| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // A Disassembler object is used to disassemble a block of code instruction by |
| // instruction. The default implementation of the NameConverter object can be |
| // overriden to modify register names or to do symbol lookup on addresses. |
| // |
| // The example below will disassemble a block of code and print it to stdout. |
| // |
| // NameConverter converter; |
| // Disassembler d(converter); |
| // for (byte* pc = begin; pc < end;) { |
| // v8::internal::EmbeddedVector<char, 256> buffer; |
| // byte* prev_pc = pc; |
| // pc += d.InstructionDecode(buffer, pc); |
| // printf("%p %08x %s\n", |
| // prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); |
| // } |
| // |
| // The Disassembler class also has a convenience method to disassemble a block |
| // of code into a FILE*, meaning that the above functionality could also be |
| // achieved by just calling Disassembler::Disassemble(stdout, begin, end); |
| |
| |
| #include <assert.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/arm/constants-arm.h" |
| #include "src/base/bits.h" |
| #include "src/base/platform/platform.h" |
| #include "src/disasm.h" |
| #include "src/macro-assembler.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| const auto GetRegConfig = RegisterConfiguration::Default; |
| |
| //------------------------------------------------------------------------------ |
| |
| // Decoder decodes and disassembles instructions into an output buffer. |
| // It uses the converter to convert register names and call destinations into |
| // more informative description. |
| class Decoder { |
| public: |
| Decoder(const disasm::NameConverter& converter, |
| Vector<char> out_buffer) |
| : converter_(converter), |
| out_buffer_(out_buffer), |
| out_buffer_pos_(0) { |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| ~Decoder() {} |
| |
| // Writes one disassembled instruction into 'buffer' (0-terminated). |
| // Returns the length of the disassembled machine instruction in bytes. |
| int InstructionDecode(byte* instruction); |
| |
| static bool IsConstantPoolAt(byte* instr_ptr); |
| static int ConstantPoolSizeAt(byte* instr_ptr); |
| |
| private: |
| // Bottleneck functions to print into the out_buffer. |
| void PrintChar(const char ch); |
| void Print(const char* str); |
| |
| // Printing of common values. |
| void PrintRegister(int reg); |
| void PrintSRegister(int reg); |
| void PrintDRegister(int reg); |
| int FormatVFPRegister(Instruction* instr, const char* format); |
| void PrintMovwMovt(Instruction* instr); |
| int FormatVFPinstruction(Instruction* instr, const char* format); |
| void PrintCondition(Instruction* instr); |
| void PrintShiftRm(Instruction* instr); |
| void PrintShiftImm(Instruction* instr); |
| void PrintShiftSat(Instruction* instr); |
| void PrintPU(Instruction* instr); |
| void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); |
| |
| // Handle formatting of instructions and their options. |
| int FormatRegister(Instruction* instr, const char* option); |
| void FormatNeonList(int Vd, int type); |
| void FormatNeonMemory(int Rn, int align, int Rm); |
| int FormatOption(Instruction* instr, const char* option); |
| void Format(Instruction* instr, const char* format); |
| void Unknown(Instruction* instr); |
| |
| // Each of these functions decodes one particular instruction type, a 3-bit |
| // field in the instruction encoding. |
| // Types 0 and 1 are combined as they are largely the same except for the way |
| // they interpret the shifter operand. |
| void DecodeType01(Instruction* instr); |
| void DecodeType2(Instruction* instr); |
| void DecodeType3(Instruction* instr); |
| void DecodeType4(Instruction* instr); |
| void DecodeType5(Instruction* instr); |
| void DecodeType6(Instruction* instr); |
| // Type 7 includes special Debugger instructions. |
| int DecodeType7(Instruction* instr); |
| // CP15 coprocessor instructions. |
| void DecodeTypeCP15(Instruction* instr); |
| // For VFP support. |
| void DecodeTypeVFP(Instruction* instr); |
| void DecodeType6CoprocessorIns(Instruction* instr); |
| |
| void DecodeSpecialCondition(Instruction* instr); |
| |
| void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); |
| void DecodeVCMP(Instruction* instr); |
| void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); |
| void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); |
| |
| const disasm::NameConverter& converter_; |
| Vector<char> out_buffer_; |
| int out_buffer_pos_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Decoder); |
| }; |
| |
| |
| // Support for assertions in the Decoder formatting functions. |
| #define STRING_STARTS_WITH(string, compare_string) \ |
| (strncmp(string, compare_string, strlen(compare_string)) == 0) |
| |
| |
| // Append the ch to the output buffer. |
| void Decoder::PrintChar(const char ch) { |
| out_buffer_[out_buffer_pos_++] = ch; |
| } |
| |
| |
| // Append the str to the output buffer. |
| void Decoder::Print(const char* str) { |
| char cur = *str++; |
| while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| PrintChar(cur); |
| cur = *str++; |
| } |
| out_buffer_[out_buffer_pos_] = 0; |
| } |
| |
| |
| // These condition names are defined in a way to match the native disassembler |
| // formatting. See for example the command "objdump -d <binary file>". |
| static const char* const cond_names[kNumberOfConditions] = { |
| "eq", "ne", "cs" , "cc" , "mi" , "pl" , "vs" , "vc" , |
| "hi", "ls", "ge", "lt", "gt", "le", "", "invalid", |
| }; |
| |
| |
| // Print the condition guarding the instruction. |
| void Decoder::PrintCondition(Instruction* instr) { |
| Print(cond_names[instr->ConditionValue()]); |
| } |
| |
| |
| // Print the register name according to the active name converter. |
| void Decoder::PrintRegister(int reg) { |
| Print(converter_.NameOfCPURegister(reg)); |
| } |
| |
| |
| // Print the VFP S register name according to the active name converter. |
| void Decoder::PrintSRegister(int reg) { |
| Print(VFPRegisters::Name(reg, false)); |
| } |
| |
| |
| // Print the VFP D register name according to the active name converter. |
| void Decoder::PrintDRegister(int reg) { |
| Print(VFPRegisters::Name(reg, true)); |
| } |
| |
| |
| // These shift names are defined in a way to match the native disassembler |
| // formatting. See for example the command "objdump -d <binary file>". |
| static const char* const shift_names[kNumberOfShifts] = { |
| "lsl", "lsr", "asr", "ror" |
| }; |
| |
| |
| // Print the register shift operands for the instruction. Generally used for |
| // data processing instructions. |
| void Decoder::PrintShiftRm(Instruction* instr) { |
| ShiftOp shift = instr->ShiftField(); |
| int shift_index = instr->ShiftValue(); |
| int shift_amount = instr->ShiftAmountValue(); |
| int rm = instr->RmValue(); |
| |
| PrintRegister(rm); |
| |
| if ((instr->RegShiftValue() == 0) && (shift == LSL) && (shift_amount == 0)) { |
| // Special case for using rm only. |
| return; |
| } |
| if (instr->RegShiftValue() == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| Print(", RRX"); |
| return; |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s #%d", |
| shift_names[shift_index], |
| shift_amount); |
| } else { |
| // by register |
| int rs = instr->RsValue(); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s ", shift_names[shift_index]); |
| PrintRegister(rs); |
| } |
| } |
| |
| |
| // Print the immediate operand for the instruction. Generally used for data |
| // processing instructions. |
| void Decoder::PrintShiftImm(Instruction* instr) { |
| int rotate = instr->RotateValue() * 2; |
| int immed8 = instr->Immed8Value(); |
| int imm = base::bits::RotateRight32(immed8, rotate); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%d", imm); |
| } |
| |
| |
| // Print the optional shift and immediate used by saturating instructions. |
| void Decoder::PrintShiftSat(Instruction* instr) { |
| int shift = instr->Bits(11, 7); |
| if (shift > 0) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", %s #%d", |
| shift_names[instr->Bit(6) * 2], |
| instr->Bits(11, 7)); |
| } |
| } |
| |
| |
| // Print PU formatting to reduce complexity of FormatOption. |
| void Decoder::PrintPU(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| Print("da"); |
| break; |
| } |
| case ia_x: { |
| Print("ia"); |
| break; |
| } |
| case db_x: { |
| Print("db"); |
| break; |
| } |
