| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_ASSEMBLER_H_ |
| #define V8_ASSEMBLER_H_ |
| |
| #include <forward_list> |
| #include <iosfwd> |
| |
| #include "src/allocation.h" |
| #include "src/builtins/builtins.h" |
| #include "src/deoptimize-reason.h" |
| #include "src/double.h" |
| #include "src/globals.h" |
| #include "src/label.h" |
| #include "src/log.h" |
| #include "src/register-configuration.h" |
| #include "src/reglist.h" |
| #include "src/runtime/runtime.h" |
| |
| namespace v8 { |
| |
| // Forward declarations. |
| class ApiFunction; |
| |
| namespace internal { |
| |
| // Forward declarations. |
| class Isolate; |
| class SourcePosition; |
| class StatsCounter; |
| |
| void SetUpJSCallerSavedCodeData(); |
| |
| // Return the code of the n-th saved register available to JavaScript. |
| int JSCallerSavedCode(int n); |
| |
| // ----------------------------------------------------------------------------- |
| // Optimization for far-jmp like instructions that can be replaced by shorter. |
| |
| class JumpOptimizationInfo { |
| public: |
| bool is_collecting() const { return stage_ == kCollection; } |
| bool is_optimizing() const { return stage_ == kOptimization; } |
| void set_optimizing() { stage_ = kOptimization; } |
| |
| bool is_optimizable() const { return optimizable_; } |
| void set_optimizable() { optimizable_ = true; } |
| |
| std::vector<uint32_t>& farjmp_bitmap() { return farjmp_bitmap_; } |
| |
| private: |
| enum { kCollection, kOptimization } stage_ = kCollection; |
| bool optimizable_ = false; |
| std::vector<uint32_t> farjmp_bitmap_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Platform independent assembler base class. |
| |
| enum class CodeObjectRequired { kNo, kYes }; |
| |
| |
| class AssemblerBase: public Malloced { |
| public: |
| struct IsolateData { |
| explicit IsolateData(Isolate* isolate); |
| IsolateData(const IsolateData&) = default; |
| |
| bool serializer_enabled_; |
| #if V8_TARGET_ARCH_X64 |
| Address code_range_start_; |
| #endif |
| }; |
| |
| AssemblerBase(IsolateData isolate_data, void* buffer, int buffer_size); |
| virtual ~AssemblerBase(); |
| |
| IsolateData isolate_data() const { return isolate_data_; } |
| |
| bool serializer_enabled() const { return isolate_data_.serializer_enabled_; } |
| void enable_serializer() { isolate_data_.serializer_enabled_ = true; } |
| |
| bool emit_debug_code() const { return emit_debug_code_; } |
| void set_emit_debug_code(bool value) { emit_debug_code_ = value; } |
| |
| bool predictable_code_size() const { return predictable_code_size_; } |
| void set_predictable_code_size(bool value) { predictable_code_size_ = value; } |
| |
| uint64_t enabled_cpu_features() const { return enabled_cpu_features_; } |
| void set_enabled_cpu_features(uint64_t features) { |
| enabled_cpu_features_ = features; |
| } |
| // Features are usually enabled by CpuFeatureScope, which also asserts that |
| // the features are supported before they are enabled. |
| bool IsEnabled(CpuFeature f) { |
| return (enabled_cpu_features_ & (static_cast<uint64_t>(1) << f)) != 0; |
| } |
| void EnableCpuFeature(CpuFeature f) { |
| enabled_cpu_features_ |= (static_cast<uint64_t>(1) << f); |
| } |
| |
| bool is_constant_pool_available() const { |
| if (FLAG_enable_embedded_constant_pool) { |
| return constant_pool_available_; |
| } else { |
| // Embedded constant pool not supported on this architecture. |
| UNREACHABLE(); |
| } |
| } |
| |
| JumpOptimizationInfo* jump_optimization_info() { |
| return jump_optimization_info_; |
| } |
| void set_jump_optimization_info(JumpOptimizationInfo* jump_opt) { |
| jump_optimization_info_ = jump_opt; |
| } |
| |
| // Overwrite a host NaN with a quiet target NaN. Used by mksnapshot for |
| // cross-snapshotting. |
| static void QuietNaN(HeapObject* nan) { } |
| |
| int pc_offset() const { return static_cast<int>(pc_ - buffer_); } |
| |
| // This function is called when code generation is aborted, so that |
| // the assembler could clean up internal data structures. |
| virtual void AbortedCodeGeneration() { } |
| |
| // Debugging |
| void Print(Isolate* isolate); |
| |
| static const int kMinimalBufferSize = 4*KB; |
| |
| static void FlushICache(Isolate* isolate, void* start, size_t size); |
| |
| protected: |
| // The buffer into which code and relocation info are generated. It could |
| // either be owned by the assembler or be provided externally. |
| byte* buffer_; |
| int buffer_size_; |
| bool own_buffer_; |
| |
| void set_constant_pool_available(bool available) { |
