blob: 44155a834ff689a4a491f76974f96421fc529631 [file] [log] [blame]
* Copyright 2015 Google Inc.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
#ifndef GrResourceProvider_DEFINED
#define GrResourceProvider_DEFINED
#include "GrBuffer.h"
#include "GrPathRange.h"
#include "SkImageInfo.h"
#include "SkScalerContext.h"
class GrBackendRenderTarget;
class GrBackendSemaphore;
class GrBackendTexture;
class GrGpu;
class GrPath;
class GrRenderTarget;
class GrSemaphore;
class GrSingleOwner;
class GrStencilAttachment;
class GrSurfaceProxy;
class GrTexture;
class GrTextureProxy;
class GrStyle;
class SkDescriptor;
class SkPath;
class SkTypeface;
* A factory for arbitrary resource types. This class is intended for use within the Gr code base.
* Some members force callers to make a flags (pendingIO) decision. This can be relaxed once
* is fixed.
class GrResourceProvider {
GrResourceProvider(GrGpu* gpu, GrResourceCache* cache, GrSingleOwner* owner);
template <typename T> T* findAndRefTByUniqueKey(const GrUniqueKey& key) {
return static_cast<T*>(this->findAndRefResourceByUniqueKey(key));
// Textures
/** Assigns a unique key to the texture. The texture will be findable via this key using
findTextureByUniqueKey(). If an existing texture has this key, it's key will be removed. */
void assignUniqueKeyToProxy(const GrUniqueKey& key, GrTextureProxy*);
/** Finds a texture by unique key. If the texture is found it is ref'ed and returned. */
sk_sp<GrTextureProxy> findProxyByUniqueKey(const GrUniqueKey& key);
* Finds a texture that approximately matches the descriptor. Will be at least as large in width
* and height as desc specifies. If desc specifies that the texture should be a render target
* then result will be a render target. Format and sample count will always match the request.
* The contents of the texture are undefined.
sk_sp<GrTexture> createApproxTexture(const GrSurfaceDesc&, uint32_t flags);
/** Create an exact fit texture with no initial data to upload.
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted, uint32_t flags = 0);
sk_sp<GrTexture> createTexture(const GrSurfaceDesc&, SkBudgeted,
const GrMipLevel texels[], int mipLevelCount,
SkDestinationSurfaceColorMode mipColorMode);
sk_sp<GrTextureProxy> createTextureProxy(const GrSurfaceDesc&, SkBudgeted, const GrMipLevel&);
// Wrapped Backend Surfaces
* Wraps an existing texture with a GrTexture object.
* OpenGL: if the object is a texture Gr may change its GL texture params
* when it is drawn.
* @return GrTexture object or NULL on failure.
sk_sp<GrTexture> wrapBackendTexture(const GrBackendTexture& tex,
GrSurfaceOrigin origin,
GrWrapOwnership = kBorrow_GrWrapOwnership);
* This makes the backend texture be renderable. If sampleCnt is > 0 and the underlying API
* uses separate MSAA render buffers then a MSAA render buffer is created that resolves
* to the texture.
sk_sp<GrTexture> wrapRenderableBackendTexture(const GrBackendTexture& tex,
GrSurfaceOrigin origin,
int sampleCnt,
GrWrapOwnership = kBorrow_GrWrapOwnership);
* Wraps an existing render target with a GrRenderTarget object. It is
* similar to wrapBackendTexture but can be used to draw into surfaces
* that are not also textures (e.g. FBO 0 in OpenGL, or an MSAA buffer that
* the client will resolve to a texture). Currently wrapped render targets
* always use the kBorrow_GrWrapOwnership semantics.
* @return GrRenderTarget object or NULL on failure.
sk_sp<GrRenderTarget> wrapBackendRenderTarget(const GrBackendRenderTarget&, GrSurfaceOrigin);
static const uint32_t kMinScratchTextureSize;
* Either finds and refs, or creates an index buffer with a repeating pattern for drawing
* contiguous vertices of a repeated mesh. If the return is non-null, the caller owns a ref on
* the returned GrBuffer.
* @param pattern the pattern of indices to repeat
* @param patternSize size in bytes of the pattern
* @param reps number of times to repeat the pattern
* @param vertCount number of vertices the pattern references
* @param key Key to be assigned to the index buffer.
* @return The index buffer if successful, otherwise nullptr.
const GrBuffer* findOrCreatePatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey& key) {
if (GrBuffer* buffer = this->findAndRefTByUniqueKey<GrBuffer>(key)) {
return buffer;
return this->createPatternedIndexBuffer(pattern, patternSize, reps, vertCount, key);
* Returns an index buffer that can be used to render quads.
* Six indices per quad: 0, 1, 2, 0, 2, 3, etc.
* The max number of quads is the buffer's index capacity divided by 6.
