesFragmentProcessor : public GrFragmentProcessor {
public:
static sk_sp<GrFragmentProcessor> Make(sk_sp<GrFragmentProcessor>* children, int cnt) {
return sk_sp<GrFragmentProcessor>(new SeriesFragmentProcessor(children, cnt));
}
const char* name() const override { return "Series"; }
GrGLSLFragmentProcessor* onCreateGLSLInstance() const override {
class GLFP : public GrGLSLFragmentProcessor {
public:
void emitCode(EmitArgs& args) override {
// First guy's input might be nil.
SkString temp("out0");
this->emitChild(0, args.fInputColor, &temp, args);
SkString input = temp;
for (int i = 1; i < this->numChildProcessors() - 1; ++i) {
temp.printf("out%d", i);
this->emitChild(i, input.c_str(), &temp, args);
input = temp;
}
// Last guy writes to our output variable.
this->emitChild(this->numChildProcessors() - 1, input.c_str(), args);
}
};
return new GLFP;
}
private:
SeriesFragmentProcessor(sk_sp<GrFragmentProcessor>* children, int cnt)
: INHERITED(OptFlags(children, cnt)) {
SkASSERT(cnt > 1);
this->initClassID<SeriesFragmentProcessor>();
for (int i = 0; i < cnt; ++i) {
this->registerChildProcessor(std::move(children[i]));
}
}
static OptimizationFlags OptFlags(sk_sp<GrFragmentProcessor>* children, int cnt) {
OptimizationFlags flags = kAll_OptimizationFlags;
for (int i = 0; i < cnt && flags != kNone_OptimizationFlags; ++i) {
flags &= children[i]->optimizationFlags();
}
return flags;
}
void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {}
bool onIsEqual(const GrFragmentProcessor&) const override { return true; }
GrColor4f constantOutputForConstantInput(GrColor4f color) const override {
int childCnt = this->numChildProcessors();
for (int i = 0; i < childCnt; ++i) {
color = ConstantOutputForConstantInput(this->childProcessor(i), color);
}
return color;
}
typedef GrFragmentProcessor INHERITED;
};
if (!cnt) {
return nullptr;
}
if (1 == cnt) {
return series[0];
}
// Run the through the series, do the invariant output processing, and look for eliminations.
GrColorFragmentProcessorAnalysis info;
info.analyzeProcessors(sk_sp_address_as_pointer_address(series), cnt);
SkTArray<sk_sp<GrFragmentProcessor>> replacementSeries;
GrColor4f knownColor;
int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor);
if (leadingFPsToEliminate) {
sk_sp<GrFragmentProcessor> colorFP(
GrConstColorProcessor::Make(knownColor, GrConstColorProcessor::kIgnore_InputMode));
if (leadingFPsToEliminate == cnt) {
return colorFP;
}
cnt = cnt - leadingFPsToEliminate + 1;
replacementSeries.reserve(cnt);
replacementSeries.emplace_back(std::move(colorFP));
for (int i = 0; i < cnt - 1; ++i) {
replacementSeries.emplace_back(std::move(series[leadingFPsToEliminate + i]));
}
series = replacementSeries.begin();
}
return SeriesFragmentProcessor::Make(series, cnt);
}
//////////////////////////////////////////////////////////////////////////////
GrFragmentProcessor::Iter::Iter(const GrPipeline& pipeline) {
for (int i = pipeline.numFragmentProcessors() - 1; i >= 0; --i) {
fFPStack.push_back(&pipeline.getFragmentProcessor(i));
}
}
const GrFragmentProcessor* GrFragmentProcessor::Iter::next() {
if (fFPStack.empty()) {
return nullptr;
}
const GrFragmentProcessor* back = fFPStack.back();
fFPStack.pop_back();
for (int i = back->numChildProcessors() - 1; i >= 0; --i) {
fFPStack.push_back(&back->childProcessor(i));
}
return back;
}