| if (FLAG_enable_embedded_constant_pool) { |
| constant_pool_available_ = available; |
| } else { |
| // Embedded constant pool not supported on this architecture. |
| UNREACHABLE(); |
| } |
| } |
| |
| // The program counter, which points into the buffer above and moves forward. |
| byte* pc_; |
| |
| private: |
| IsolateData isolate_data_; |
| uint64_t enabled_cpu_features_; |
| bool emit_debug_code_; |
| bool predictable_code_size_; |
| |
| // Indicates whether the constant pool can be accessed, which is only possible |
| // if the pp register points to the current code object's constant pool. |
| bool constant_pool_available_; |
| |
| JumpOptimizationInfo* jump_optimization_info_; |
| |
| // Constant pool. |
| friend class FrameAndConstantPoolScope; |
| friend class ConstantPoolUnavailableScope; |
| }; |
| |
| // Avoids emitting debug code during the lifetime of this scope object. |
| class DontEmitDebugCodeScope BASE_EMBEDDED { |
| public: |
| explicit DontEmitDebugCodeScope(AssemblerBase* assembler) |
| : assembler_(assembler), old_value_(assembler->emit_debug_code()) { |
| assembler_->set_emit_debug_code(false); |
| } |
| ~DontEmitDebugCodeScope() { |
| assembler_->set_emit_debug_code(old_value_); |
| } |
| private: |
| AssemblerBase* assembler_; |
| bool old_value_; |
| }; |
| |
| |
| // Avoids using instructions that vary in size in unpredictable ways between the |
| // snapshot and the running VM. |
| class PredictableCodeSizeScope { |
| public: |
| explicit PredictableCodeSizeScope(AssemblerBase* assembler); |
| PredictableCodeSizeScope(AssemblerBase* assembler, int expected_size); |
| ~PredictableCodeSizeScope(); |
| void ExpectSize(int expected_size) { expected_size_ = expected_size; } |
| |
| private: |
| AssemblerBase* assembler_; |
| int expected_size_; |
| int start_offset_; |
| bool old_value_; |
| }; |
| |
| |
| // Enable a specified feature within a scope. |
| class CpuFeatureScope BASE_EMBEDDED { |
| public: |
| enum CheckPolicy { |
| kCheckSupported, |
| kDontCheckSupported, |
| }; |
| |
| #ifdef DEBUG |
| CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, |
| CheckPolicy check = kCheckSupported); |
| ~CpuFeatureScope(); |
| |
| private: |
| AssemblerBase* assembler_; |
| uint64_t old_enabled_; |
| #else |
| CpuFeatureScope(AssemblerBase* assembler, CpuFeature f, |
| CheckPolicy check = kCheckSupported) {} |
| #endif |
| }; |
| |
| |
| // CpuFeatures keeps track of which features are supported by the target CPU. |
| // Supported features must be enabled by a CpuFeatureScope before use. |
| // Example: |
| // if (assembler->IsSupported(SSE3)) { |
| // CpuFeatureScope fscope(assembler, SSE3); |
| // // Generate code containing SSE3 instructions. |
| // } else { |
| // // Generate alternative code. |
| // } |
| class CpuFeatures : public AllStatic { |
| public: |
| static void Probe(bool cross_compile) { |
| STATIC_ASSERT(NUMBER_OF_CPU_FEATURES <= kBitsPerInt); |
| if (initialized_) return; |
| initialized_ = true; |
| ProbeImpl(cross_compile); |
| } |
| |
| static unsigned SupportedFeatures() { |
| Probe(false); |
| return supported_; |
| } |
| |
| static bool IsSupported(CpuFeature f) { |
| return (supported_ & (1u << f)) != 0; |
| } |
| |
| static inline bool SupportsCrankshaft(); |
| |
| static inline bool SupportsWasmSimd128(); |
| |
| static inline unsigned icache_line_size() { |
| DCHECK_NE(icache_line_size_, 0); |
| return icache_line_size_; |
| } |
| |
| static inline unsigned dcache_line_size() { |
| DCHECK_NE(dcache_line_size_, 0); |
| return dcache_line_size_; |
| } |
| |
| static void PrintTarget(); |
| static void PrintFeatures(); |
| |
| private: |
| friend class ExternalReference; |
| friend class AssemblerBase; |
| // Flush instruction cache. |
| static void FlushICache(void* start, size_t size); |
| |
| // Platform-dependent implementation. |
| static void ProbeImpl(bool cross_compile); |
| |
| static unsigned supported_; |
| static unsigned icache_line_size_; |
| static unsigned dcache_line_size_; |
| static bool initialized_; |
| DISALLOW_COPY_AND_ASSIGN(CpuFeatures); |
| }; |
| |
| |
| enum SaveFPRegsMode { kDontSaveFPRegs, kSaveFPRegs }; |
| |
| enum ArgvMode { kArgvOnStack, kArgvInRegister }; |
| |
| // Specifies whether to perform icache flush operations on RelocInfo updates. |
| // If FLUSH_ICACHE_IF_NEEDED, the icache will always be flushed if an |
| // instruction was modified. If SKIP_ICACHE_FLUSH the flush will always be |
| // skipped (only use this if you will flush the icache manually before it is |
| // executed). |
