| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <cmath> |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/arm/constants-arm.h" |
| #include "src/arm/simulator-arm.h" |
| #include "src/assembler-inl.h" |
| #include "src/base/bits.h" |
| #include "src/codegen.h" |
| #include "src/disasm.h" |
| #include "src/macro-assembler.h" |
| #include "src/objects-inl.h" |
| #include "src/runtime/runtime-utils.h" |
| |
| #if defined(USE_SIMULATOR) |
| |
| // Only build the simulator if not compiling for real ARM hardware. |
| namespace v8 { |
| namespace internal { |
| |
| // static |
| base::LazyInstance<Simulator::GlobalMonitor>::type Simulator::global_monitor_ = |
| LAZY_INSTANCE_INITIALIZER; |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // ::v8::internal::OS in the same way as SNPrintF is that the |
| // Windows C Run-Time Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The ArmDebugger class is used by the simulator while debugging simulated ARM |
| // code. |
| class ArmDebugger { |
| public: |
| explicit ArmDebugger(Simulator* sim) : sim_(sim) { } |
| |
| void Stop(Instruction* instr); |
| void Debug(); |
| |
| private: |
| static const Instr kBreakpointInstr = |
| (al | (7*B25) | (1*B24) | kBreakpoint); |
| static const Instr kNopInstr = (al | (13*B21)); |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| double GetRegisterPairDoubleValue(int regnum); |
| double GetVFPDoubleRegisterValue(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| bool GetVFPSingleValue(const char* desc, float* value); |
| bool GetVFPDoubleValue(const char* desc, double* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instruction* breakpc); |
| bool DeleteBreakpoint(Instruction* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| void ArmDebugger::Stop(Instruction* instr) { |
| // Get the stop code. |
| uint32_t code = instr->SvcValue() & kStopCodeMask; |
| // Print the stop message and code if it is not the default code. |
| if (code != kMaxStopCode) { |
| PrintF("Simulator hit stop %u\n", code); |
| } else { |
| PrintF("Simulator hit\n"); |
| } |
| Debug(); |
| } |
| |
| int32_t ArmDebugger::GetRegisterValue(int regnum) { |
| if (regnum == kPCRegister) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| double ArmDebugger::GetRegisterPairDoubleValue(int regnum) { |
| return sim_->get_double_from_register_pair(regnum); |
| } |
| |
| |
| double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) { |
| return sim_->get_double_from_d_register(regnum).get_scalar(); |
| } |
| |
| |
| bool ArmDebugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| if (regnum != kNoRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else { |
| if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && !is_double) { |
| *value = sim_->get_float_from_s_register(regnum).get_scalar(); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) { |
| bool is_double; |
| int regnum = VFPRegisters::Number(desc, &is_double); |
| if (regnum != kNoRegister && is_double) { |
| *value = sim_->get_double_from_d_register(regnum).get_scalar(); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool ArmDebugger::SetBreakpoint(Instruction* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void ArmDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void ArmDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| |
| void ArmDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = { cmd, arg1, arg2 }; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done && !sim_->has_bad_pc()) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| break; |
| } else { |
| char* last_input = sim_->last_debugger_input(); |
| if (strcmp(line, "\n") == 0 && last_input != nullptr) { |
| line = last_input; |
| } else { |
| // Ownership is transferred to sim_; |
| sim_->set_last_debugger_input(line); |
| } |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
| int32_t value; |
| float svalue; |
| double dvalue; |
| if (strcmp(arg1, "all") == 0) { |
| for (int i = 0; i < kNumRegisters; i++) { |
| value = GetRegisterValue(i); |
| PrintF( |
| "%3s: 0x%08x %10d", |
| RegisterConfiguration::Default()->GetGeneralRegisterName(i), |
| value, value); |
| if ((argc == 3 && strcmp(arg2, "fp") == 0) && |
| i < 8 && |
| (i % 2) == 0) { |
| dvalue = GetRegisterPairDoubleValue(i); |
| PrintF(" (%f)\n", dvalue); |
| } else { |
| PrintF("\n"); |
| } |
| } |
| for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) { |
| dvalue = GetVFPDoubleRegisterValue(i); |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true), |
| dvalue, static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } |
| } else { |
| if (GetValue(arg1, &value)) { |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else if (GetVFPSingleValue(arg1, &svalue)) { |
| uint32_t as_word = bit_cast<uint32_t>(svalue); |
| PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word); |
| } else if (GetVFPDoubleValue(arg1, &dvalue)) { |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| PrintF("print <register>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) |
| || (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| int32_t value; |
| OFStream os(stdout); |
| if (GetValue(arg1, &value)) { |
| Object* obj = reinterpret_cast<Object*>(value); |
| os << arg1 << ": \n"; |
| #ifdef DEBUG |
| obj->Print(os); |
| os << "\n"; |
| #else |
| os << Brief(obj) << "\n"; |
| #endif |
| } else { |
| os << arg1 << " unrecognized\n"; |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| int32_t* cur = nullptr; |
| int32_t* end = nullptr; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| int32_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<int32_t*>(value); |
| next_arg++; |
| } |
| |
| int32_t words; |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| while (cur < end) { |
| PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d", |
| reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); |
| int value = *cur; |
| Heap* current_heap = sim_->isolate_->heap(); |
| if (((value & 1) == 0) || |
| current_heap->ContainsSlow(obj->address())) { |
| PrintF(" ("); |
| if ((value & 1) == 0) { |
| PrintF("smi %d", value / 2); |
| } else { |
| obj->ShortPrint(); |
| } |
| PrintF(")"); |
| } |
| PrintF("\n"); |
| cur++; |
| } |
| } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* prev = nullptr; |
| byte* cur = nullptr; |
| byte* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstrSize); |
| } else if (argc == 2) { |
| int regnum = Registers::Number(arg1); |
| if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { |
| // The argument is an address or a register name. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // Disassemble 10 instructions at <arg1>. |
| end = cur + (10 * Instruction::kInstrSize); |
| } |
| } else { |
| // The argument is the number of instructions. |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| // Disassemble <arg1> instructions. |
| end = cur + (value * Instruction::kInstrSize); |
| } |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * Instruction::kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| prev = cur; |
| cur += dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), |
| buffer.start()); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::base::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(nullptr)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("N flag: %d; ", sim_->n_flag_); |
| PrintF("Z flag: %d; ", sim_->z_flag_); |