* Draw with GrPrimitiveType::kTriangles
* @ return the quad index buffer
const GrBuffer* refQuadIndexBuffer() {
if (GrBuffer* buffer =
this->findAndRefTByUniqueKey<GrBuffer>(fQuadIndexBufferKey)) {
return buffer;
return this->createQuadIndexBuffer();
* Factories for GrPath and GrPathRange objects. It's an error to call these if path rendering
* is not supported.
sk_sp<GrPath> createPath(const SkPath&, const GrStyle&);
sk_sp<GrPathRange> createPathRange(GrPathRange::PathGenerator*, const GrStyle&);
sk_sp<GrPathRange> createGlyphs(const SkTypeface*, const SkScalerContextEffects&,
const SkDescriptor*, const GrStyle&);
/** These flags govern which scratch resources we are allowed to return */
enum Flags {
kExact_Flag = 0x1,
/** If the caller intends to do direct reads/writes to/from the CPU then this flag must be
* set when accessing resources during a GrOpList flush. This includes the execution of
* GrOp objects. The reason is that these memory operations are done immediately and
* will occur out of order WRT the operations being flushed.
* Make this automatic:
kNoPendingIO_Flag = 0x2,
kNoCreate_Flag = 0x4,
/** Normally the caps may indicate a preference for client-side buffers. Set this flag when
* creating a buffer to guarantee it resides in GPU memory.
kRequireGpuMemory_Flag = 0x8,
* Returns a buffer.
* @param size minimum size of buffer to return.
* @param intendedType hint to the graphics subsystem about what the buffer will be used for.
* @param GrAccessPattern hint to the graphics subsystem about how the data will be accessed.
* @param flags see Flags enum.
* @param data optional data with which to initialize the buffer.
* @return the buffer if successful, otherwise nullptr.
GrBuffer* createBuffer(size_t size, GrBufferType intendedType, GrAccessPattern, uint32_t flags,
const void* data = nullptr);
* If passed in render target already has a stencil buffer, return it. Otherwise attempt to
* attach one.
GrStencilAttachment* attachStencilAttachment(GrRenderTarget* rt);
* Wraps an existing texture with a GrRenderTarget object. This is useful when the provided
* texture has a format that cannot be textured from by Skia, but we want to raster to it.
* The texture is wrapped as borrowed. The texture object will not be freed once the
* render target is destroyed.
* @return GrRenderTarget object or NULL on failure.
sk_sp<GrRenderTarget> wrapBackendTextureAsRenderTarget(const GrBackendTexture&,
GrSurfaceOrigin origin,
int sampleCnt);
* Assigns a unique key to a resource. If the key is associated with another resource that
* association is removed and replaced by this resource.
void assignUniqueKeyToResource(const GrUniqueKey&, GrGpuResource*);
* Finds a resource in the cache, based on the specified key. This is intended for use in
* conjunction with addResourceToCache(). The return value will be NULL if not found. The
* caller must balance with a call to unref().
GrGpuResource* findAndRefResourceByUniqueKey(const GrUniqueKey&);
sk_sp<GrSemaphore> SK_WARN_UNUSED_RESULT makeSemaphore(bool isOwned = true);
sk_sp<GrSemaphore> wrapBackendSemaphore(const GrBackendSemaphore&,
GrWrapOwnership = kBorrow_GrWrapOwnership);
// Takes the GrSemaphore and sets the ownership of the semaphore to the GrGpu object used by
// this class. This call is only used when passing a GrSemaphore from one context to another.
void takeOwnershipOfSemaphore(sk_sp<GrSemaphore>);
// Takes the GrSemaphore and resets the ownership of the semaphore so that it is not owned by
// any GrGpu. A follow up call to takeOwnershipofSemaphore must be made so that the underlying
// semaphore can be deleted. This call is only used when passing a GrSemaphore from one context
// to another.
void releaseOwnershipOfSemaphore(sk_sp<GrSemaphore>);
void abandon() {
fCache = nullptr;
fGpu = nullptr;
// 'proxy' is about to be used as a texture src or drawn to. This query can be used to
// determine if it is going to need a texture domain or a full clear.
static bool IsFunctionallyExact(GrSurfaceProxy* proxy);
const GrCaps* caps() const { return fCaps.get(); }
GrTexture* findAndRefTextureByUniqueKey(const GrUniqueKey& key);
void assignUniqueKeyToTexture(const GrUniqueKey& key, GrTexture* texture);
sk_sp<GrTexture> refScratchTexture(const GrSurfaceDesc&, uint32_t scratchTextureFlags);
* Try to find an existing scratch texture that exactly matches 'desc'. If successful
* update the budgeting accordingly.
sk_sp<GrTexture> getExactScratch(const GrSurfaceDesc&, SkBudgeted, uint32_t flags);
GrResourceCache* cache() { return fCache; }
const GrResourceCache* cache() const { return fCache; }
GrGpu* gpu() { return fGpu; }
const GrGpu* gpu() const { return fGpu; }
bool isAbandoned() const {
SkASSERT(SkToBool(fGpu) == SkToBool(fCache));
return !SkToBool(fCache);
const GrBuffer* createPatternedIndexBuffer(const uint16_t* pattern,
int patternSize,
int reps,
int vertCount,
const GrUniqueKey& key);
const GrBuffer* createQuadIndexBuffer();
GrResourceCache* fCache;
GrGpu* fGpu;
sk_sp<const GrCaps> fCaps;
GrUniqueKey fQuadIndexBufferKey;
// In debug builds we guard against improper thread handling
SkDEBUGCODE(mutable GrSingleOwner* fSingleOwner;)