| enum ICacheFlushMode { FLUSH_ICACHE_IF_NEEDED, SKIP_ICACHE_FLUSH }; |
| |
| // ----------------------------------------------------------------------------- |
| // Relocation information |
| |
| |
| // Relocation information consists of the address (pc) of the datum |
| // to which the relocation information applies, the relocation mode |
| // (rmode), and an optional data field. The relocation mode may be |
| // "descriptive" and not indicate a need for relocation, but simply |
| // describe a property of the datum. Such rmodes are useful for GC |
| // and nice disassembly output. |
| |
| class RelocInfo { |
| public: |
| // This string is used to add padding comments to the reloc info in cases |
| // where we are not sure to have enough space for patching in during |
| // lazy deoptimization. This is the case if we have indirect calls for which |
| // we do not normally record relocation info. |
| static const char* const kFillerCommentString; |
| |
| // The minimum size of a comment is equal to two bytes for the extra tagged |
| // pc and kPointerSize for the actual pointer to the comment. |
| static const int kMinRelocCommentSize = 2 + kPointerSize; |
| |
| // The maximum size for a call instruction including pc-jump. |
| static const int kMaxCallSize = 6; |
| |
| // The maximum pc delta that will use the short encoding. |
| static const int kMaxSmallPCDelta; |
| |
| enum Mode { |
| // Please note the order is important (see IsCodeTarget, IsGCRelocMode). |
| CODE_TARGET, |
| EMBEDDED_OBJECT, |
| // Wasm entries are to relocate pointers into the wasm memory embedded in |
| // wasm code. Everything after WASM_CONTEXT_REFERENCE (inclusive) is not |
| // GC'ed. |
| WASM_CONTEXT_REFERENCE, |
| WASM_FUNCTION_TABLE_SIZE_REFERENCE, |
| WASM_GLOBAL_HANDLE, |
| WASM_CALL, |
| JS_TO_WASM_CALL, |
| |
| RUNTIME_ENTRY, |
| COMMENT, |
| |
| EXTERNAL_REFERENCE, // The address of an external C++ function. |
| INTERNAL_REFERENCE, // An address inside the same function. |
| |
| // Encoded internal reference, used only on MIPS, MIPS64 and PPC. |
| INTERNAL_REFERENCE_ENCODED, |
| |
| // Marks constant and veneer pools. Only used on ARM and ARM64. |
| // They use a custom noncompact encoding. |
| CONST_POOL, |
| VENEER_POOL, |
| |
| DEOPT_SCRIPT_OFFSET, |
| DEOPT_INLINING_ID, // Deoptimization source position. |
| DEOPT_REASON, // Deoptimization reason index. |
| DEOPT_ID, // Deoptimization inlining id. |
| |
| // This is not an actual reloc mode, but used to encode a long pc jump that |
| // cannot be encoded as part of another record. |
| PC_JUMP, |
| |
| // Pseudo-types |
| NUMBER_OF_MODES, |
| NONE32, // never recorded 32-bit value |
| NONE64, // never recorded 64-bit value |
| |
| FIRST_REAL_RELOC_MODE = CODE_TARGET, |
| LAST_REAL_RELOC_MODE = VENEER_POOL, |
| LAST_CODE_ENUM = CODE_TARGET, |
| LAST_GCED_ENUM = EMBEDDED_OBJECT, |
| FIRST_SHAREABLE_RELOC_MODE = RUNTIME_ENTRY, |
| }; |
| |
| STATIC_ASSERT(NUMBER_OF_MODES <= kBitsPerInt); |
| |
| RelocInfo() = default; |
| |
| RelocInfo(byte* pc, Mode rmode, intptr_t data, Code* host) |
| : pc_(pc), rmode_(rmode), data_(data), host_(host) {} |
| |
| static inline bool IsRealRelocMode(Mode mode) { |
| return mode >= FIRST_REAL_RELOC_MODE && mode <= LAST_REAL_RELOC_MODE; |
| } |
| static inline bool IsCodeTarget(Mode mode) { |
| return mode <= LAST_CODE_ENUM; |
| } |
| static inline bool IsEmbeddedObject(Mode mode) { |
| return mode == EMBEDDED_OBJECT; |
| } |
| static inline bool IsRuntimeEntry(Mode mode) { |
| return mode == RUNTIME_ENTRY; |
| } |
| static inline bool IsWasmCall(Mode mode) { return mode == WASM_CALL; } |
| // Is the relocation mode affected by GC? |
| static inline bool IsGCRelocMode(Mode mode) { |
| return mode <= LAST_GCED_ENUM; |
| } |
| static inline bool IsComment(Mode mode) { |
| return mode == COMMENT; |
| } |
| static inline bool IsConstPool(Mode mode) { |
| return mode == CONST_POOL; |
| } |
| static inline bool IsVeneerPool(Mode mode) { |
| return mode == VENEER_POOL; |
| } |
| static inline bool IsDeoptPosition(Mode mode) { |
| return mode == DEOPT_SCRIPT_OFFSET || mode == DEOPT_INLINING_ID; |
| } |
| static inline bool IsDeoptReason(Mode mode) { |
| return mode == DEOPT_REASON; |
| } |
| static inline bool IsDeoptId(Mode mode) { |
| return mode == DEOPT_ID; |
| } |
| static inline bool IsExternalReference(Mode mode) { |
| return mode == EXTERNAL_REFERENCE; |
| } |
| static inline bool IsInternalReference(Mode mode) { |
| return mode == INTERNAL_REFERENCE; |
| } |
| static inline bool IsInternalReferenceEncoded(Mode mode) { |