| PrintF("C flag: %d; ", sim_->c_flag_); |
| PrintF("V flag: %d\n", sim_->v_flag_); |
| PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_); |
| PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_); |
| PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_); |
| PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_); |
| PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_); |
| } else if (strcmp(cmd, "stop") == 0) { |
| int32_t value; |
| intptr_t stop_pc = sim_->get_pc() - Instruction::kInstrSize; |
| Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
| if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| // Remove the current stop. |
| if (sim_->isStopInstruction(stop_instr)) { |
| stop_instr->SetInstructionBits(kNopInstr); |
| } else { |
| PrintF("Not at debugger stop.\n"); |
| } |
| } else if (argc == 3) { |
| // Print information about all/the specified breakpoint(s). |
| if (strcmp(arg1, "info") == 0) { |
| if (strcmp(arg2, "all") == 0) { |
| PrintF("Stop information:\n"); |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->PrintStopInfo(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->PrintStopInfo(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "enable") == 0) { |
| // Enable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->EnableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->EnableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "disable") == 0) { |
| // Disable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->DisableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->DisableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } |
| } else { |
| PrintF("Wrong usage. Use help command for more information.\n"); |
| } |
| } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
| ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
| PrintF("Trace of executed instructions is %s\n", |
| ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF(" add argument 'fp' to print register pair double values\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("stack [<words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [<address/register>]\n"); |
| PrintF("disasm [[<address/register>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions\n"); |
| PrintF(" from pc (alias 'di')\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("trace (alias 't')\n"); |
| PrintF(" toogle the tracing of all executed statements\n"); |
| PrintF("stop feature:\n"); |
| PrintF(" Description:\n"); |
| PrintF(" Stops are debug instructions inserted by\n"); |
| PrintF(" the Assembler::stop() function.\n"); |
| PrintF(" When hitting a stop, the Simulator will\n"); |
| PrintF(" stop and and give control to the ArmDebugger.\n"); |
| PrintF(" The first %d stop codes are watched:\n", |
| Simulator::kNumOfWatchedStops); |
| PrintF(" - They can be enabled / disabled: the Simulator\n"); |
| PrintF(" will / won't stop when hitting them.\n"); |
| PrintF(" - The Simulator keeps track of how many times they \n"); |
| PrintF(" are met. (See the info command.) Going over a\n"); |
| PrintF(" disabled stop still increases its counter. \n"); |
| PrintF(" Commands:\n"); |
| PrintF(" stop info all/<code> : print infos about number <code>\n"); |
| PrintF(" or all stop(s).\n"); |
| PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
| PrintF(" all or number <code> stop(s)\n"); |
| PrintF(" stop unstop\n"); |
| PrintF(" ignore the stop instruction at the current location\n"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| static bool ICacheMatch(void* one, void* two) { |
| DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); |
| DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); |
| return one == two; |
| } |
| |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| void Simulator::set_last_debugger_input(char* input) { |
| DeleteArray(last_debugger_input_); |
| last_debugger_input_ = input; |
| } |
| |
| void Simulator::SetRedirectInstruction(Instruction* instruction) { |
| instruction->SetInstructionBits(al | (0xF * B24) | kCallRtRedirected); |
| } |
| |
| void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, |
| void* start_addr, size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| DCHECK_EQ(0, start & CachePage::kPageMask); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(i_cache, start, size); |
| } |
| } |
| |
| CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page) { |
| base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); |
| if (entry->value == nullptr) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, |
| intptr_t start, int size) { |
| DCHECK_LE(size, CachePage::kPageSize); |
| DCHECK(AllOnOnePage(start, size - 1)); |
| DCHECK_EQ(start & CachePage::kLineMask, 0); |
| DCHECK_EQ(size & CachePage::kLineMask, 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK_EQ(0, |
| memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), Instruction::kInstrSize)); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| |
| Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
| i_cache_ = isolate_->simulator_i_cache(); |
| if (i_cache_ == nullptr) { |
| i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); |
| isolate_->set_simulator_i_cache(i_cache_); |
| } |
| // Set up simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
| stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| |
| // Set up architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < num_registers; i++) { |
| registers_[i] = 0; |
| } |
| n_flag_ = false; |
| z_flag_ = false; |
| c_flag_ = false; |
| v_flag_ = false; |
| |
| // Initializing VFP registers. |
| // All registers are initialized to zero to start with |
| // even though s_registers_ & d_registers_ share the same |
| // physical registers in the target. |
| for (int i = 0; i < num_d_registers * 2; i++) { |
| vfp_registers_[i] = 0; |
| } |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| FPSCR_rounding_mode_ = RN; |
| FPSCR_default_NaN_mode_ = false; |
| |
| inv_op_vfp_flag_ = false; |
| div_zero_vfp_flag_ = false; |
| overflow_vfp_flag_ = false; |
| underflow_vfp_flag_ = false; |
| inexact_vfp_flag_ = false; |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
| // The lr and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_lr; |
| registers_[lr] = bad_lr; |
| |
| last_debugger_input_ = nullptr; |
| } |
| |
| Simulator::~Simulator() { |
| global_monitor_.Pointer()->RemoveProcessor(&global_monitor_processor_); |
| free(stack_); |
| } |
| |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current(Isolate* isolate) { |
| v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| isolate->FindOrAllocatePerThreadDataForThisThread(); |
| DCHECK_NOT_NULL(isolate_data); |
| |
| Simulator* sim = isolate_data->simulator(); |
| if (sim == nullptr) { |
| // TODO(146): delete the simulator object when a thread/isolate goes away. |
| sim = new Simulator(isolate); |
| isolate_data->set_simulator(sim); |
| } |
| return sim; |
| } |
| |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| DCHECK((reg >= 0) && (reg < num_registers)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| registers_[reg] = value; |
| } |
| |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| DCHECK((reg >= 0) && (reg < num_registers)); |
| // Stupid code added to avoid bug in GCC. |
| // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| if (reg >= num_registers) return 0; |
| // End stupid code. |
| return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