| case ib_x: { |
| Print("ib"); |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of |
| // the FormatOption method. |
| void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { |
| switch (svc) { |
| case kCallRtRedirected: |
| Print("call rt redirected"); |
| return; |
| case kBreakpoint: |
| Print("breakpoint"); |
| return; |
| default: |
| if (svc >= kStopCode) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d - 0x%x", |
| svc & kStopCodeMask, |
| svc & kStopCodeMask); |
| } else { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| svc); |
| } |
| return; |
| } |
| } |
| |
| |
| // Handle all register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatRegister(Instruction* instr, const char* format) { |
| DCHECK_EQ(format[0], 'r'); |
| if (format[1] == 'n') { // 'rn: Rn register |
| int reg = instr->RnValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'd') { // 'rd: Rd register |
| int reg = instr->RdValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 's') { // 'rs: Rs register |
| int reg = instr->RsValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'm') { // 'rm: Rm register |
| int reg = instr->RmValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 't') { // 'rt: Rt register |
| int reg = instr->RtValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'l') { |
| // 'rlist: register list for load and store multiple instructions |
| DCHECK(STRING_STARTS_WITH(format, "rlist")); |
| int rlist = instr->RlistValue(); |
| int reg = 0; |
| Print("{"); |
| // Print register list in ascending order, by scanning the bit mask. |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| PrintRegister(reg); |
| if ((rlist >> 1) != 0) { |
| Print(", "); |
| } |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| Print("}"); |
| return 5; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| // Handle all VFP register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatVFPRegister(Instruction* instr, const char* format) { |
| DCHECK((format[0] == 'S') || (format[0] == 'D')); |
| |
| VFPRegPrecision precision = |
| format[0] == 'D' ? kDoublePrecision : kSinglePrecision; |
| |
| int retval = 2; |
| int reg = -1; |
| if (format[1] == 'n') { |
| reg = instr->VFPNRegValue(precision); |
| } else if (format[1] == 'm') { |
| reg = instr->VFPMRegValue(precision); |
| } else if (format[1] == 'd') { |
| if ((instr->TypeValue() == 7) && |
| (instr->Bit(24) == 0x0) && |
| (instr->Bits(11, 9) == 0x5) && |
| (instr->Bit(4) == 0x1)) { |
| // vmov.32 has Vd in a different place. |
| reg = instr->Bits(19, 16) | (instr->Bit(7) << 4); |
| } else { |
| reg = instr->VFPDRegValue(precision); |
| } |
| |
| if (format[2] == '+') { |
| int immed8 = instr->Immed8Value(); |
| if (format[0] == 'S') reg += immed8 - 1; |
| if (format[0] == 'D') reg += (immed8 / 2 - 1); |
| } |
| if (format[2] == '+') retval = 3; |
| } else { |
| UNREACHABLE(); |
| } |
| |
| if (precision == kSinglePrecision) { |
| PrintSRegister(reg); |
| } else { |
| PrintDRegister(reg); |
| } |
| |
| return retval; |
| } |
| |
| |
| int Decoder::FormatVFPinstruction(Instruction* instr, const char* format) { |
| Print(format); |
| return 0; |
| } |
| |
| |
| void Decoder::FormatNeonList(int Vd, int type) { |
| if (type == nlt_1) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "{d%d}", Vd); |
| } else if (type == nlt_2) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "{d%d, d%d}", Vd, Vd + 1); |
| } else if (type == nlt_3) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "{d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2); |
| } else if (type == nlt_4) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "{d%d, d%d, d%d, d%d}", Vd, Vd + 1, Vd + 2, Vd + 3); |
| } |
| } |
| |
| |
| void Decoder::FormatNeonMemory(int Rn, int align, int Rm) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "[%s", |
| converter_.NameOfCPURegister(Rn)); |
| if (align != 0) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| ":%d", (1 << align) << 6); |
| } |
| if (Rm == 15) { |
| Print("]"); |
| } else if (Rm == 13) { |
| Print("]!"); |
| } else { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "], %s", |
| converter_.NameOfCPURegister(Rm)); |
| } |
| } |
| |
| |
| // Print the movw or movt instruction. |
| void Decoder::PrintMovwMovt(Instruction* instr) { |
| int imm = instr->ImmedMovwMovtValue(); |
| int rd = instr->RdValue(); |
| PrintRegister(rd); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, ", #%d", imm); |
| } |
| |
| |
| // FormatOption takes a formatting string and interprets it based on |
| // the current instructions. The format string points to the first |
| // character of the option string (the option escape has already been |
| // consumed by the caller.) FormatOption returns the number of |
| // characters that were consumed from the formatting string. |
| int Decoder::FormatOption(Instruction* instr, const char* format) { |
| switch (format[0]) { |
| case 'a': { // 'a: accumulate multiplies |
| if (instr->Bit(21) == 0) { |
| Print("ul"); |
| } else { |
| Print("la"); |
| } |
| return 1; |
| } |
| case 'b': { // 'b: byte loads or stores |
| if (instr->HasB()) { |
| Print("b"); |
| } |
| return 1; |
| } |
| case 'c': { // 'cond: conditional execution |
| DCHECK(STRING_STARTS_WITH(format, "cond")); |
| PrintCondition(instr); |
| return 4; |
| } |
| case 'd': { // 'd: vmov double immediate. |
| double d = instr->DoubleImmedVmov().get_scalar(); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "#%g", d); |
| return 1; |
| } |
| case 'f': { // 'f: bitfield instructions - v7 and above. |
| uint32_t lsbit = instr->Bits(11, 7); |
| uint32_t width = instr->Bits(20, 16) + 1; |
| if (instr->Bit(21) == 0) { |
| // BFC/BFI: |
| // Bits 20-16 represent most-significant bit. Covert to width. |
| width -= lsbit; |
| DCHECK_GT(width, 0); |
| } |
| DCHECK_LE(width + lsbit, 32); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "#%d, #%d", lsbit, width); |
| return 1; |
| } |
| case 'h': { // 'h: halfword operation for extra loads and stores |
| if (instr->HasH()) { |
| Print("h"); |
| } else { |
| Print("b"); |
| } |
| return 1; |
| } |
| case 'i': { // 'i: immediate value from adjacent bits. |
| // Expects tokens in the form imm%02d@%02d, i.e. imm05@07, imm10@16 |
| int width = (format[3] - '0') * 10 + (format[4] - '0'); |
| int lsb = (format[6] - '0') * 10 + (format[7] - '0'); |
| |
| DCHECK((width >= 1) && (width <= 32)); |
| DCHECK((lsb >= 0) && (lsb <= 31)); |
| DCHECK_LE(width + lsb, 32); |
| |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| instr->Bits(width + lsb - 1, lsb)); |
| return 8; |
| } |
| case 'l': { // 'l: branch and link |
| if (instr->HasLink()) { |
| Print("l"); |
| } |
| return 1; |
| } |
| case 'm': { |
| if (format[1] == 'w') { |
| // 'mw: movt/movw instructions. |
| PrintMovwMovt(instr); |
| return 2; |
| } |
| if (format[1] == 'e') { // 'memop: load/store instructions. |
| DCHECK(STRING_STARTS_WITH(format, "memop")); |
| if (instr->HasL()) { |
| Print("ldr"); |
| } else { |
| if ((instr->Bits(27, 25) == 0) && (instr->Bit(20) == 0) && |
| (instr->Bits(7, 6) == 3) && (instr->Bit(4) == 1)) { |
| if (instr->Bit(5) == 1) { |
| Print("strd"); |
| } else { |
| Print("ldrd"); |
| } |
| return 5; |
| } |
| Print("str"); |
| } |
| return 5; |
| } |
| // 'msg: for simulator break instructions |
| DCHECK(STRING_STARTS_WITH(format, "msg")); |
| byte* str = |
| reinterpret_cast<byte*>(instr->InstructionBits() & 0x0FFFFFFF); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s", converter_.NameInCode(str)); |
| return 3; |
| } |
| case 'o': { |
| if ((format[3] == '1') && (format[4] == '2')) { |
| // 'off12: 12-bit offset for load and store instructions |
| DCHECK(STRING_STARTS_WITH(format, "off12")); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", instr->Offset12Value()); |
| return 5; |
| } else if (format[3] == '0') { |
| // 'off0to3and8to19 16-bit immediate encoded in bits 19-8 and 3-0. |
| DCHECK(STRING_STARTS_WITH(format, "off0to3and8to19")); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%d", |
| (instr->Bits(19, 8) << 4) + |
| instr->Bits(3, 0)); |
| return 15; |
| } |
| // 'off8: 8-bit offset for extra load and store instructions |
| DCHECK(STRING_STARTS_WITH(format, "off8")); |
| int offs8 = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", offs8); |
| return 4; |
| } |
| case 'p': { // 'pu: P and U bits for load and store instructions |
| DCHECK(STRING_STARTS_WITH(format, "pu")); |