| return mode == INTERNAL_REFERENCE_ENCODED; |
| } |
| static inline bool IsNone(Mode mode) { |
| return mode == NONE32 || mode == NONE64; |
| } |
| static inline bool IsWasmContextReference(Mode mode) { |
| return mode == WASM_CONTEXT_REFERENCE; |
| } |
| static inline bool IsWasmFunctionTableSizeReference(Mode mode) { |
| return mode == WASM_FUNCTION_TABLE_SIZE_REFERENCE; |
| } |
| static inline bool IsWasmReference(Mode mode) { |
| return IsWasmPtrReference(mode) || IsWasmSizeReference(mode); |
| } |
| static inline bool IsWasmSizeReference(Mode mode) { |
| return IsWasmFunctionTableSizeReference(mode); |
| } |
| static inline bool IsWasmPtrReference(Mode mode) { |
| return mode == WASM_CONTEXT_REFERENCE || mode == WASM_GLOBAL_HANDLE || |
| mode == WASM_CALL || mode == JS_TO_WASM_CALL; |
| } |
| |
| static inline int ModeMask(Mode mode) { return 1 << mode; } |
| |
| // Accessors |
| byte* pc() const { return pc_; } |
| void set_pc(byte* pc) { pc_ = pc; } |
| Mode rmode() const { return rmode_; } |
| intptr_t data() const { return data_; } |
| Code* host() const { return host_; } |
| Address constant_pool() const { return constant_pool_; } |
| |
| // Apply a relocation by delta bytes. When the code object is moved, PC |
| // relative addresses have to be updated as well as absolute addresses |
| // inside the code (internal references). |
| // Do not forget to flush the icache afterwards! |
| INLINE(void apply(intptr_t delta)); |
| |
| // Is the pointer this relocation info refers to coded like a plain pointer |
| // or is it strange in some way (e.g. relative or patched into a series of |
| // instructions). |
| bool IsCodedSpecially(); |
| |
| // If true, the pointer this relocation info refers to is an entry in the |
| // constant pool, otherwise the pointer is embedded in the instruction stream. |
| bool IsInConstantPool(); |
| |
| Address wasm_context_reference() const; |
| uint32_t wasm_function_table_size_reference() const; |
| Address global_handle() const; |
| Address js_to_wasm_address() const; |
| Address wasm_call_address() const; |
| |
| void set_wasm_context_reference( |
| Isolate* isolate, Address address, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| void update_wasm_function_table_size_reference( |
| Isolate* isolate, uint32_t old_base, uint32_t new_base, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| void set_target_address( |
| Isolate* isolate, Address target, |
| WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| |
| void set_global_handle( |
| Isolate* isolate, Address address, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| void set_wasm_call_address( |
| Isolate*, Address, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| void set_js_to_wasm_address( |
| Isolate*, Address, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| |
| // this relocation applies to; |
| // can only be called if IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) |
| INLINE(Address target_address()); |
| INLINE(HeapObject* target_object()); |
| INLINE(Handle<HeapObject> target_object_handle(Assembler* origin)); |
| INLINE(void set_target_object( |
| HeapObject* target, |
| WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| INLINE(Address target_runtime_entry(Assembler* origin)); |
| INLINE(void set_target_runtime_entry( |
| Isolate* isolate, Address target, |
| WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| INLINE(Cell* target_cell()); |
| INLINE(Handle<Cell> target_cell_handle()); |
| INLINE(void set_target_cell( |
| Cell* cell, WriteBarrierMode write_barrier_mode = UPDATE_WRITE_BARRIER, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)); |
| |
| // Returns the address of the constant pool entry where the target address |
| // is held. This should only be called if IsInConstantPool returns true. |
| INLINE(Address constant_pool_entry_address()); |
| |
| // Read the address of the word containing the target_address in an |
| // instruction stream. What this means exactly is architecture-independent. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. Architecture-independent code shouldn't |
| // dereference the pointer it gets back from this. |
| INLINE(Address target_address_address()); |
| |
| // This indicates how much space a target takes up when deserializing a code |
| // stream. For most architectures this is just the size of a pointer. For |
| // an instruction like movw/movt where the target bits are mixed into the |
| // instruction bits the size of the target will be zero, indicating that the |