| } |
| |
| |
| double Simulator::get_double_from_register_pair(int reg) { |
| DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); |
| |
| double dm_val = 0.0; |
| // Read the bits from the unsigned integer register_[] array |
| // into the double precision floating point value and return it. |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| return(dm_val); |
| } |
| |
| |
| void Simulator::set_register_pair_from_double(int reg, double* value) { |
| DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0)); |
| memcpy(registers_ + reg, value, sizeof(*value)); |
| } |
| |
| |
| void Simulator::set_dw_register(int dreg, const int* dbl) { |
| DCHECK((dreg >= 0) && (dreg < num_d_registers)); |
| registers_[dreg] = dbl[0]; |
| registers_[dreg + 1] = dbl[1]; |
| } |
| |
| |
| void Simulator::get_d_register(int dreg, uint64_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value)); |
| } |
| |
| |
| void Simulator::set_d_register(int dreg, const uint64_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value)); |
| } |
| |
| |
| void Simulator::get_d_register(int dreg, uint32_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); |
| memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2); |
| } |
| |
| |
| void Simulator::set_d_register(int dreg, const uint32_t* value) { |
| DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters())); |
| memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2); |
| } |
| |
| template <typename T, int SIZE> |
| void Simulator::get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]) { |
| DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize); |
| DCHECK_LE(0, reg); |
| DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg); |
| memcpy(value, vfp_registers_ + reg * (SIZE / 4), SIZE); |
| } |
| |
| template <typename T, int SIZE> |
| void Simulator::set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]) { |
| DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize); |
| DCHECK_LE(0, reg); |
| DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg); |
| memcpy(vfp_registers_ + reg * (SIZE / 4), value, SIZE); |
| } |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| |
| bool Simulator::has_bad_pc() const { |
| return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc)); |
| } |
| |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { |
| return registers_[pc]; |
| } |
| |
| |
| // Getting from and setting into VFP registers. |
| void Simulator::set_s_register(int sreg, unsigned int value) { |
| DCHECK((sreg >= 0) && (sreg < num_s_registers)); |
| vfp_registers_[sreg] = value; |
| } |
| |
| |
| unsigned int Simulator::get_s_register(int sreg) const { |
| DCHECK((sreg >= 0) && (sreg < num_s_registers)); |
| return vfp_registers_[sreg]; |
| } |
| |
| |
| template<class InputType, int register_size> |
| void Simulator::SetVFPRegister(int reg_index, const InputType& value) { |
| unsigned bytes = register_size * sizeof(vfp_registers_[0]); |
| DCHECK_EQ(sizeof(InputType), bytes); |
| DCHECK_GE(reg_index, 0); |
| if (register_size == 1) DCHECK(reg_index < num_s_registers); |
| if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); |
| |
| memcpy(&vfp_registers_[reg_index * register_size], &value, bytes); |
| } |
| |
| |
| template<class ReturnType, int register_size> |
| ReturnType Simulator::GetFromVFPRegister(int reg_index) { |
| unsigned bytes = register_size * sizeof(vfp_registers_[0]); |
| DCHECK_EQ(sizeof(ReturnType), bytes); |
| DCHECK_GE(reg_index, 0); |
| if (register_size == 1) DCHECK(reg_index < num_s_registers); |
| if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters()); |
| |
| ReturnType value; |
| memcpy(&value, &vfp_registers_[register_size * reg_index], bytes); |
| return value; |
| } |
| |
| void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask, |
| uint32_t value) { |
| // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented. |
| if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) { |
| n_flag_ = ((value & (1 << 31)) != 0); |
| z_flag_ = ((value & (1 << 30)) != 0); |
| c_flag_ = ((value & (1 << 29)) != 0); |
| v_flag_ = ((value & (1 << 28)) != 0); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| } |
| |
| uint32_t Simulator::GetFromSpecialRegister(SRegister reg) { |
| uint32_t result = 0; |
| // Only CPSR_f is implemented. |
| if (reg == CPSR) { |
| if (n_flag_) result |= (1 << 31); |
| if (z_flag_) result |= (1 << 30); |
| if (c_flag_) result |= (1 << 29); |
| if (v_flag_) result |= (1 << 28); |
| } else { |
| UNIMPLEMENTED(); |
| } |
| return result; |
| } |
| |
| // Runtime FP routines take: |
| // - two double arguments |
| // - one double argument and zero or one integer arguments. |
| // All are consructed here from r0-r3 or d0, d1 and r0. |
| void Simulator::GetFpArgs(double* x, double* y, int32_t* z) { |
| if (use_eabi_hardfloat()) { |
| *x = get_double_from_d_register(0).get_scalar(); |
| *y = get_double_from_d_register(1).get_scalar(); |
| *z = get_register(0); |
| } else { |
| // Registers 0 and 1 -> x. |
| *x = get_double_from_register_pair(0); |
| // Register 2 and 3 -> y. |
| *y = get_double_from_register_pair(2); |
| // Register 2 -> z |
| *z = get_register(2); |
| } |
| } |
| |
| |
| // The return value is either in r0/r1 or d0. |
| void Simulator::SetFpResult(const double& result) { |
| if (use_eabi_hardfloat()) { |
| char buffer[2 * sizeof(vfp_registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to d0. |
| memcpy(vfp_registers_, buffer, sizeof(buffer)); |
| } else { |
| char buffer[2 * sizeof(registers_[0])]; |
| memcpy(buffer, &result, sizeof(buffer)); |
| // Copy result to r0 and r1. |
| memcpy(registers_, buffer, sizeof(buffer)); |
| } |
| } |
| |
| |
| void Simulator::TrashCallerSaveRegisters() { |
| // We don't trash the registers with the return value. |
| registers_[2] = 0x50BAD4U; |
| registers_[3] = 0x50BAD4U; |
| registers_[12] = 0x50BAD4U; |
| } |
| |
| |
| int Simulator::ReadW(int32_t addr, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| |
| int Simulator::ReadExW(int32_t addr, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| |
| void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| } |
| |
| int Simulator::WriteExW(int32_t addr, int value, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| |
| int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| |
| uint16_t Simulator::ReadExHU(int32_t addr, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| } |
| |
| void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| } |
| |
| int Simulator::WriteExH(int32_t addr, uint16_t value, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| uint8_t Simulator::ReadBU(int32_t addr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| int8_t Simulator::ReadB(int32_t addr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| uint8_t Simulator::ReadExBU(int32_t addr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| int Simulator::WriteExB(int32_t addr, uint8_t value) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| int32_t* Simulator::ReadDW(int32_t addr) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| return ptr; |
| } |
| |
| |
| void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) { |
| // All supported ARM targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| *ptr++ = value1; |
| *ptr = value2; |
| } |
| |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { |
| // The simulator uses a separate JS stack. If we have exhausted the C stack, |
| // we also drop down the JS limit to reflect the exhaustion on the JS stack. |
| if (GetCurrentStackPosition() < c_limit) { |
| return reinterpret_cast<uintptr_t>(get_sp()); |
| } |
| |
| // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes |
| // to prevent overrunning the stack when pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 1024; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", |
| reinterpret_cast<intptr_t>(instr), format); |
| UNIMPLEMENTED(); |
| } |
| |
| |
| // Checks if the current instruction should be executed based on its |
| // condition bits. |
| bool Simulator::ConditionallyExecute(Instruction* instr) { |
| switch (instr->ConditionField()) { |
| case eq: return z_flag_; |
| case ne: return !z_flag_; |
| case cs: return c_flag_; |
| case cc: return !c_flag_; |
| case mi: return n_flag_; |
| case pl: return !n_flag_; |
| case vs: return v_flag_; |
| case vc: return !v_flag_; |
| case hi: return c_flag_ && !z_flag_; |
| case ls: return !c_flag_ || z_flag_; |
| case ge: return n_flag_ == v_flag_; |
| case lt: return n_flag_ != v_flag_; |
| case gt: return !z_flag_ && (n_flag_ == v_flag_); |
| case le: return z_flag_ || (n_flag_ != v_flag_); |
| case al: return true; |
| default: UNREACHABLE(); |
| } |
| return false; |
| } |
| |
| |
| // Calculate and set the Negative and Zero flags. |
| void Simulator::SetNZFlags(int32_t val) { |
| n_flag_ = (val < 0); |
| z_flag_ = (val == 0); |
| } |
| |
| |
| // Set the Carry flag. |
| void Simulator::SetCFlag(bool val) { |
| c_flag_ = val; |
| } |
| |
| |
| // Set the oVerflow flag. |
| void Simulator::SetVFlag(bool val) { |
| v_flag_ = val; |
| } |
| |
| |
| // Calculate C flag value for additions. |
| bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| uint32_t urest = 0xFFFFFFFFU - uleft; |
| |
| return (uright > urest) || |
| (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
| } |
| |
| |
| // Calculate C flag value for subtractions. |
| bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| |
| return (uright > uleft) || |
| (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1)))); |
| } |
| |
| |
| // Calculate V flag value for additions and subtractions. |
| bool Simulator::OverflowFrom(int32_t alu_out, |
| int32_t left, int32_t right, bool addition) { |
| bool overflow; |
| if (addition) { |
| // operands have the same sign |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // and operands and result have different sign |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // operands have different signs |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // and first operand and result have different signs |
| && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| |
| // Support for VFP comparisons. |
| void Simulator::Compute_FPSCR_Flags(float val1, float val2) { |
| if (std::isnan(val1) || std::isnan(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| |
| void Simulator::Compute_FPSCR_Flags(double val1, double val2) { |
| if (std::isnan(val1) || std::isnan(val2)) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = true; |
| // All non-NaN cases. |
| } else if (val1 == val2) { |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = true; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } else if (val1 < val2) { |
| n_flag_FPSCR_ = true; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = false; |
| v_flag_FPSCR_ = false; |
| } else { |
| // Case when (val1 > val2). |
| n_flag_FPSCR_ = false; |
| z_flag_FPSCR_ = false; |
| c_flag_FPSCR_ = true; |
| v_flag_FPSCR_ = false; |
| } |
| } |
| |
| |
| void Simulator::Copy_FPSCR_to_APSR() { |
| n_flag_ = n_flag_FPSCR_; |
| z_flag_ = z_flag_FPSCR_; |
| c_flag_ = c_flag_FPSCR_; |
| v_flag_ = v_flag_FPSCR_; |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with register. |
| int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) { |
| ShiftOp shift = instr->ShiftField(); |
| int shift_amount = instr->ShiftAmountValue(); |
| int32_t result = get_register(instr->RmValue()); |
| if (instr->Bit(4) == 0) { |
| // by immediate |
| if ((shift == ROR) && (shift_amount == 0)) { |
| UNIMPLEMENTED(); |
| return result; |
| } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) { |
| shift_amount = 32; |
| } |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| if (result < 0) { |
| result = 0xFFFFFFFF; |
| *carry_out = true; |
| } else { |
| result = 0; |
| *carry_out = false; |
| } |
| } else { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| result = 0; |
| *carry_out = c_flag_; |
| } else { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| uint32_t left = static_cast<uint32_t>(result) >> shift_amount; |
| uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); |
| result = right | left; |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| // by register |
| int rs = instr->RsValue(); |
| shift_amount = get_register(rs) & 0xFF; |
| switch (shift) { |
| case ASR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result >>= (shift_amount - 1); |
| *carry_out = (result & 1) == 1; |
| result >>= 1; |
| } else { |
| DCHECK_GE(shift_amount, 32); |
| if (result < 0) { |
| *carry_out = true; |
| result = 0xFFFFFFFF; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| } |
| break; |
| } |
| |
| case LSL: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| result <<= (shift_amount - 1); |
| *carry_out = (result < 0); |
| result <<= 1; |
| } else if (shift_amount == 32) { |
| *carry_out = (result & 1) == 1; |
| result = 0; |
| } else { |
| DCHECK_GT(shift_amount, 32); |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case LSR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else if (shift_amount < 32) { |
| uint32_t uresult = static_cast<uint32_t>(result); |
| uresult >>= (shift_amount - 1); |
| *carry_out = (uresult & 1) == 1; |
| uresult >>= 1; |
| result = static_cast<int32_t>(uresult); |
| } else if (shift_amount == 32) { |
| *carry_out = (result < 0); |
| result = 0; |
| } else { |
| *carry_out = false; |
| result = 0; |
| } |
| break; |
| } |
| |
| case ROR: { |
| if (shift_amount == 0) { |
| *carry_out = c_flag_; |
| } else { |
| uint32_t left = static_cast<uint32_t>(result) >> shift_amount; |
| uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount); |
| result = right | left; |
| *carry_out = (static_cast<uint32_t>(result) >> 31) != 0; |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| return result; |
| } |
| |
| |
| // Addressing Mode 1 - Data-processing operands: |
| // Get the value based on the shifter_operand with immediate. |
| int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) { |
| int rotate = instr->RotateValue() * 2; |
| int immed8 = instr->Immed8Value(); |
| int imm = base::bits::RotateRight32(immed8, rotate); |
| *carry_out = (rotate == 0) ? c_flag_ : (imm < 0); |
| return imm; |
| } |
| |
| |
| static int count_bits(int bit_vector) { |
| int count = 0; |
| while (bit_vector != 0) { |
| if ((bit_vector & 1) != 0) { |
| count++; |
| } |
| bit_vector >>= 1; |
| } |
| return count; |
| } |
| |
| |
| int32_t Simulator::ProcessPU(Instruction* instr, |
| int num_regs, |
| int reg_size, |
| intptr_t* start_address, |
| intptr_t* end_address) { |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| switch (instr->PUField()) { |
| case da_x: { |
| UNIMPLEMENTED(); |
| break; |
| } |
| case ia_x: { |
| *start_address = rn_val; |