| PrintPU(instr); |
| return 2; |
| } |
| case 'r': { |
| return FormatRegister(instr, format); |
| } |
| case 's': { |
| if (format[1] == 'h') { // 'shift_op or 'shift_rm or 'shift_sat. |
| if (format[6] == 'o') { // 'shift_op |
| DCHECK(STRING_STARTS_WITH(format, "shift_op")); |
| if (instr->TypeValue() == 0) { |
| PrintShiftRm(instr); |
| } else { |
| DCHECK_EQ(instr->TypeValue(), 1); |
| PrintShiftImm(instr); |
| } |
| return 8; |
| } else if (format[6] == 's') { // 'shift_sat. |
| DCHECK(STRING_STARTS_WITH(format, "shift_sat")); |
| PrintShiftSat(instr); |
| return 9; |
| } else { // 'shift_rm |
| DCHECK(STRING_STARTS_WITH(format, "shift_rm")); |
| PrintShiftRm(instr); |
| return 8; |
| } |
| } else if (format[1] == 'v') { // 'svc |
| DCHECK(STRING_STARTS_WITH(format, "svc")); |
| PrintSoftwareInterrupt(instr->SvcValue()); |
| return 3; |
| } else if (format[1] == 'i') { // 'sign: signed extra loads and stores |
| DCHECK(STRING_STARTS_WITH(format, "sign")); |
| if (instr->HasSign()) { |
| Print("s"); |
| } |
| return 4; |
| } else if (format[1] == 'p') { |
| if (format[8] == '_') { // 'spec_reg_fields |
| DCHECK(STRING_STARTS_WITH(format, "spec_reg_fields")); |
| Print("_"); |
| int mask = instr->Bits(19, 16); |
| if (mask == 0) Print("(none)"); |
| if ((mask & 0x8) != 0) Print("f"); |
| if ((mask & 0x4) != 0) Print("s"); |
| if ((mask & 0x2) != 0) Print("x"); |
| if ((mask & 0x1) != 0) Print("c"); |
| return 15; |
| } else { // 'spec_reg |
| DCHECK(STRING_STARTS_WITH(format, "spec_reg")); |
| if (instr->Bit(22) == 0) { |
| Print("CPSR"); |
| } else { |
| Print("SPSR"); |
| } |
| return 8; |
| } |
| } |
| // 's: S field of data processing instructions |
| if (instr->HasS()) { |
| Print("s"); |
| } |
| return 1; |
| } |
| case 't': { // 'target: target of branch instructions |
| DCHECK(STRING_STARTS_WITH(format, "target")); |
| int off = (instr->SImmed24Value() << 2) + 8; |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%+d -> %s", |
| off, |
| converter_.NameOfAddress( |
| reinterpret_cast<byte*>(instr) + off)); |
| return 6; |
| } |
| case 'u': { // 'u: signed or unsigned multiplies |
| // The manual gets the meaning of bit 22 backwards in the multiply |
| // instruction overview on page A3.16.2. The instructions that |
| // exist in u and s variants are the following: |
| // smull A4.1.87 |
| // umull A4.1.129 |
| // umlal A4.1.128 |
| // smlal A4.1.76 |
| // For these 0 means u and 1 means s. As can be seen on their individual |
| // pages. The other 18 mul instructions have the bit set or unset in |
| // arbitrary ways that are unrelated to the signedness of the instruction. |
| // None of these 18 instructions exist in both a 'u' and an 's' variant. |
| |
| if (instr->Bit(22) == 0) { |
| Print("u"); |
| } else { |
| Print("s"); |
| } |
| return 1; |
| } |
| case 'v': { |
| return FormatVFPinstruction(instr, format); |
| } |
| case 'A': { |
| // Print pc-relative address. |
| int offset = instr->Offset12Value(); |
| byte* pc = reinterpret_cast<byte*>(instr) + Instruction::kPCReadOffset; |
| byte* addr; |
| switch (instr->PUField()) { |
| case db_x: { |
| addr = pc - offset; |
| break; |
| } |
| case ib_x: { |
| addr = pc + offset; |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| return -1; |
| } |
| } |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%p", |
| static_cast<void*>(addr)); |
| return 1; |
| } |
| case 'S': |
| case 'D': { |
| return FormatVFPRegister(instr, format); |
| } |
| case 'w': { // 'w: W field of load and store instructions |
| if (instr->HasW()) { |
| Print("!"); |
| } |
| return 1; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| // Format takes a formatting string for a whole instruction and prints it into |
| // the output buffer. All escaped options are handed to FormatOption to be |
| // parsed further. |
| void Decoder::Format(Instruction* instr, const char* format) { |
| char cur = *format++; |
| while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| if (cur == '\'') { // Single quote is used as the formatting escape. |
| format += FormatOption(instr, format); |
| } else { |
| out_buffer_[out_buffer_pos_++] = cur; |
| } |
| cur = *format++; |
| } |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| |
| // The disassembler may end up decoding data inlined in the code. We do not want |
| // it to crash if the data does not resemble any known instruction. |
| #define VERIFY(condition) \ |
| if(!(condition)) { \ |
| Unknown(instr); \ |
| return; \ |
| } |
| |
| |
| // For currently unimplemented decodings the disassembler calls Unknown(instr) |
| // which will just print "unknown" of the instruction bits. |
| void Decoder::Unknown(Instruction* instr) { |
| Format(instr, "unknown"); |
| } |
| |
| |
| void Decoder::DecodeType01(Instruction* instr) { |
| int type = instr->TypeValue(); |
| if ((type == 0) && instr->IsSpecialType0()) { |
| // multiply instruction or extra loads and stores |
| if (instr->Bits(7, 4) == 9) { |
| if (instr->Bit(24) == 0) { |
| // multiply instructions |
| if (instr->Bit(23) == 0) { |
| if (instr->Bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to Rd as being |
| // the destination for the operation, but it confusingly uses the |
| // Rn field to encode it. |
| Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| } else { |
| if (instr->Bit(22) == 0) { |
| // The MLA instruction description (A 4.1.28) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| } else { |
| // The MLS instruction description (A 4.1.29) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| } |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi and RdLo |
| // when referring to the target registers. They are mapped to the Rn |
| // and Rd fields as follows: |
| // RdLo == Rd field |
| // RdHi == Rn field |
| // The order of registers is: <RdLo>, <RdHi>, <Rm>, <Rs> |
| Format(instr, "'um'al'cond's 'rd, 'rn, 'rm, 'rs"); |
| } |
| } else { |
| if (instr->Bits(24, 23) == 3) { |
| if (instr->Bit(20) == 1) { |
| // ldrex |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| Format(instr, "ldrex'cond 'rt, ['rn]"); |
| break; |
| case 2: |
| Format(instr, "ldrexb'cond 'rt, ['rn]"); |
| break; |
| case 3: |
| Format(instr, "ldrexh'cond 'rt, ['rn]"); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // strex |
| // The instruction is documented as strex rd, rt, [rn], but the |
| // "rt" register is using the rm bits. |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| break; |
| case 2: |
| Format(instr, "strexb'cond 'rd, 'rm, ['rn]"); |
| break; |
| case 3: |
| Format(instr, "strexh'cond 'rd, 'rm, ['rn]"); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| Unknown(instr); // not used by V8 |
| } |
| } |
| } else if ((instr->Bit(20) == 0) && ((instr->Bits(7, 4) & 0xD) == 0xD)) { |
| // ldrd, strd |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn], -'rm"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn], #-'off8"); |
| } |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn], +'rm"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn], #+'off8"); |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn, -'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn, #-'off8]'w"); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond's 'rd, ['rn, +'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond's 'rd, ['rn, #+'off8]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // extra load/store instructions |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); |
| } |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->Bit(22) == 0) { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); |
| } else { |
| Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| return; |
| } |
| } else if ((type == 0) && instr->IsMiscType0()) { |
| if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && |
| (instr->Bits(15, 4) == 0xF00)) { |
| Format(instr, "msr'cond 'spec_reg'spec_reg_fields, 'rm"); |
| } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && |
| (instr->Bits(11, 0) == 0)) { |
| Format(instr, "mrs'cond 'rd, 'spec_reg"); |
| } else if (instr->Bits(22, 21) == 1) { |
| switch (instr->BitField(7, 4)) { |
| case BX: |
| Format(instr, "bx'cond 'rm"); |
| break; |
| case BLX: |
| Format(instr, "blx'cond 'rm"); |
| break; |
| case BKPT: |
| Format(instr, "bkpt 'off0to3and8to19"); |
| break; |
| default: |
| Unknown(instr); // not used by V8 |
| break; |
| } |
| } else if (instr->Bits(22, 21) == 3) { |