| // serializer should not step forwards in memory after a target is resolved |
| // and written. In this case the target_address_address function above |
| // should return the end of the instructions to be patched, allowing the |
| // deserializer to deserialize the instructions as raw bytes and put them in |
| // place, ready to be patched with the target. |
| INLINE(int target_address_size()); |
| |
| // Read the reference in the instruction this relocation |
| // applies to; can only be called if rmode_ is EXTERNAL_REFERENCE. |
| INLINE(Address target_external_reference()); |
| |
| // Read the reference in the instruction this relocation |
| // applies to; can only be called if rmode_ is INTERNAL_REFERENCE. |
| INLINE(Address target_internal_reference()); |
| |
| // Return the reference address this relocation applies to; |
| // can only be called if rmode_ is INTERNAL_REFERENCE. |
| INLINE(Address target_internal_reference_address()); |
| |
| // Wipe out a relocation to a fixed value, used for making snapshots |
| // reproducible. |
| INLINE(void WipeOut(Isolate* isolate)); |
| |
| template <typename ObjectVisitor> |
| inline void Visit(Isolate* isolate, ObjectVisitor* v); |
| |
| #ifdef DEBUG |
| // Check whether the given code contains relocation information that |
| // either is position-relative or movable by the garbage collector. |
| static bool RequiresRelocation(Isolate* isolate, const CodeDesc& desc); |
| #endif |
| |
| #ifdef ENABLE_DISASSEMBLER |
| // Printing |
| static const char* RelocModeName(Mode rmode); |
| void Print(Isolate* isolate, std::ostream& os); // NOLINT |
| #endif // ENABLE_DISASSEMBLER |
| #ifdef VERIFY_HEAP |
| void Verify(Isolate* isolate); |
| #endif |
| |
| static const int kCodeTargetMask = (1 << (LAST_CODE_ENUM + 1)) - 1; |
| static const int kApplyMask; // Modes affected by apply. Depends on arch. |
| |
| private: |
| void set_embedded_address(Isolate* isolate, Address address, |
| ICacheFlushMode flush_mode); |
| void set_embedded_size(Isolate* isolate, uint32_t size, |
| ICacheFlushMode flush_mode); |
| |
| uint32_t embedded_size() const; |
| Address embedded_address() const; |
| |
| // On ARM, note that pc_ is the address of the constant pool entry |
| // to be relocated and not the address of the instruction |
| // referencing the constant pool entry (except when rmode_ == |
| // comment). |
| byte* pc_; |
| Mode rmode_; |
| intptr_t data_; |
| Code* host_; |
| Address constant_pool_ = nullptr; |
| friend class RelocIterator; |
| }; |
| |
| |
| // RelocInfoWriter serializes a stream of relocation info. It writes towards |
| // lower addresses. |
| class RelocInfoWriter BASE_EMBEDDED { |
| public: |
| RelocInfoWriter() : pos_(nullptr), last_pc_(nullptr) {} |
| RelocInfoWriter(byte* pos, byte* pc) : pos_(pos), last_pc_(pc) {} |
| |
| byte* pos() const { return pos_; } |
| byte* last_pc() const { return last_pc_; } |
| |
| void Write(const RelocInfo* rinfo); |
| |
| // Update the state of the stream after reloc info buffer |
| // and/or code is moved while the stream is active. |
| void Reposition(byte* pos, byte* pc) { |
| pos_ = pos; |
| last_pc_ = pc; |
| } |
| |
| // Max size (bytes) of a written RelocInfo. Longest encoding is |
| // ExtraTag, VariableLengthPCJump, ExtraTag, pc_delta, data_delta. |
| // On ia32 and arm this is 1 + 4 + 1 + 1 + 4 = 11. |
| // On x64 this is 1 + 4 + 1 + 1 + 8 == 15; |
| // Here we use the maximum of the two. |
| static const int kMaxSize = 15; |
| |
| private: |
| inline uint32_t WriteLongPCJump(uint32_t pc_delta); |
| |
| inline void WriteShortTaggedPC(uint32_t pc_delta, int tag); |
| inline void WriteShortData(intptr_t data_delta); |
| |
| inline void WriteMode(RelocInfo::Mode rmode); |
| inline void WriteModeAndPC(uint32_t pc_delta, RelocInfo::Mode rmode); |
| inline void WriteIntData(int data_delta); |
| inline void WriteData(intptr_t data_delta); |
| |
| byte* pos_; |
| byte* last_pc_; |
| RelocInfo::Mode last_mode_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RelocInfoWriter); |
| }; |
| |
| |
| // A RelocIterator iterates over relocation information. |
| // Typical use: |
| // |
| // for (RelocIterator it(code); !it.done(); it.next()) { |
| // // do something with it.rinfo() here |
| // } |
| // |
| // A mask can be specified to skip unwanted modes. |
| class RelocIterator: public Malloced { |
| public: |
| // Create a new iterator positioned at |
| // the beginning of the reloc info. |
| // Relocation information with mode k is included in the |
| // iteration iff bit k of mode_mask is set. |