| *end_address = rn_val + (num_regs * reg_size) - reg_size; |
| rn_val = rn_val + (num_regs * reg_size); |
| break; |
| } |
| case db_x: { |
| *start_address = rn_val - (num_regs * reg_size); |
| *end_address = rn_val - reg_size; |
| rn_val = *start_address; |
| break; |
| } |
| case ib_x: { |
| *start_address = rn_val + reg_size; |
| *end_address = rn_val + (num_regs * reg_size); |
| rn_val = *end_address; |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| return rn_val; |
| } |
| |
| |
| // Addressing Mode 4 - Load and Store Multiple |
| void Simulator::HandleRList(Instruction* instr, bool load) { |
| int rlist = instr->RlistValue(); |
| int num_regs = count_bits(rlist); |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = |
| ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address); |
| |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| // Catch null pointers a little earlier. |
| DCHECK(start_address > 8191 || start_address < 0); |
| int reg = 0; |
| while (rlist != 0) { |
| if ((rlist & 1) != 0) { |
| if (load) { |
| set_register(reg, *address); |
| } else { |
| *address = get_register(reg); |
| } |
| address += 1; |
| } |
| reg++; |
| rlist >>= 1; |
| } |
| DCHECK(end_address == ((intptr_t)address) - 4); |
| if (instr->HasW()) { |
| set_register(instr->RnValue(), rn_val); |
| } |
| } |
| |
| |
| // Addressing Mode 6 - Load and Store Multiple Coprocessor registers. |
| void Simulator::HandleVList(Instruction* instr) { |
| VFPRegPrecision precision = |
| (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision; |
| int operand_size = (precision == kSinglePrecision) ? 4 : 8; |
| |
| bool load = (instr->VLValue() == 0x1); |
| |
| int vd; |
| int num_regs; |
| vd = instr->VFPDRegValue(precision); |
| if (precision == kSinglePrecision) { |
| num_regs = instr->Immed8Value(); |
| } else { |
| num_regs = instr->Immed8Value() / 2; |
| } |
| |
| intptr_t start_address = 0; |
| intptr_t end_address = 0; |
| int32_t rn_val = |
| ProcessPU(instr, num_regs, operand_size, &start_address, &end_address); |
| |
| intptr_t* address = reinterpret_cast<intptr_t*>(start_address); |
| for (int reg = vd; reg < vd + num_regs; reg++) { |
| if (precision == kSinglePrecision) { |
| if (load) { |
| set_s_register_from_sinteger( |
| reg, ReadW(reinterpret_cast<int32_t>(address), instr)); |
| } else { |
| WriteW(reinterpret_cast<int32_t>(address), |
| get_sinteger_from_s_register(reg), instr); |
| } |
| address += 1; |
| } else { |
| if (load) { |
| int32_t data[] = { |
| ReadW(reinterpret_cast<int32_t>(address), instr), |
| ReadW(reinterpret_cast<int32_t>(address + 1), instr) |
| }; |
| set_d_register(reg, reinterpret_cast<uint32_t*>(data)); |
| } else { |
| uint32_t data[2]; |
| get_d_register(reg, data); |
| WriteW(reinterpret_cast<int32_t>(address), data[0], instr); |
| WriteW(reinterpret_cast<int32_t>(address + 1), data[1], instr); |
| } |
| address += 2; |
| } |
| } |
| DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address); |
| if (instr->HasW()) { |
| set_register(instr->RnValue(), rn_val); |
| } |
| } |
| |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the r1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, int32_t arg1, |
| int32_t arg2, int32_t arg3, |
| int32_t arg4, int32_t arg5, |
| int32_t arg6, int32_t arg7, |
| int32_t arg8); |
| |
| // These prototypes handle the four types of FP calls. |
| typedef int64_t (*SimulatorRuntimeCompareCall)(double darg0, double darg1); |
| typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); |
| typedef double (*SimulatorRuntimeFPCall)(double darg0); |
| typedef double (*SimulatorRuntimeFPIntCall)(double darg0, int32_t arg0); |
| |
| // This signature supports direct call in to API function native callback |
| // (refer to InvocationCallback in v8.h). |
| typedef void (*SimulatorRuntimeDirectApiCall)(int32_t arg0); |
| typedef void (*SimulatorRuntimeProfilingApiCall)(int32_t arg0, void* arg1); |
| |
| // This signature supports direct call to accessor getter callback. |
| typedef void (*SimulatorRuntimeDirectGetterCall)(int32_t arg0, int32_t arg1); |
| typedef void (*SimulatorRuntimeProfilingGetterCall)( |
| int32_t arg0, int32_t arg1, void* arg2); |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. |
| void Simulator::SoftwareInterrupt(Instruction* instr) { |
| int svc = instr->SvcValue(); |
| switch (svc) { |
| case kCallRtRedirected: { |
| // Check if stack is aligned. Error if not aligned is reported below to |
| // include information on the function called. |
| bool stack_aligned = |
| (get_register(sp) |
| & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; |
| Redirection* redirection = Redirection::FromInstruction(instr); |
| int32_t arg0 = get_register(r0); |
| int32_t arg1 = get_register(r1); |
| int32_t arg2 = get_register(r2); |
| int32_t arg3 = get_register(r3); |
| int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp)); |
| int32_t arg4 = stack_pointer[0]; |
| int32_t arg5 = stack_pointer[1]; |
| int32_t arg6 = stack_pointer[2]; |
| int32_t arg7 = stack_pointer[3]; |
| int32_t arg8 = stack_pointer[4]; |
| STATIC_ASSERT(kMaxCParameters == 9); |
| |
| bool fp_call = |
| (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_lr = get_register(lr); |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| if (fp_call) { |
| double dval0, dval1; // one or two double parameters |
| int32_t ival; // zero or one integer parameters |
| int64_t iresult = 0; // integer return value |
| double dresult = 0; // double return value |
| GetFpArgs(&dval0, &dval1, &ival); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| SimulatorRuntimeCall generic_target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Call to host function at %p with args %f, %f", |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, |
| dval1); |
| break; |
| case ExternalReference::BUILTIN_FP_CALL: |
| PrintF("Call to host function at %p with arg %f", |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0); |
| break; |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Call to host function at %p with args %f, %d", |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), dval0, |
| ival); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: { |
| SimulatorRuntimeCompareCall target = |
| reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
| iresult = target(dval0, dval1); |
| set_register(r0, static_cast<int32_t>(iresult)); |
| set_register(r1, static_cast<int32_t>(iresult >> 32)); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_FP_CALL: { |
| SimulatorRuntimeFPFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
| dresult = target(dval0, dval1); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_CALL: { |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| dresult = target(dval0); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_INT_CALL: { |
| SimulatorRuntimeFPIntCall target = |
| reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
| dresult = target(dval0, ival); |
| SetFpResult(dresult); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Returned %08x\n", static_cast<int32_t>(iresult)); |
| break; |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_FP_CALL: |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Returned %f\n", dresult); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x", |
| reinterpret_cast<void*>(external), arg0); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeDirectApiCall target = |
| reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