| switch (instr->BitField(7, 4)) { |
| case CLZ: |
| Format(instr, "clz'cond 'rd, 'rm"); |
| break; |
| default: |
| Unknown(instr); // not used by V8 |
| break; |
| } |
| } else { |
| Unknown(instr); // not used by V8 |
| } |
| } else if ((type == 1) && instr->IsNopType1()) { |
| Format(instr, "nop'cond"); |
| } else { |
| switch (instr->OpcodeField()) { |
| case AND: { |
| Format(instr, "and'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case EOR: { |
| Format(instr, "eor'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case SUB: { |
| Format(instr, "sub'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case RSB: { |
| Format(instr, "rsb'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case ADD: { |
| Format(instr, "add'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case ADC: { |
| Format(instr, "adc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case SBC: { |
| Format(instr, "sbc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case RSC: { |
| Format(instr, "rsc'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case TST: { |
| if (instr->HasS()) { |
| Format(instr, "tst'cond 'rn, 'shift_op"); |
| } else { |
| Format(instr, "movw'cond 'mw"); |
| } |
| break; |
| } |
| case TEQ: { |
| if (instr->HasS()) { |
| Format(instr, "teq'cond 'rn, 'shift_op"); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case CMP: { |
| if (instr->HasS()) { |
| Format(instr, "cmp'cond 'rn, 'shift_op"); |
| } else { |
| Format(instr, "movt'cond 'mw"); |
| } |
| break; |
| } |
| case CMN: { |
| if (instr->HasS()) { |
| Format(instr, "cmn'cond 'rn, 'shift_op"); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| case ORR: { |
| Format(instr, "orr'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case MOV: { |
| Format(instr, "mov'cond's 'rd, 'shift_op"); |
| break; |
| } |
| case BIC: { |
| Format(instr, "bic'cond's 'rd, 'rn, 'shift_op"); |
| break; |
| } |
| case MVN: { |
| Format(instr, "mvn'cond's 'rd, 'shift_op"); |
| break; |
| } |
| default: { |
| // The Opcode field is a 4-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType2(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| if (instr->HasW()) { |
| Unknown(instr); // not used in V8 |
| return; |
| } |
| Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| break; |
| } |
| case ia_x: { |
| if (instr->HasW()) { |
| Unknown(instr); // not used in V8 |
| return; |
| } |
| Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| break; |
| } |
| case db_x: { |
| if (instr->HasL() && (instr->RnValue() == kPCRegister)) { |
| Format(instr, "'memop'cond'b 'rd, [pc, #-'off12]'w (addr 'A)"); |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| } |
| break; |
| } |
| case ib_x: { |
| if (instr->HasL() && (instr->RnValue() == kPCRegister)) { |
| Format(instr, "'memop'cond'b 'rd, [pc, #+'off12]'w (addr 'A)"); |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType3(Instruction* instr) { |
| switch (instr->PUField()) { |
| case da_x: { |
| VERIFY(!instr->HasW()); |
| Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(4) == 0) { |
| Format(instr, "'memop'cond'b 'rd, ['rn], +'shift_rm"); |
| } else { |
| if (instr->Bit(5) == 0) { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| if (instr->Bit(20) == 0) { |
| if (instr->Bit(6) == 0) { |
| Format(instr, "pkhbt'cond 'rd, 'rn, 'rm, lsl #'imm05@07"); |
| } else { |
| if (instr->Bits(11, 7) == 0) { |
| Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #32"); |
| } else { |
| Format(instr, "pkhtb'cond 'rd, 'rn, 'rm, asr #'imm05@07"); |
| } |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| break; |
| case 1: |
| UNREACHABLE(); |
| break; |
| case 2: |
| UNREACHABLE(); |
| break; |
| case 3: |
| Format(instr, "usat 'rd, #'imm05@16, 'rm'shift_sat"); |
| break; |
| } |
| } else { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| UNREACHABLE(); |
| break; |
| case 1: |
| if (instr->Bits(9, 6) == 1) { |
| if (instr->Bit(20) == 0) { |
| if (instr->Bits(19, 16) == 0xF) { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "sxtb'cond 'rd, 'rm"); |
| break; |
| case 1: |
| Format(instr, "sxtb'cond 'rd, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "sxtb'cond 'rd, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "sxtb'cond 'rd, 'rm, ror #24"); |
| break; |
| } |
| } else { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "sxtab'cond 'rd, 'rn, 'rm"); |
| break; |
| case 1: |
| Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "sxtab'cond 'rd, 'rn, 'rm, ror #24"); |
| break; |
| } |
| } |
| } else { |
| if (instr->Bits(19, 16) == 0xF) { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "sxth'cond 'rd, 'rm"); |
| break; |
| case 1: |
| Format(instr, "sxth'cond 'rd, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "sxth'cond 'rd, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "sxth'cond 'rd, 'rm, ror #24"); |
| break; |
| } |
| } else { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "sxtah'cond 'rd, 'rn, 'rm"); |
| break; |
| case 1: |
| Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "sxtah'cond 'rd, 'rn, 'rm, ror #24"); |
| break; |
| } |
| } |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| break; |
| case 2: |
| if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) { |
| if (instr->Bits(19, 16) == 0xF) { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "uxtb16'cond 'rd, 'rm"); |
| break; |
| case 1: |
| Format(instr, "uxtb16'cond 'rd, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "uxtb16'cond 'rd, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "uxtb16'cond 'rd, 'rm, ror #24"); |
| break; |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| break; |
| case 3: |
| if ((instr->Bits(9, 6) == 1)) { |
| if ((instr->Bit(20) == 0)) { |
| if (instr->Bits(19, 16) == 0xF) { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "uxtb'cond 'rd, 'rm"); |
| break; |
| case 1: |
| Format(instr, "uxtb'cond 'rd, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "uxtb'cond 'rd, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "uxtb'cond 'rd, 'rm, ror #24"); |
| break; |
| } |
| } else { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "uxtab'cond 'rd, 'rn, 'rm"); |
| break; |
| case 1: |
| Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "uxtab'cond 'rd, 'rn, 'rm, ror #24"); |
| break; |
| } |
| } |
| } else { |
| if (instr->Bits(19, 16) == 0xF) { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "uxth'cond 'rd, 'rm"); |
| break; |
| case 1: |
| Format(instr, "uxth'cond 'rd, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "uxth'cond 'rd, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "uxth'cond 'rd, 'rm, ror #24"); |
| break; |
| } |
| } else { |
| switch (instr->Bits(11, 10)) { |
| case 0: |
| Format(instr, "uxtah'cond 'rd, 'rn, 'rm"); |
| break; |
| case 1: |
| Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #8"); |
| break; |
| case 2: |
| Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #16"); |
| break; |
| case 3: |
| Format(instr, "uxtah'cond 'rd, 'rn, 'rm, ror #24"); |
| break; |
| } |
| } |
| } |
| } else { |
| // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001 |
| if ((instr->Bits(20, 16) == 0x1F) && |
| (instr->Bits(11, 4) == 0xF3)) { |
| Format(instr, "rbit'cond 'rd, 'rm"); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| break; |
| } |
| } |
| } |
| break; |
| } |
| case db_x: { |
| if (instr->Bits(22, 20) == 0x5) { |
| if (instr->Bits(7, 4) == 0x1) { |
| if (instr->Bits(15, 12) == 0xF) { |
| Format(instr, "smmul'cond 'rn, 'rm, 'rs"); |
| } else { |
| // SMMLA (in V8 notation matching ARM ISA format) |
| Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd"); |
| } |
| break; |
| } |
| } |
| if (instr->Bits(5, 4) == 0x1) { |
| if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) { |
| if (instr->Bit(21) == 0x1) { |
| // UDIV (in V8 notation matching ARM ISA format) rn = rm/rs |
| Format(instr, "udiv'cond'b 'rn, 'rm, 'rs"); |
| } else { |
| // SDIV (in V8 notation matching ARM ISA format) rn = rm/rs |
| Format(instr, "sdiv'cond'b 'rn, 'rm, 'rs"); |
| } |
| break; |
| } |
| } |
| Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w"); |
| break; |
| } |
| case ib_x: { |
| if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) { |
| uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16)); |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = widthminus1 + lsbit; |
| if (msbit <= 31) { |
| if (instr->Bit(22)) { |
| Format(instr, "ubfx'cond 'rd, 'rm, 'f"); |