| explicit RelocIterator(Code* code, int mode_mask = -1); |
| explicit RelocIterator(const CodeDesc& desc, int mode_mask = -1); |
| explicit RelocIterator(Vector<byte> instructions, |
| Vector<const byte> reloc_info, Address const_pool, |
| int mode_mask = -1); |
| RelocIterator(RelocIterator&&) = default; |
| RelocIterator& operator=(RelocIterator&&) = default; |
| |
| // Iteration |
| bool done() const { return done_; } |
| void next(); |
| |
| // Return pointer valid until next next(). |
| RelocInfo* rinfo() { |
| DCHECK(!done()); |
| return &rinfo_; |
| } |
| |
| private: |
| // Advance* moves the position before/after reading. |
| // *Read* reads from current byte(s) into rinfo_. |
| // *Get* just reads and returns info on current byte. |
| void Advance(int bytes = 1) { pos_ -= bytes; } |
| int AdvanceGetTag(); |
| RelocInfo::Mode GetMode(); |
| |
| void AdvanceReadLongPCJump(); |
| |
| void ReadShortTaggedPC(); |
| void ReadShortData(); |
| |
| void AdvanceReadPC(); |
| void AdvanceReadInt(); |
| void AdvanceReadData(); |
| |
| // If the given mode is wanted, set it in rinfo_ and return true. |
| // Else return false. Used for efficiently skipping unwanted modes. |
| bool SetMode(RelocInfo::Mode mode) { |
| return (mode_mask_ & (1 << mode)) ? (rinfo_.rmode_ = mode, true) : false; |
| } |
| |
| const byte* pos_; |
| const byte* end_; |
| RelocInfo rinfo_; |
| bool done_; |
| int mode_mask_; |
| DISALLOW_COPY_AND_ASSIGN(RelocIterator); |
| }; |
| |
| |
| //------------------------------------------------------------------------------ |
| // External function |
| |
| //---------------------------------------------------------------------------- |
| class SCTableReference; |
| class Debug_Address; |
| |
| |
| // An ExternalReference represents a C++ address used in the generated |
| // code. All references to C++ functions and variables must be encapsulated in |
| // an ExternalReference instance. This is done in order to track the origin of |
| // all external references in the code so that they can be bound to the correct |
| // addresses when deserializing a heap. |
| class ExternalReference BASE_EMBEDDED { |
| public: |
| // Used in the simulator to support different native api calls. |
| enum Type { |
| // Builtin call. |
| // Object* f(v8::internal::Arguments). |
| BUILTIN_CALL, // default |
| |
| // Builtin call returning object pair. |
| // ObjectPair f(v8::internal::Arguments). |
| BUILTIN_CALL_PAIR, |
| |
| // Builtin that takes float arguments and returns an int. |
| // int f(double, double). |
| BUILTIN_COMPARE_CALL, |
| |
| // Builtin call that returns floating point. |
| // double f(double, double). |
| BUILTIN_FP_FP_CALL, |
| |
| // Builtin call that returns floating point. |
| // double f(double). |
| BUILTIN_FP_CALL, |
| |
| // Builtin call that returns floating point. |
| // double f(double, int). |
| BUILTIN_FP_INT_CALL, |
| |
| // Direct call to API function callback. |
| // void f(v8::FunctionCallbackInfo&) |
| DIRECT_API_CALL, |
| |
| // Call to function callback via InvokeFunctionCallback. |
| // void f(v8::FunctionCallbackInfo&, v8::FunctionCallback) |
| PROFILING_API_CALL, |
| |
| // Direct call to accessor getter callback. |
| // void f(Local<Name> property, PropertyCallbackInfo& info) |
| DIRECT_GETTER_CALL, |
| |
| // Call to accessor getter callback via InvokeAccessorGetterCallback. |
| // void f(Local<Name> property, PropertyCallbackInfo& info, |
| // AccessorNameGetterCallback callback) |
| PROFILING_GETTER_CALL |
| }; |
| |
| static void SetUp(); |
| |
| // These functions must use the isolate in a thread-safe way. |
| typedef void* ExternalReferenceRedirector(Isolate* isolate, void* original, |
| Type type); |
| |
| ExternalReference() : address_(nullptr) {} |
| |
| ExternalReference(Address address, Isolate* isolate); |
| |
| ExternalReference(ApiFunction* ptr, Type type, Isolate* isolate); |
| |
| ExternalReference(Runtime::FunctionId id, Isolate* isolate); |
| |
| ExternalReference(const Runtime::Function* f, Isolate* isolate); |
| |
| explicit ExternalReference(StatsCounter* counter); |
| |
| ExternalReference(IsolateAddressId id, Isolate* isolate); |
| |
| explicit ExternalReference(const SCTableReference& table_ref); |
| |
| // Isolate as an external reference. |
| static ExternalReference isolate_address(Isolate* isolate); |
| |
| // The builtins table as an external reference, used by lazy deserialization. |
| static ExternalReference builtins_address(Isolate* isolate); |
| |
| static ExternalReference handle_scope_implementer_address(Isolate* isolate); |