| target(arg0); |
| } else if ( |
| redirection->type() == ExternalReference::PROFILING_API_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeProfilingApiCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
| target(arg0, Redirection::ReverseRedirection(arg1)); |
| } else if ( |
| redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeDirectGetterCall target = |
| reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
| target(arg0, arg1); |
| } else if ( |
| redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08x %08x %08x", |
| reinterpret_cast<void*>(external), arg0, arg1, arg2); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeProfilingGetterCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingGetterCall>( |
| external); |
| target(arg0, arg1, Redirection::ReverseRedirection(arg2)); |
| } else { |
| // builtin call. |
| DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL || |
| redirection->type() == ExternalReference::BUILTIN_CALL_PAIR); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF( |
| "Call to host function at %p " |
| "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x", |
| static_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2, arg3, |
| arg4, arg5, arg6, arg7, arg8); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08x\n", get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| int64_t result = |
| target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8); |
| int32_t lo_res = static_cast<int32_t>(result); |
| int32_t hi_res = static_cast<int32_t>(result >> 32); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x\n", lo_res); |
| } |
| set_register(r0, lo_res); |
| set_register(r1, hi_res); |
| } |
| set_register(lr, saved_lr); |
| set_pc(get_register(lr)); |
| break; |
| } |
| case kBreakpoint: { |
| ArmDebugger dbg(this); |
| dbg.Debug(); |
| break; |
| } |
| // stop uses all codes greater than 1 << 23. |
| default: { |
| if (svc >= (1 << 23)) { |
| uint32_t code = svc & kStopCodeMask; |
| if (isWatchedStop(code)) { |
| IncreaseStopCounter(code); |
| } |
| // Stop if it is enabled, otherwise go on jumping over the stop |
| // and the message address. |
| if (isEnabledStop(code)) { |
| ArmDebugger dbg(this); |
| dbg.Stop(instr); |
| } |
| } else { |
| // This is not a valid svc code. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| float Simulator::canonicalizeNaN(float value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr uint32_t kDefaultNaN = 0x7FC00000u; |
| if (FPSCR_default_NaN_mode_ && std::isnan(value)) { |
| value = bit_cast<float>(kDefaultNaN); |
| } |
| return value; |
| } |
| |
| Float32 Simulator::canonicalizeNaN(Float32 value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr Float32 kDefaultNaN = Float32::FromBits(0x7FC00000u); |
| return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value; |
| } |
| |
| double Simulator::canonicalizeNaN(double value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr uint64_t kDefaultNaN = uint64_t{0x7FF8000000000000}; |
| if (FPSCR_default_NaN_mode_ && std::isnan(value)) { |
| value = bit_cast<double>(kDefaultNaN); |
| } |
| return value; |
| } |
| |
| Float64 Simulator::canonicalizeNaN(Float64 value) { |
| // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation |
| // choices" of the ARM Reference Manual. |
| constexpr Float64 kDefaultNaN = |
| Float64::FromBits(uint64_t{0x7FF8000000000000}); |
| return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value; |
| } |
| |
| // Stop helper functions. |
| bool Simulator::isStopInstruction(Instruction* instr) { |
| return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); |
| } |
| |
| |
| bool Simulator::isWatchedStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| return code < kNumOfWatchedStops; |
| } |
| |
| |
| bool Simulator::isEnabledStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| // Unwatched stops are always enabled. |
| return !isWatchedStop(code) || |
| !(watched_stops_[code].count & kStopDisabledBit); |
| } |
| |
| |
| void Simulator::EnableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (!isEnabledStop(code)) { |
| watched_stops_[code].count &= ~kStopDisabledBit; |
| } |
| } |
| |
| |
| void Simulator::DisableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (isEnabledStop(code)) { |
| watched_stops_[code].count |= kStopDisabledBit; |
| } |
| } |
| |
| |
| void Simulator::IncreaseStopCounter(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| DCHECK(isWatchedStop(code)); |
| if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { |
| PrintF("Stop counter for code %i has overflowed.\n" |
| "Enabling this code and reseting the counter to 0.\n", code); |
| watched_stops_[code].count = 0; |
| EnableStop(code); |
| } else { |
| watched_stops_[code].count++; |
| } |
| } |
| |
| |
| // Print a stop status. |
| void Simulator::PrintStopInfo(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| if (!isWatchedStop(code)) { |
| PrintF("Stop not watched."); |
| } else { |
| const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
| int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| // Don't print the state of unused breakpoints. |
| if (count != 0) { |
| if (watched_stops_[code].desc) { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", |
| code, code, state, count, watched_stops_[code].desc); |
| } else { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", |
| code, code, state, count); |
| } |
| } |
| } |
| } |
| |
| |
| // Handle execution based on instruction types. |
| |
| // Instruction types 0 and 1 are both rolled into one function because they |
| // only differ in the handling of the shifter_operand. |
| void Simulator::DecodeType01(Instruction* instr) { |
| int type = instr->TypeValue(); |
| if ((type == 0) && instr->IsSpecialType0()) { |
| // multiply instruction or extra loads and stores |
| if (instr->Bits(7, 4) == 9) { |
| if (instr->Bit(24) == 0) { |
| // Raw field decoding here. Multiply instructions have their Rd in |
| // funny places. |
| int rn = instr->RnValue(); |
| int rm = instr->RmValue(); |
| int rs = instr->RsValue(); |
| int32_t rs_val = get_register(rs); |
| int32_t rm_val = get_register(rm); |
| if (instr->Bit(23) == 0) { |
| if (instr->Bit(21) == 0) { |
| // The MUL instruction description (A 4.1.33) refers to Rd as being |
| // the destination for the operation, but it confusingly uses the |
| // Rn field to encode it. |
| // Format(instr, "mul'cond's 'rn, 'rm, 'rs"); |
| int rd = rn; // Remap the rn field to the Rd register. |
| int32_t alu_out = rm_val * rs_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| } |
| } else { |
| int rd = instr->RdValue(); |
| int32_t acc_value = get_register(rd); |
| if (instr->Bit(22) == 0) { |
| // The MLA instruction description (A 4.1.28) refers to the order |
| // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the |
| // Rn field to encode the Rd register and the Rd field to encode |
| // the Rn register. |
| // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd"); |
| int32_t mul_out = rm_val * rs_val; |
| int32_t result = acc_value + mul_out; |
| set_register(rn, result); |
| } else { |
| // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd"); |
| int32_t mul_out = rm_val * rs_val; |
| int32_t result = acc_value - mul_out; |
| set_register(rn, result); |
| } |
| } |
| } else { |
| // The signed/long multiply instructions use the terms RdHi and RdLo |