| } else { |
| Format(instr, "sbfx'cond 'rd, 'rm, 'f"); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) { |
| uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7)); |
| uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16)); |
| if (msbit >= lsbit) { |
| if (instr->RmValue() == 15) { |
| Format(instr, "bfc'cond 'rd, 'f"); |
| } else { |
| Format(instr, "bfi'cond 'rd, 'rm, 'f"); |
| } |
| } else { |
| UNREACHABLE(); |
| } |
| } else { |
| Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w"); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType4(Instruction* instr) { |
| if (instr->Bit(22) != 0) { |
| // Privileged mode currently not supported. |
| Unknown(instr); |
| } else { |
| if (instr->HasL()) { |
| Format(instr, "ldm'cond'pu 'rn'w, 'rlist"); |
| } else { |
| Format(instr, "stm'cond'pu 'rn'w, 'rlist"); |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeType5(Instruction* instr) { |
| Format(instr, "b'l'cond 'target"); |
| } |
| |
| |
| void Decoder::DecodeType6(Instruction* instr) { |
| DecodeType6CoprocessorIns(instr); |
| } |
| |
| |
| int Decoder::DecodeType7(Instruction* instr) { |
| if (instr->Bit(24) == 1) { |
| if (instr->SvcValue() >= kStopCode) { |
| Format(instr, "stop'cond 'svc"); |
| } else { |
| Format(instr, "svc'cond 'svc"); |
| } |
| } else { |
| switch (instr->CoprocessorValue()) { |
| case 10: // Fall through. |
| case 11: |
| DecodeTypeVFP(instr); |
| break; |
| case 15: |
| DecodeTypeCP15(instr); |
| break; |
| default: |
| Unknown(instr); |
| break; |
| } |
| } |
| return Instruction::kInstrSize; |
| } |
| |
| |
| // void Decoder::DecodeTypeVFP(Instruction* instr) |
| // vmov: Sn = Rt |
| // vmov: Rt = Sn |
| // vcvt: Dd = Sm |
| // vcvt: Sd = Dm |
| // vcvt.f64.s32 Dd, Dd, #<fbits> |
| // Dd = vabs(Dm) |
| // Sd = vabs(Sm) |
| // Dd = vneg(Dm) |
| // Sd = vneg(Sm) |
| // Dd = vadd(Dn, Dm) |
| // Sd = vadd(Sn, Sm) |
| // Dd = vsub(Dn, Dm) |
| // Sd = vsub(Sn, Sm) |
| // Dd = vmul(Dn, Dm) |
| // Sd = vmul(Sn, Sm) |
| // Dd = vmla(Dn, Dm) |
| // Sd = vmla(Sn, Sm) |
| // Dd = vmls(Dn, Dm) |
| // Sd = vmls(Sn, Sm) |
| // Dd = vdiv(Dn, Dm) |
| // Sd = vdiv(Sn, Sm) |
| // vcmp(Dd, Dm) |
| // vcmp(Sd, Sm) |
| // Dd = vsqrt(Dm) |
| // Sd = vsqrt(Sm) |
| // vmrs |
| // vmsr |
| // Qd = vdup.size(Qd, Rt) |
| // vmov.size: Dd[i] = Rt |
| // vmov.sign.size: Rt = Dn[i] |
| void Decoder::DecodeTypeVFP(Instruction* instr) { |
| VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0) ); |
| VERIFY(instr->Bits(11, 9) == 0x5); |
| |
| if (instr->Bit(4) == 0) { |
| if (instr->Opc1Value() == 0x7) { |
| // Other data processing instructions |
| if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) { |
| // vmov register to register. |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmov'cond.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vmov'cond.f32 'Sd, 'Sm"); |
| } |
| } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) { |
| // vabs |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vabs'cond.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vabs'cond.f32 'Sd, 'Sm"); |
| } |
| } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) { |
| // vneg |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vneg'cond.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vneg'cond.f32 'Sd, 'Sm"); |
| } |
| } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) { |
| DecodeVCVTBetweenDoubleAndSingle(instr); |
| } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) && |
| (instr->Bit(8) == 1)) { |
| // vcvt.f64.s32 Dd, Dd, #<fbits> |
| int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5)); |
| Format(instr, "vcvt'cond.f64.s32 'Dd, 'Dd"); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| ", #%d", fraction_bits); |
| } else if (((instr->Opc2Value() >> 1) == 0x6) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCVTBetweenFloatingPointAndInteger(instr); |
| } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)) { |
| DecodeVCMP(instr); |
| } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vsqrt'cond.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vsqrt'cond.f32 'Sd, 'Sm"); |
| } |
| } else if (instr->Opc3Value() == 0x0) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmov'cond.f64 'Dd, 'd"); |
| } else { |
| Format(instr, "vmov'cond.f32 'Sd, 'd"); |
| } |
| } else if (((instr->Opc2Value() == 0x6)) && instr->Opc3Value() == 0x3) { |
| // vrintz - round towards zero (truncate) |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vrintz'cond.f64.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vrintz'cond.f32.f32 'Sd, 'Sm"); |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else if (instr->Opc1Value() == 0x3) { |
| if (instr->SzValue() == 0x1) { |
| if (instr->Opc3Value() & 0x1) { |
| Format(instr, "vsub'cond.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vadd'cond.f64 'Dd, 'Dn, 'Dm"); |
| } |
| } else { |
| if (instr->Opc3Value() & 0x1) { |
| Format(instr, "vsub'cond.f32 'Sd, 'Sn, 'Sm"); |
| } else { |
| Format(instr, "vadd'cond.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } |
| } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmul'cond.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vmul'cond.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } else if ((instr->Opc1Value() == 0x0) && !(instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmla'cond.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vmla'cond.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } else if ((instr->Opc1Value() == 0x0) && (instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vmls'cond.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vmls'cond.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) { |
| if (instr->SzValue() == 0x1) { |
| Format(instr, "vdiv'cond.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vdiv'cond.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| if ((instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x0)) { |
| DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr); |
| } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) { |
| const char* rt_name = converter_.NameOfCPURegister(instr->RtValue()); |
| if (instr->Bit(23) == 0) { |
| int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5); |
| if ((opc1_opc2 & 0xB) == 0) { |
| // NeonS32/NeonU32 |
| if (instr->Bit(21) == 0x0) { |
| Format(instr, "vmov'cond.32 'Dd[0], 'rt"); |
| } else { |
| Format(instr, "vmov'cond.32 'Dd[1], 'rt"); |
| } |
| } else { |
| int vd = instr->VFPNRegValue(kDoublePrecision); |
| if ((opc1_opc2 & 0x8) != 0) { |
| // NeonS8 / NeonU8 |
| int i = opc1_opc2 & 0x7; |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmov.8 d%d[%d], %s", vd, i, rt_name); |
| } else if ((opc1_opc2 & 0x1) != 0) { |
| // NeonS16 / NeonU16 |
| int i = (opc1_opc2 >> 1) & 0x3; |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmov.16 d%d[%d], %s", vd, i, rt_name); |
| } else { |
| Unknown(instr); |
| } |
| } |
| } else { |
| int size = 32; |
| if (instr->Bit(5) != 0) { |
| size = 16; |
| } else if (instr->Bit(22) != 0) { |
| size = 8; |
| } |
| int Vd = instr->VFPNRegValue(kSimd128Precision); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vdup.%i q%d, %s", size, Vd, rt_name); |
| } |
| } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) { |
| int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5); |
| if ((opc1_opc2 & 0xB) == 0) { |
| // NeonS32 / NeonU32 |
| if (instr->Bit(21) == 0x0) { |
| Format(instr, "vmov'cond.32 'rt, 'Dd[0]"); |
| } else { |
| Format(instr, "vmov'cond.32 'rt, 'Dd[1]"); |
| } |
| } else { |
| char sign = instr->Bit(23) != 0 ? 'u' : 's'; |
| const char* rt_name = converter_.NameOfCPURegister(instr->RtValue()); |
| int vn = instr->VFPNRegValue(kDoublePrecision); |
| if ((opc1_opc2 & 0x8) != 0) { |
| // NeonS8 / NeonU8 |
| int i = opc1_opc2 & 0x7; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vmov.%c8 %s, d%d[%d]", |
| sign, rt_name, vn, i); |
| } else if ((opc1_opc2 & 0x1) != 0) { |
| // NeonS16 / NeonU16 |
| int i = (opc1_opc2 >> 1) & 0x3; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vmov.%c16 %s, d%d[%d]", |
| sign, rt_name, vn, i); |
| } else { |
| Unknown(instr); |
| } |
| } |
| } else if ((instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x7) && |
| (instr->Bits(19, 16) == 0x1)) { |
| if (instr->VLValue() == 0) { |
| if (instr->Bits(15, 12) == 0xF) { |
| Format(instr, "vmsr'cond FPSCR, APSR"); |
| } else { |