| static ExternalReference pending_microtask_count_address(Isolate* isolate); |
| |
| // One-of-a-kind references. These references are not part of a general |
| // pattern. This means that they have to be added to the |
| // ExternalReferenceTable in serialize.cc manually. |
| |
| static ExternalReference interpreter_dispatch_table_address(Isolate* isolate); |
| static ExternalReference interpreter_dispatch_counters(Isolate* isolate); |
| static ExternalReference bytecode_size_table_address(Isolate* isolate); |
| |
| static ExternalReference incremental_marking_record_write_function( |
| Isolate* isolate); |
| static ExternalReference store_buffer_overflow_function( |
| Isolate* isolate); |
| static ExternalReference delete_handle_scope_extensions(Isolate* isolate); |
| |
| static ExternalReference get_date_field_function(Isolate* isolate); |
| static ExternalReference date_cache_stamp(Isolate* isolate); |
| |
| // Deoptimization support. |
| static ExternalReference new_deoptimizer_function(Isolate* isolate); |
| static ExternalReference compute_output_frames_function(Isolate* isolate); |
| |
| static ExternalReference wasm_f32_trunc(Isolate* isolate); |
| static ExternalReference wasm_f32_floor(Isolate* isolate); |
| static ExternalReference wasm_f32_ceil(Isolate* isolate); |
| static ExternalReference wasm_f32_nearest_int(Isolate* isolate); |
| static ExternalReference wasm_f64_trunc(Isolate* isolate); |
| static ExternalReference wasm_f64_floor(Isolate* isolate); |
| static ExternalReference wasm_f64_ceil(Isolate* isolate); |
| static ExternalReference wasm_f64_nearest_int(Isolate* isolate); |
| static ExternalReference wasm_int64_to_float32(Isolate* isolate); |
| static ExternalReference wasm_uint64_to_float32(Isolate* isolate); |
| static ExternalReference wasm_int64_to_float64(Isolate* isolate); |
| static ExternalReference wasm_uint64_to_float64(Isolate* isolate); |
| static ExternalReference wasm_float32_to_int64(Isolate* isolate); |
| static ExternalReference wasm_float32_to_uint64(Isolate* isolate); |
| static ExternalReference wasm_float64_to_int64(Isolate* isolate); |
| static ExternalReference wasm_float64_to_uint64(Isolate* isolate); |
| static ExternalReference wasm_int64_div(Isolate* isolate); |
| static ExternalReference wasm_int64_mod(Isolate* isolate); |
| static ExternalReference wasm_uint64_div(Isolate* isolate); |
| static ExternalReference wasm_uint64_mod(Isolate* isolate); |
| static ExternalReference wasm_word32_ctz(Isolate* isolate); |
| static ExternalReference wasm_word64_ctz(Isolate* isolate); |
| static ExternalReference wasm_word32_popcnt(Isolate* isolate); |
| static ExternalReference wasm_word64_popcnt(Isolate* isolate); |
| static ExternalReference wasm_word32_rol(Isolate* isolate); |
| static ExternalReference wasm_word32_ror(Isolate* isolate); |
| static ExternalReference wasm_float64_pow(Isolate* isolate); |
| static ExternalReference wasm_set_thread_in_wasm_flag(Isolate* isolate); |
| static ExternalReference wasm_clear_thread_in_wasm_flag(Isolate* isolate); |
| |
| static ExternalReference f64_acos_wrapper_function(Isolate* isolate); |
| static ExternalReference f64_asin_wrapper_function(Isolate* isolate); |
| static ExternalReference f64_mod_wrapper_function(Isolate* isolate); |
| |
| // Trap callback function for cctest/wasm/wasm-run-utils.h |
| static ExternalReference wasm_call_trap_callback_for_testing( |
| Isolate* isolate); |
| |
| // Log support. |
| static ExternalReference log_enter_external_function(Isolate* isolate); |
| static ExternalReference log_leave_external_function(Isolate* isolate); |
| |
| // Static variable Heap::roots_array_start() |
| static ExternalReference roots_array_start(Isolate* isolate); |
| |
| // Static variable Heap::allocation_sites_list_address() |
| static ExternalReference allocation_sites_list_address(Isolate* isolate); |
| |
| // Static variable StackGuard::address_of_jslimit() |
| V8_EXPORT_PRIVATE static ExternalReference address_of_stack_limit( |
| Isolate* isolate); |
| |
| // Static variable StackGuard::address_of_real_jslimit() |
| static ExternalReference address_of_real_stack_limit(Isolate* isolate); |
| |
| // Static variable RegExpStack::limit_address() |
| static ExternalReference address_of_regexp_stack_limit(Isolate* isolate); |
| |
| // Static variables for RegExp. |
| static ExternalReference address_of_static_offsets_vector(Isolate* isolate); |
| static ExternalReference address_of_regexp_stack_memory_address( |
| Isolate* isolate); |