| // when referring to the target registers. They are mapped to the Rn |
| // and Rd fields as follows: |
| // RdLo == Rd |
| // RdHi == Rn (This is confusingly stored in variable rd here |
| // because the mul instruction from above uses the |
| // Rn field to encode the Rd register. Good luck figuring |
| // this out without reading the ARM instruction manual |
| // at a very detailed level.) |
| // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm"); |
| int rd_hi = rn; // Remap the rn field to the RdHi register. |
| int rd_lo = instr->RdValue(); |
| int32_t hi_res = 0; |
| int32_t lo_res = 0; |
| if (instr->Bit(22) == 1) { |
| int64_t left_op = static_cast<int32_t>(rm_val); |
| int64_t right_op = static_cast<int32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xFFFFFFFF); |
| } else { |
| // unsigned multiply |
| uint64_t left_op = static_cast<uint32_t>(rm_val); |
| uint64_t right_op = static_cast<uint32_t>(rs_val); |
| uint64_t result = left_op * right_op; |
| hi_res = static_cast<int32_t>(result >> 32); |
| lo_res = static_cast<int32_t>(result & 0xFFFFFFFF); |
| } |
| set_register(rd_lo, lo_res); |
| set_register(rd_hi, hi_res); |
| if (instr->HasS()) { |
| UNIMPLEMENTED(); |
| } |
| } |
| } else { |
| if (instr->Bits(24, 23) == 3) { |
| if (instr->Bit(20) == 1) { |
| // ldrex |
| int rt = instr->RtValue(); |
| int rn = instr->RnValue(); |
| int32_t addr = get_register(rn); |
| switch (instr->Bits(22, 21)) { |
| case 0: { |
| // Format(instr, "ldrex'cond 'rt, ['rn]"); |
| int value = ReadExW(addr, instr); |
| set_register(rt, value); |
| break; |
| } |
| case 2: { |
| // Format(instr, "ldrexb'cond 'rt, ['rn]"); |
| uint8_t value = ReadExBU(addr); |
| set_register(rt, value); |
| break; |
| } |
| case 3: { |
| // Format(instr, "ldrexh'cond 'rt, ['rn]"); |
| uint16_t value = ReadExHU(addr, instr); |
| set_register(rt, value); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } else { |
| // The instruction is documented as strex rd, rt, [rn], but the |
| // "rt" register is using the rm bits. |
| int rd = instr->RdValue(); |
| int rt = instr->RmValue(); |
| int rn = instr->RnValue(); |
| DCHECK_NE(rd, rn); |
| DCHECK_NE(rd, rt); |
| int32_t addr = get_register(rn); |
| switch (instr->Bits(22, 21)) { |
| case 0: { |
| // Format(instr, "strex'cond 'rd, 'rm, ['rn]"); |
| int value = get_register(rt); |
| int status = WriteExW(addr, value, instr); |
| set_register(rd, status); |
| break; |
| } |
| case 2: { |
| // Format(instr, "strexb'cond 'rd, 'rm, ['rn]"); |
| uint8_t value = get_register(rt); |
| int status = WriteExB(addr, value); |
| set_register(rd, status); |
| break; |
| } |
| case 3: { |
| // Format(instr, "strexh'cond 'rd, 'rm, ['rn]"); |
| uint16_t value = get_register(rt); |
| int status = WriteExH(addr, value, instr); |
| set_register(rd, status); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| UNIMPLEMENTED(); // Not used by V8. |
| } |
| } |
| } else { |
| // extra load/store instructions |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t addr = 0; |
| if (instr->Bit(22) == 0) { |
| int rm = instr->RmValue(); |
| int32_t rm_val = get_register(rm); |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= rm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val += rm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w"); |
| rn_val -= rm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w"); |
| rn_val += rm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else { |
| int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue(); |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= imm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val += imm_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w"); |
| rn_val -= imm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w"); |
| rn_val += imm_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| // The PU field is a 2-bit field. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| if (((instr->Bits(7, 4) & 0xD) == 0xD) && (instr->Bit(20) == 0)) { |
| DCHECK_EQ(rd % 2, 0); |
| if (instr->HasH()) { |
| // The strd instruction. |
| int32_t value1 = get_register(rd); |
| int32_t value2 = get_register(rd+1); |
| WriteDW(addr, value1, value2); |
| } else { |
| // The ldrd instruction. |
| int* rn_data = ReadDW(addr); |
| set_dw_register(rd, rn_data); |
| } |
| } else if (instr->HasH()) { |
| if (instr->HasSign()) { |
| if (instr->HasL()) { |
| int16_t val = ReadH(addr, instr); |
| set_register(rd, val); |
| } else { |
| int16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } else { |
| if (instr->HasL()) { |
| uint16_t val = ReadHU(addr, instr); |
| set_register(rd, val); |
| } else { |
| uint16_t val = get_register(rd); |
| WriteH(addr, val, instr); |
| } |
| } |
| } else { |
| // signed byte loads |
| DCHECK(instr->HasSign()); |
| DCHECK(instr->HasL()); |
| int8_t val = ReadB(addr); |
| set_register(rd, val); |
| } |
| return; |
| } |
| } else if ((type == 0) && instr->IsMiscType0()) { |
| if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) && |
| (instr->Bits(15, 4) == 0xF00)) { |
| // MSR |
| int rm = instr->RmValue(); |
| DCHECK_NE(pc, rm); // UNPREDICTABLE |
| SRegisterFieldMask sreg_and_mask = |
| instr->BitField(22, 22) | instr->BitField(19, 16); |
| SetSpecialRegister(sreg_and_mask, get_register(rm)); |
| } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) && |
| (instr->Bits(11, 0) == 0)) { |
| // MRS |
| int rd = instr->RdValue(); |
| DCHECK_NE(pc, rd); // UNPREDICTABLE |
| SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22)); |
| set_register(rd, GetFromSpecialRegister(sreg)); |
| } else if (instr->Bits(22, 21) == 1) { |
| int rm = instr->RmValue(); |
| switch (instr->BitField(7, 4)) { |
| case BX: |
| set_pc(get_register(rm)); |
| break; |
| case BLX: { |
| uint32_t old_pc = get_pc(); |
| set_pc(get_register(rm)); |
| set_register(lr, old_pc + Instruction::kInstrSize); |
| break; |
| } |
| case BKPT: { |
| ArmDebugger dbg(this); |
| PrintF("Simulator hit BKPT.\n"); |
| dbg.Debug(); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else if (instr->Bits(22, 21) == 3) { |
| int rm = instr->RmValue(); |
| int rd = instr->RdValue(); |
| switch (instr->BitField(7, 4)) { |
| case CLZ: { |
| uint32_t bits = get_register(rm); |
| int leading_zeros = 0; |
| if (bits == 0) { |
| leading_zeros = 32; |
| } else { |
| while ((bits & 0x80000000u) == 0) { |
| bits <<= 1; |
| leading_zeros++; |
| } |
| } |
| set_register(rd, leading_zeros); |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); |
| } |
| } else { |
| PrintF("%08x\n", instr->InstructionBits()); |
| UNIMPLEMENTED(); |
| } |
| } else if ((type == 1) && instr->IsNopType1()) { |
| // NOP. |
| } else { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t shifter_operand = 0; |
| bool shifter_carry_out = 0; |
| if (type == 0) { |
| shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| } else { |
| DCHECK_EQ(instr->TypeValue(), 1); |
| shifter_operand = GetImm(instr, &shifter_carry_out); |
| } |
| int32_t alu_out; |
| |
| switch (instr->OpcodeField()) { |
| case AND: { |
| // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "and'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case EOR: { |
| // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "eor'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case SUB: { |
| // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sub'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } |
| break; |
| } |
| |
| case RSB: { |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "rsb'cond's 'rd, 'rn, 'imm"); |
| alu_out = shifter_operand - rn_val; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(shifter_operand, rn_val)); |
| SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false)); |
| } |
| break; |
| } |
| |
| case ADD: { |
| // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "add'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } |
| break; |
| } |
| |
| case ADC: { |
| // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "adc'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand + GetCarry(); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry())); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } |
| break; |
| } |
| |
| case SBC: { |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "sbc'cond's 'rd, 'rn, 'imm"); |
| alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1); |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry())); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } |
| break; |
| } |
| |
| case RSC: { |
| Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm"); |
| Format(instr, "rsc'cond's 'rd, 'rn, 'imm"); |
| break; |
| } |
| |
| case TST: { |
| if (instr->HasS()) { |
| // Format(instr, "tst'cond 'rn, 'shift_rm"); |
| // Format(instr, "tst'cond 'rn, 'imm"); |
| alu_out = rn_val & shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Format(instr, "movw'cond 'rd, 'imm"). |
| alu_out = instr->ImmedMovwMovtValue(); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case TEQ: { |
| if (instr->HasS()) { |
| // Format(instr, "teq'cond 'rn, 'shift_rm"); |
| // Format(instr, "teq'cond 'rn, 'imm"); |
| alu_out = rn_val ^ shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case CMP: { |
| if (instr->HasS()) { |
| // Format(instr, "cmp'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmp'cond 'rn, 'imm"); |
| alu_out = rn_val - shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(!BorrowFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false)); |
| } else { |
| // Format(instr, "movt'cond 'rd, 'imm"). |
| alu_out = |
| (get_register(rd) & 0xFFFF) | (instr->ImmedMovwMovtValue() << 16); |
| set_register(rd, alu_out); |
| } |
| break; |
| } |
| |
| case CMN: { |
| if (instr->HasS()) { |
| // Format(instr, "cmn'cond 'rn, 'shift_rm"); |
| // Format(instr, "cmn'cond 'rn, 'imm"); |
| alu_out = rn_val + shifter_operand; |
| SetNZFlags(alu_out); |
| SetCFlag(CarryFrom(rn_val, shifter_operand)); |
| SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true)); |
| } else { |
| // Other instructions matching this pattern are handled in the |
| // miscellaneous instructions part above. |
| UNREACHABLE(); |
| } |
| break; |
| } |
| |
| case ORR: { |
| // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "orr'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val | shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MOV: { |
| // Format(instr, "mov'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mov'cond's 'rd, 'imm"); |
| alu_out = shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case BIC: { |
| // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm"); |
| // Format(instr, "bic'cond's 'rd, 'rn, 'imm"); |
| alu_out = rn_val & ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| case MVN: { |
| // Format(instr, "mvn'cond's 'rd, 'shift_rm"); |
| // Format(instr, "mvn'cond's 'rd, 'imm"); |
| alu_out = ~shifter_operand; |
| set_register(rd, alu_out); |
| if (instr->HasS()) { |
| SetNZFlags(alu_out); |
| SetCFlag(shifter_carry_out); |
| } |
| break; |
| } |
| |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType2(Instruction* instr) { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| int32_t im_val = instr->Offset12Value(); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case da_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val -= im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case ia_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12"); |
| DCHECK(!instr->HasW()); |
| addr = rn_val; |
| rn_val += im_val; |
| set_register(rn, rn_val); |
| break; |
| } |
| case db_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w"); |
| rn_val -= im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| case ib_x: { |
| // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w"); |
| rn_val += im_val; |
| addr = rn_val; |
| if (instr->HasW()) { |
| set_register(rn, rn_val); |
| } |
| break; |
| } |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| if (instr->HasB()) { |
| if (instr->HasL()) { |
| byte val = ReadBU(addr); |
| set_register(rd, val); |
| } else { |
| byte val = get_register(rd); |
| WriteB(addr, val); |
| } |
| } else { |
| if (instr->HasL()) { |
| set_register(rd, ReadW(addr, instr)); |
| } else { |
| WriteW(addr, get_register(rd), instr); |
| } |
| } |
| } |
| |
| |
| void Simulator::DecodeType3(Instruction* instr) { |
| int rd = instr->RdValue(); |
| int rn = instr->RnValue(); |
| int32_t rn_val = get_register(rn); |
| bool shifter_carry_out = 0; |
| int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out); |
| int32_t addr = 0; |
| switch (instr->PUField()) { |
| case da_x: { |
| DCHECK(!instr->HasW()); |
| Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm"); |
| UNIMPLEMENTED(); |
| break; |
| } |
| case ia_x: { |
| if (instr->Bit(4) == 0) { |
| // Memop. |
| } else { |
| if (instr->Bit(5) == 0) { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| if (instr->Bit(20) == 0) { |
| if (instr->Bit(6) == 0) { |
| // Pkhbt. |
| uint32_t rn_val = get_register(rn); |
| uint32_t rm_val = get_register(instr->RmValue()); |
| int32_t shift = instr->Bits(11, 7); |
| rm_val <<= shift; |
| set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U)); |
| } else { |
| // Pkhtb. |
| uint32_t rn_val = get_register(rn); |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t shift = instr->Bits(11, 7); |
| if (shift == 0) { |
| shift = 32; |
| } |
| rm_val >>= shift; |
| set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF)); |
| } |
| } else { |
| UNIMPLEMENTED(); |
| } |
| break; |
| case 1: |
| UNIMPLEMENTED(); |
| break; |
| case 2: |
| UNIMPLEMENTED(); |
| break; |
| case 3: { |
| // Usat. |
| int32_t sat_pos = instr->Bits(20, 16); |
| int32_t sat_val = (1 << sat_pos) - 1; |
| int32_t shift = instr->Bits(11, 7); |
| int32_t shift_type = instr->Bit(6); |
| int32_t rm_val = get_register(instr->RmValue()); |
| if (shift_type == 0) { // LSL |
| rm_val <<= shift; |
| } else { // ASR |
| rm_val >>= shift; |
| } |
| // If saturation occurs, the Q flag should be set in the CPSR. |
| // There is no Q flag yet, and no instruction (MRS) to read the |
| // CPSR directly. |
| if (rm_val > sat_val) { |
| rm_val = sat_val; |
| } else if (rm_val < 0) { |
| rm_val = 0; |
| } |
| set_register(rd, rm_val); |
| break; |
| } |
| } |
| } else { |
| switch (instr->Bits(22, 21)) { |
| case 0: |
| UNIMPLEMENTED(); |
| break; |
| case 1: |
| if (instr->Bits(9, 6) == 1) { |
| if (instr->Bit(20) == 0) { |
| if (instr->Bits(19, 16) == 0xF) { |
| // Sxtb. |
| int32_t rm_val = get_register(instr->RmValue()); |
| int32_t rotate = instr->Bits(11, 10); |
| switch (rotate) { |
| case 0: |
| break; |
| case 1: |
| rm_val = (rm_val >> 8) | (rm_val << 24); |
| break; |
| case 2: |
| rm_val = (rm_val >> 16) | (rm_val << 16); |
| break; |
| case 3: |
| rm_val = (rm_val >> 24) | (rm_val << 8); |
| break; |
| } |
|