| Format(instr, "vmsr'cond FPSCR, 'rt"); |
| } |
| } else { |
| if (instr->Bits(15, 12) == 0xF) { |
| Format(instr, "vmrs'cond APSR, FPSCR"); |
| } else { |
| Format(instr, "vmrs'cond 'rt, FPSCR"); |
| } |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } |
| } |
| |
| void Decoder::DecodeTypeCP15(Instruction* instr) { |
| VERIFY((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0)); |
| VERIFY(instr->CoprocessorValue() == 15); |
| |
| if (instr->Bit(4) == 1) { |
| int crn = instr->Bits(19, 16); |
| int crm = instr->Bits(3, 0); |
| int opc1 = instr->Bits(23, 21); |
| int opc2 = instr->Bits(7, 5); |
| if ((opc1 == 0) && (crn == 7)) { |
| // ARMv6 memory barrier operations. |
| // Details available in ARM DDI 0406C.b, B3-1750. |
| if ((crm == 10) && (opc2 == 5)) { |
| Format(instr, "mcr'cond (CP15DMB)"); |
| } else if ((crm == 10) && (opc2 == 4)) { |
| Format(instr, "mcr'cond (CP15DSB)"); |
| } else if ((crm == 5) && (opc2 == 4)) { |
| Format(instr, "mcr'cond (CP15ISB)"); |
| } else { |
| Unknown(instr); |
| } |
| } else { |
| Unknown(instr); |
| } |
| } else { |
| Unknown(instr); |
| } |
| } |
| |
| void Decoder::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters( |
| Instruction* instr) { |
| VERIFY((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) && |
| (instr->VAValue() == 0x0)); |
| |
| bool to_arm_register = (instr->VLValue() == 0x1); |
| |
| if (to_arm_register) { |
| Format(instr, "vmov'cond 'rt, 'Sn"); |
| } else { |
| Format(instr, "vmov'cond 'Sn, 'rt"); |
| } |
| } |
| |
| |
| void Decoder::DecodeVCMP(Instruction* instr) { |
| VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| VERIFY(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) && |
| (instr->Opc3Value() & 0x1)); |
| |
| // Comparison. |
| bool dp_operation = (instr->SzValue() == 1); |
| bool raise_exception_for_qnan = (instr->Bit(7) == 0x1); |
| |
| if (dp_operation && !raise_exception_for_qnan) { |
| if (instr->Opc2Value() == 0x4) { |
| Format(instr, "vcmp'cond.f64 'Dd, 'Dm"); |
| } else if (instr->Opc2Value() == 0x5) { |
| Format(instr, "vcmp'cond.f64 'Dd, #0.0"); |
| } else { |
| Unknown(instr); // invalid |
| } |
| } else if (!raise_exception_for_qnan) { |
| if (instr->Opc2Value() == 0x4) { |
| Format(instr, "vcmp'cond.f32 'Sd, 'Sm"); |
| } else if (instr->Opc2Value() == 0x5) { |
| Format(instr, "vcmp'cond.f32 'Sd, #0.0"); |
| } else { |
| Unknown(instr); // invalid |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } |
| |
| |
| void Decoder::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) { |
| VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| VERIFY((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)); |
| |
| bool double_to_single = (instr->SzValue() == 1); |
| |
| if (double_to_single) { |
| Format(instr, "vcvt'cond.f32.f64 'Sd, 'Dm"); |
| } else { |
| Format(instr, "vcvt'cond.f64.f32 'Dd, 'Sm"); |
| } |
| } |
| |
| |
| void Decoder::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) { |
| VERIFY((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7)); |
| VERIFY(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) || |
| (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1))); |
| |
| bool to_integer = (instr->Bit(18) == 1); |
| bool dp_operation = (instr->SzValue() == 1); |
| if (to_integer) { |
| bool unsigned_integer = (instr->Bit(16) == 0); |
| |
| if (dp_operation) { |
| if (unsigned_integer) { |
| Format(instr, "vcvt'cond.u32.f64 'Sd, 'Dm"); |
| } else { |
| Format(instr, "vcvt'cond.s32.f64 'Sd, 'Dm"); |
| } |
| } else { |
| if (unsigned_integer) { |
| Format(instr, "vcvt'cond.u32.f32 'Sd, 'Sm"); |
| } else { |
| Format(instr, "vcvt'cond.s32.f32 'Sd, 'Sm"); |
| } |
| } |
| } else { |
| bool unsigned_integer = (instr->Bit(7) == 0); |
| |
| if (dp_operation) { |
| if (unsigned_integer) { |
| Format(instr, "vcvt'cond.f64.u32 'Dd, 'Sm"); |
| } else { |
| Format(instr, "vcvt'cond.f64.s32 'Dd, 'Sm"); |
| } |
| } else { |
| if (unsigned_integer) { |
| Format(instr, "vcvt'cond.f32.u32 'Sd, 'Sm"); |
| } else { |
| Format(instr, "vcvt'cond.f32.s32 'Sd, 'Sm"); |
| } |
| } |
| } |
| } |
| |
| |
| // Decode Type 6 coprocessor instructions. |
| // Dm = vmov(Rt, Rt2) |
| // <Rt, Rt2> = vmov(Dm) |
| // Ddst = MEM(Rbase + 4*offset). |
| // MEM(Rbase + 4*offset) = Dsrc. |
| void Decoder::DecodeType6CoprocessorIns(Instruction* instr) { |
| VERIFY(instr->TypeValue() == 6); |
| |
| if (instr->CoprocessorValue() == 0xA) { |
| switch (instr->OpcodeValue()) { |
| case 0x8: |
| case 0xA: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Sd, ['rn - 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Sd, ['rn - 4*'imm08@00]"); |
| } |
| break; |
| case 0xC: |
| case 0xE: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Sd, ['rn + 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Sd, ['rn + 4*'imm08@00]"); |
| } |
| break; |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x9: |
| case 0xB: { |
| bool to_vfp_register = (instr->VLValue() == 0x1); |
| if (to_vfp_register) { |
| Format(instr, "vldm'cond'pu 'rn'w, {'Sd-'Sd+}"); |
| } else { |
| Format(instr, "vstm'cond'pu 'rn'w, {'Sd-'Sd+}"); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); // Not used by V8. |
| } |
| } else if (instr->CoprocessorValue() == 0xB) { |
| switch (instr->OpcodeValue()) { |
| case 0x2: |
| // Load and store double to two GP registers |
| if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) { |
| Unknown(instr); // Not used by V8. |
| } else if (instr->HasL()) { |
| Format(instr, "vmov'cond 'rt, 'rn, 'Dm"); |
| } else { |
| Format(instr, "vmov'cond 'Dm, 'rt, 'rn"); |
| } |
| break; |
| case 0x8: |
| case 0xA: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Dd, ['rn - 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Dd, ['rn - 4*'imm08@00]"); |
| } |
| break; |
| case 0xC: |
| case 0xE: |
| if (instr->HasL()) { |
| Format(instr, "vldr'cond 'Dd, ['rn + 4*'imm08@00]"); |
| } else { |
| Format(instr, "vstr'cond 'Dd, ['rn + 4*'imm08@00]"); |
| } |
| break; |
| case 0x4: |
| case 0x5: |
| case 0x6: |
| case 0x7: |
| case 0x9: |
| case 0xB: { |
| bool to_vfp_register = (instr->VLValue() == 0x1); |
| if (to_vfp_register) { |
| Format(instr, "vldm'cond'pu 'rn'w, {'Dd-'Dd+}"); |
| } else { |
| Format(instr, "vstm'cond'pu 'rn'w, {'Dd-'Dd+}"); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); // Not used by V8. |
| } |
| } else { |
| Unknown(instr); // Not used by V8. |
| } |
| } |
| |
| |
| static const char* const barrier_option_names[] = { |
| "invalid", "oshld", "oshst", "osh", "invalid", "nshld", "nshst", "nsh", |
| "invalid", "ishld", "ishst", "ish", "invalid", "ld", "st", "sy", |
| }; |
| |
| |
| void Decoder::DecodeSpecialCondition(Instruction* instr) { |
| switch (instr->SpecialValue()) { |
| case 4: { |
| int Vd, Vm, Vn; |
| if (instr->Bit(6) == 0) { |
| Vd = instr->VFPDRegValue(kDoublePrecision); |
| Vm = instr->VFPMRegValue(kDoublePrecision); |
| Vn = instr->VFPNRegValue(kDoublePrecision); |
| } else { |
| Vd = instr->VFPDRegValue(kSimd128Precision); |
| Vm = instr->VFPMRegValue(kSimd128Precision); |
| Vn = instr->VFPNRegValue(kSimd128Precision); |
| } |
| int size = kBitsPerByte * (1 << instr->Bits(21, 20)); |
| switch (instr->Bits(11, 8)) { |
| case 0x0: { |
| if (instr->Bit(4) == 1) { |
| // vqadd.s<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vqadd.s%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x1: { |
| if (instr->Bits(21, 20) == 2 && instr->Bit(6) == 1 && |
| instr->Bit(4) == 1) { |
| if (Vm == Vn) { |
| // vmov Qd, Qm |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmov q%d, q%d", Vd, Vm); |
| } else { |
| // vorr Qd, Qm, Qn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vorr q%d, q%d, q%d", Vd, Vn, Vm); |
| } |
| } else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 && |
| instr->Bit(4) == 1) { |
| // vand Qd, Qm, Qn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vand q%d, q%d, q%d", Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x2: { |
| if (instr->Bit(4) == 1) { |
| // vqsub.s<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vqsub.s%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x3: { |
| const char* op = (instr->Bit(4) == 1) ? "vcge" : "vcgt"; |
| // vcge/vcgt.s<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d q%d, q%d, q%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0x6: { |
| // vmin/vmax.s<size> Qd, Qm, Qn. |
| const char* op = instr->Bit(4) == 1 ? "vmin" : "vmax"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d q%d, q%d, q%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0x8: { |
| const char* op = (instr->Bit(4) == 0) ? "vadd" : "vtst"; |
| // vadd/vtst.i<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.i%d q%d, q%d, q%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0x9: { |
| if (instr->Bit(6) == 1 && instr->Bit(4) == 1) { |
| // vmul.i<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmul.i%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0xA: { |
| // vpmin/vpmax.s<size> Dd, Dm, Dn. |
| const char* op = instr->Bit(4) == 1 ? "vpmin" : "vpmax"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.s%d d%d, d%d, d%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0xB: { |
| // vpadd.i<size> Dd, Dm, Dn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vpadd.i%d d%d, d%d, d%d", |
| size, Vd, Vn, Vm); |
| break; |
| } |
| case 0xD: { |
| if (instr->Bit(4) == 0) { |
| const char* op = (instr->Bits(21, 20) == 0) ? "vadd" : "vsub"; |
| // vadd/vsub.f32 Qd, Qm, Qn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0xE: { |
| if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 0) { |
| // vceq.f32 Qd, Qm, Qn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vceq.f32 q%d, q%d, q%d", Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0xF: { |
| if (instr->Bit(20) == 0 && instr->Bit(6) == 1) { |
| if (instr->Bit(4) == 1) { |
| // vrecps/vrsqrts.f32 Qd, Qm, Qn. |
| const char* op = instr->Bit(21) == 0 ? "vrecps" : "vrsqrts"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm); |
| } else { |
| // vmin/max.f32 Qd, Qm, Qn. |
| const char* op = instr->Bit(21) == 1 ? "vmin" : "vmax"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm); |
| } |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); |
| break; |
| } |
| break; |
| } |
| case 5: |
| if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && |
| (instr->Bit(4) == 1)) { |
| // vmovl signed |
| if ((instr->VdValue() & 1) != 0) Unknown(instr); |
| int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); |
| int Vm = (instr->Bit(5) << 4) | instr->VmValue(); |
| int imm3 = instr->Bits(21, 19); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmovl.s%d q%d, d%d", imm3 * 8, Vd, Vm); |
| } else if (instr->Bits(21, 20) == 3 && instr->Bit(4) == 0) { |
| // vext.8 Qd, Qm, Qn, imm4 |
| int imm4 = instr->Bits(11, 8); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| int Vn = instr->VFPNRegValue(kSimd128Precision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vext.8 q%d, q%d, q%d, #%d", |
| Vd, Vn, Vm, imm4); |
| } else if (instr->Bits(11, 7) == 0xA && instr->Bit(4) == 1) { |
| // vshl.i<size> Qd, Qm, shift |
| int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16)); |
| int shift = instr->Bits(21, 16) - size; |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vshl.i%d q%d, q%d, #%d", |
| size, Vd, Vm, shift); |
| } else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) { |
| // vshr.s<size> Qd, Qm, shift |
| int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16)); |
| int shift = 2 * size - instr->Bits(21, 16); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vshr.s%d q%d, q%d, #%d", |
| size, Vd, Vm, shift); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| case 6: { |
| int Vd, Vm, Vn; |
| if (instr->Bit(6) == 0) { |
| Vd = instr->VFPDRegValue(kDoublePrecision); |
| Vm = instr->VFPMRegValue(kDoublePrecision); |
| Vn = instr->VFPNRegValue(kDoublePrecision); |
| } else { |
| Vd = instr->VFPDRegValue(kSimd128Precision); |
| Vm = instr->VFPMRegValue(kSimd128Precision); |
| Vn = instr->VFPNRegValue(kSimd128Precision); |
| } |
| int size = kBitsPerByte * (1 << instr->Bits(21, 20)); |
| switch (instr->Bits(11, 8)) { |
| case 0x0: { |
| if (instr->Bit(4) == 1) { |
| // vqadd.u<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vqadd.u%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x1: { |
| if (instr->Bits(21, 20) == 1 && instr->Bit(4) == 1) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vbsl q%d, q%d, q%d", Vd, Vn, Vm); |
| } else if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 1) { |
| if (instr->Bit(6) == 0) { |
| // veor Dd, Dn, Dm |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "veor d%d, d%d, d%d", Vd, Vn, Vm); |
| |
| } else { |
| // veor Qd, Qn, Qm |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "veor q%d, q%d, q%d", Vd, Vn, Vm); |
| } |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x2: { |
| if (instr->Bit(4) == 1) { |
| // vqsub.u<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vqsub.u%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0x3: { |
| const char* op = (instr->Bit(4) == 1) ? "vcge" : "vcgt"; |
| // vcge/vcgt.u<size> Qd, Qm, Qn. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d q%d, q%d, q%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0x6: { |
| // vmin/vmax.u<size> Qd, Qm, Qn. |
| const char* op = instr->Bit(4) == 1 ? "vmin" : "vmax"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d q%d, q%d, q%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0x8: { |
| if (instr->Bit(4) == 0) { |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vsub.i%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } else { |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vceq.i%d q%d, q%d, q%d", size, Vd, Vn, Vm); |
| } |
| break; |
| } |
| case 0xA: { |
| // vpmin/vpmax.u<size> Dd, Dm, Dn. |
| const char* op = instr->Bit(4) == 1 ? "vpmin" : "vpmax"; |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s.u%d d%d, d%d, d%d", |
| op, size, Vd, Vn, Vm); |
| break; |
| } |
| case 0xD: { |
| if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 && |
| instr->Bit(4) == 1) { |
| // vmul.f32 Qd, Qm, Qn |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmul.f32 q%d, q%d, q%d", Vd, Vn, Vm); |
| } else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 0 && |
| instr->Bit(4) == 0) { |
| // vpadd.f32 Dd, Dm, Dn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vpadd.f32 d%d, d%d, d%d", Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| case 0xE: { |
| if (instr->Bit(20) == 0 && instr->Bit(4) == 0) { |
| const char* op = (instr->Bit(21) == 0) ? "vcge" : "vcgt"; |
| // vcge/vcgt.f32 Qd, Qm, Qn. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.f32 q%d, q%d, q%d", op, Vd, Vn, Vm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| } |
| default: |
| Unknown(instr); |
| break; |
| } |
| break; |
| } |
| case 7: |
| if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) && |
| (instr->Bit(4) == 1)) { |
| // vmovl unsigned |
| if ((instr->VdValue() & 1) != 0) Unknown(instr); |
| int Vd = (instr->Bit(22) << 3) | (instr->VdValue() >> 1); |
| int Vm = (instr->Bit(5) << 4) | instr->VmValue(); |
| int imm3 = instr->Bits(21, 19); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmovl.u%d q%d, d%d", imm3 * 8, Vd, Vm); |
| } else if (instr->Opc1Value() == 7 && instr->Bit(4) == 0) { |
| if (instr->Bits(11, 7) == 0x18) { |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| int imm4 = instr->Bits(19, 16); |
| int size = 0, index = 0; |
| if ((imm4 & 0x1) != 0) { |
| size = 8; |
| index = imm4 >> 1; |
| } else if ((imm4 & 0x2) != 0) { |
| size = 16; |
| index = imm4 >> 2; |
| } else { |
| size = 32; |
| index = imm4 >> 3; |
| } |
| if (instr->Bit(6) == 0) { |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vdup.%i d%d, d%d[%d]", |
| size, Vd, Vm, index); |
| } else { |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vdup.%i q%d, d%d[%d]", |
| size, Vd, Vm, index); |
| } |
| } else if (instr->Bits(11, 10) == 0x2) { |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vn = instr->VFPNRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| int len = instr->Bits(9, 8); |
| NeonListOperand list(DwVfpRegister::from_code(Vn), len + 1); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "%s d%d, ", |
| instr->Bit(6) == 0 ? "vtbl.8" : "vtbx.8", Vd); |
| FormatNeonList(Vn, list.type()); |
| Print(", "); |
| PrintDRegister(Vm); |
| } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x2 && |
| instr->Bits(7, 6) != 0) { |
| // vqmovn.<type><size> Dd, Qm. |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| char type = instr->Bit(6) != 0 ? 'u' : 's'; |
| int size = 2 * kBitsPerByte * (1 << instr->Bits(19, 18)); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vqmovn.%c%i d%d, q%d", |
| type, size, Vd, Vm); |
| } else { |
| int Vd, Vm; |
| if (instr->Bit(6) == 0) { |
| Vd = instr->VFPDRegValue(kDoublePrecision); |
| Vm = instr->VFPMRegValue(kDoublePrecision); |
| } else { |
| Vd = instr->VFPDRegValue(kSimd128Precision); |
| Vm = instr->VFPMRegValue(kSimd128Precision); |
| } |
| if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0) { |
| if (instr->Bit(6) == 0) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vswp d%d, d%d", Vd, Vm); |
| } else { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vswp q%d, q%d", Vd, Vm); |
| } |
| } else if (instr->Bits(19, 16) == 0 && instr->Bits(11, 6) == 0x17) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vmvn q%d, q%d", Vd, Vm); |
| } else if (instr->Bits(19, 16) == 0xB && instr->Bits(11, 9) == 0x3 && |
| instr->Bit(6) == 1) { |
| const char* suffix = nullptr; |
| int op = instr->Bits(8, 7); |
| switch (op) { |
| case 0: |
| suffix = "f32.s32"; |
| break; |
| case 1: |
| suffix = "f32.u32"; |
| break; |
| case 2: |
| suffix = "s32.f32"; |
| break; |
| case 3: |
| suffix = "u32.f32"; |
| break; |
| } |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vcvt.%s q%d, q%d", suffix, Vd, Vm); |
| } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x1) { |
| int size = kBitsPerByte * (1 << instr->Bits(19, 18)); |
| const char* op = instr->Bit(7) != 0 ? "vzip" : "vuzp"; |
| if (instr->Bit(6) == 0) { |
| // vzip/vuzp.<size> Dd, Dm. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.%d d%d, d%d", op, size, Vd, Vm); |
| } else { |
| // vzip/vuzp.<size> Qd, Qm. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.%d q%d, q%d", op, size, Vd, Vm); |
| } |
| } else if (instr->Bits(17, 16) == 0 && instr->Bits(11, 9) == 0 && |
| instr->Bit(6) == 1) { |
| int size = kBitsPerByte * (1 << instr->Bits(19, 18)); |
| int op = kBitsPerByte |
| << (static_cast<int>(Neon64) - instr->Bits(8, 7)); |
| // vrev<op>.<size> Qd, Qm. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vrev%d.%d q%d, q%d", op, size, Vd, Vm); |
| } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0x1) { |
| int size = kBitsPerByte * (1 << instr->Bits(19, 18)); |
| if (instr->Bit(6) == 0) { |
| // vtrn.<size> Dd, Dm. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vtrn.%d d%d, d%d", size, Vd, Vm); |
| } else { |
| // vtrn.<size> Qd, Qm. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "vtrn.%d q%d, q%d", size, Vd, Vm); |
| } |
| } else if (instr->Bits(17, 16) == 0x1 && instr->Bit(11) == 0 && |
| instr->Bit(6) == 1) { |
| int size = kBitsPerByte * (1 << instr->Bits(19, 18)); |
| char type = instr->Bit(10) != 0 ? 'f' : 's'; |
| if (instr->Bits(9, 6) == 0xD) { |
| // vabs<type>.<size> Qd, Qm. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vabs.%c%d q%d, q%d", |
| type, size, Vd, Vm); |
| } else if (instr->Bits(9, 6) == 0xF) { |
| // vneg<type>.<size> Qd, Qm. |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vneg.%c%d q%d, q%d", |
| type, size, Vd, Vm); |
| } else { |
| Unknown(instr); |
| } |
| } else if (instr->Bits(19, 18) == 0x2 && instr->Bits(11, 8) == 0x5 && |
| instr->Bit(6) == 1) { |
| // vrecpe/vrsqrte.f32 Qd, Qm. |
| const char* op = instr->Bit(7) == 0 ? "vrecpe" : "vrsqrte"; |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "%s.f32 q%d, q%d", op, Vd, Vm); |
| } else { |
| Unknown(instr); |
| } |
| } |
| } else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1 && |
| instr->Bit(6) == 1) { |
| // vshr.u<size> Qd, Qm, shift |
| int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16)); |
| int shift = 2 * size - instr->Bits(21, 16); |
| int Vd = instr->VFPDRegValue(kSimd128Precision); |
| int Vm = instr->VFPMRegValue(kSimd128Precision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vshr.u%d q%d, q%d, #%d", |
| size, Vd, Vm, shift); |
| } else if (instr->Bit(10) == 1 && instr->Bit(6) == 0 && |
| instr->Bit(4) == 1) { |
| // vsli.<size> Dd, Dm, shift |
| // vsri.<size> Dd, Dm, shift |
| int imm7 = instr->Bits(21, 16); |
| if (instr->Bit(7) != 0) imm7 += 64; |
| int size = base::bits::RoundDownToPowerOfTwo32(imm7); |
| int shift; |
| char direction; |
| if (instr->Bit(8) == 1) { |
| shift = imm7 - size; |
| direction = 'l'; // vsli |
| } else { |
| shift = 2 * size - imm7; |
| direction = 'r'; // vsri |
| } |
| int Vd = instr->VFPDRegValue(kDoublePrecision); |
| int Vm = instr->VFPMRegValue(kDoublePrecision); |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "vs%ci.%d d%d, d%d, #%d", |
| direction, size, Vd, Vm, shift); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| case 8: |
| if (instr->Bits(21, 20) == 0) { |
| // vst1 |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int type = instr->Bits(11, 8); |
| int size = instr->Bits(7, 6); |
| int align = instr->Bits(5, 4); |
| int Rm = instr->VmValue(); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vst1.%d ", |
| (1 << size) << 3); |
| FormatNeonList(Vd, type); |
| Print(", "); |
| FormatNeonMemory(Rn, align, Rm); |
| } else if (instr->Bits(21, 20) == 2) { |
| // vld1 |
| int Vd = (instr->Bit(22) << 4) | instr->VdValue(); |
| int Rn = instr->VnValue(); |
| int type = instr->Bits(11, 8); |
| int size = instr->Bits(7, 6); |
| int align = instr->Bits(5, 4); |
| int Rm = instr->VmValue(); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "vld1.%d ", |
| (1 << size) << 3); |
| FormatNeonList(Vd, type); |
| Print(", "); |
| FormatNeonMemory(Rn, align, Rm); |
| } else { |
| Unknown(instr); |
| } |
| break; |
| case 0xA: |
| case 0xB: |
| if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) { |
| const char* rn_name = converter_.NameOfCPURegister(instr->Bits(19, 16)); |
| int offset = instr->Bits(11, 0); |
| if (offset == 0) { |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, "pld [%s]", rn_name); |
| } else if (instr->Bit(23) == 0) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "pld [%s, #-%d]", rn_name, offset); |
| } else { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, |
| "pld [%s, #+%d]", rn_name, offset); |
| } |
| } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) { |
| int option = instr->Bits(3, 0); |
| switch (instr->Bits(7, 4)) { |
| case 4: |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dsb %s", |
| barrier_option_names[option]); |
| break; |
| case 5: |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "dmb %s", |
| barrier_option_names[option]); |
| break; |
| case 6: |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "isb %s", |
| barrier_option_names[option]); |
| break; |
| default: |
| Unknown(instr); |
| } |
| } else { |
| Unknown(instr); |
| } |
| break; |
| case 0x1D: |
| if (instr->Opc1Value() == 0x7 && instr->Bits(19, 18) == 0x2 && |
| instr->Bits(11, 9) == 0x5 && instr->Bits(7, 6) == 0x1 && |
| instr->Bit(4) == 0x0) { |
| // VRINTA, VRINTN, VRINTP, VRINTM (floating-point) |
| bool dp_operation = (instr->SzValue() == 1); |
| int rounding_mode = instr->Bits(17, 16); |
| switch (rounding_mode) { |
| case 0x0: |
| if (dp_operation) { |
| Format(instr, "vrinta.f64.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vrinta.f32.f32 'Sd, 'Sm"); |
| } |
| break; |
| case 0x1: |
| if (dp_operation) { |
| Format(instr, "vrintn.f64.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vrintn.f32.f32 'Sd, 'Sm"); |
| } |
| break; |
| case 0x2: |
| if (dp_operation) { |
| Format(instr, "vrintp.f64.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vrintp.f32.f32 'Sd, 'Sm"); |
| } |
| break; |
| case 0x3: |
| if (dp_operation) { |
| Format(instr, "vrintm.f64.f64 'Dd, 'Dm"); |
| } else { |
| Format(instr, "vrintm.f32.f32 'Sd, 'Sm"); |
| } |
| break; |
| default: |
| UNREACHABLE(); // Case analysis is exhaustive. |
| break; |
| } |
| } else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) && |
| (instr->Bit(4) == 0x0)) { |
| // VMAXNM, VMINNM (floating-point) |
| if (instr->SzValue() == 0x1) { |
| if (instr->Bit(6) == 0x1) { |
| Format(instr, "vminnm.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vmaxnm.f64 'Dd, 'Dn, 'Dm"); |
| } |
| } else { |
| if (instr->Bit(6) == 0x1) { |
| Format(instr, "vminnm.f32 'Sd, 'Sn, 'Sm"); |
| } else { |
| Format(instr, "vmaxnm.f32 'Sd, 'Sn, 'Sm"); |
| } |
| } |
| } else { |
| Unknown(instr); |
| } |
| break; |
| case 0x1C: |
| if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) && |
| (instr->Bit(4) == 0)) { |
| // VSEL* (floating-point) |
| bool dp_operation = (instr->SzValue() == 1); |
| switch (instr->Bits(21, 20)) { |
| case 0x0: |
| if (dp_operation) { |
| Format(instr, "vseleq.f64 'Dd, 'Dn, 'Dm"); |
| } else { |
| Format(instr, "vseleq.f32 'Sd, 'Sn, 'Sm"); |
| } |
| |