| static ExternalReference address_of_regexp_stack_memory_size( |
| Isolate* isolate); |
| |
| // Write barrier. |
| static ExternalReference store_buffer_top(Isolate* isolate); |
| static ExternalReference heap_is_marking_flag_address(Isolate* isolate); |
| |
| // Used for fast allocation in generated code. |
| static ExternalReference new_space_allocation_top_address(Isolate* isolate); |
| static ExternalReference new_space_allocation_limit_address(Isolate* isolate); |
| static ExternalReference old_space_allocation_top_address(Isolate* isolate); |
| static ExternalReference old_space_allocation_limit_address(Isolate* isolate); |
| |
| static ExternalReference mod_two_doubles_operation(Isolate* isolate); |
| static ExternalReference power_double_double_function(Isolate* isolate); |
| |
| static ExternalReference handle_scope_next_address(Isolate* isolate); |
| static ExternalReference handle_scope_limit_address(Isolate* isolate); |
| static ExternalReference handle_scope_level_address(Isolate* isolate); |
| |
| static ExternalReference scheduled_exception_address(Isolate* isolate); |
| static ExternalReference address_of_pending_message_obj(Isolate* isolate); |
| |
| // Static variables containing common double constants. |
| static ExternalReference address_of_min_int(); |
| static ExternalReference address_of_one_half(); |
| static ExternalReference address_of_minus_one_half(); |
| static ExternalReference address_of_negative_infinity(); |
| static ExternalReference address_of_the_hole_nan(); |
| static ExternalReference address_of_uint32_bias(); |
| |
| // Static variables containing simd constants. |
| static ExternalReference address_of_float_abs_constant(); |
| static ExternalReference address_of_float_neg_constant(); |
| static ExternalReference address_of_double_abs_constant(); |
| static ExternalReference address_of_double_neg_constant(); |
| |
| // IEEE 754 functions. |
| static ExternalReference ieee754_acos_function(Isolate* isolate); |
| static ExternalReference ieee754_acosh_function(Isolate* isolate); |
| static ExternalReference ieee754_asin_function(Isolate* isolate); |
| static ExternalReference ieee754_asinh_function(Isolate* isolate); |
| static ExternalReference ieee754_atan_function(Isolate* isolate); |
| static ExternalReference ieee754_atanh_function(Isolate* isolate); |
| static ExternalReference ieee754_atan2_function(Isolate* isolate); |
| static ExternalReference ieee754_cbrt_function(Isolate* isolate); |
| static ExternalReference ieee754_cos_function(Isolate* isolate); |
| static ExternalReference ieee754_cosh_function(Isolate* isolate); |
| static ExternalReference ieee754_exp_function(Isolate* isolate); |
| static ExternalReference ieee754_expm1_function(Isolate* isolate); |
| static ExternalReference ieee754_log_function(Isolate* isolate); |
| static ExternalReference ieee754_log1p_function(Isolate* isolate); |
| static ExternalReference ieee754_log10_function(Isolate* isolate); |
| static ExternalReference ieee754_log2_function(Isolate* isolate); |
| static ExternalReference ieee754_sin_function(Isolate* isolate); |
| static ExternalReference ieee754_sinh_function(Isolate* isolate); |
| static ExternalReference ieee754_tan_function(Isolate* isolate); |
| static ExternalReference ieee754_tanh_function(Isolate* isolate); |
| |
| static ExternalReference libc_memchr_function(Isolate* isolate); |
| static ExternalReference libc_memcpy_function(Isolate* isolate); |
| static ExternalReference libc_memmove_function(Isolate* isolate); |
| static ExternalReference libc_memset_function(Isolate* isolate); |
| |
| static ExternalReference printf_function(Isolate* isolate); |
| |
| static ExternalReference try_internalize_string_function(Isolate* isolate); |
| |
| static ExternalReference check_object_type(Isolate* isolate); |
| |
| #ifdef V8_INTL_SUPPORT |
| static ExternalReference intl_convert_one_byte_to_lower(Isolate* isolate); |
| static ExternalReference intl_to_latin1_lower_table(Isolate* isolate); |
| #endif // V8_INTL_SUPPORT |
| |
| template <typename SubjectChar, typename PatternChar> |
| static ExternalReference search_string_raw(Isolate* isolate); |
| |
| static ExternalReference orderedhashmap_gethash_raw(Isolate* isolate); |
| |
| static ExternalReference get_or_create_hash_raw(Isolate* isolate); |
| static ExternalReference jsreceiver_create_identity_hash(Isolate* isolate); |
| |
| static ExternalReference copy_fast_number_jsarray_elements_to_typed_array( |
| Isolate* isolate); |
| static ExternalReference copy_typed_array_elements_to_typed_array( |
| Isolate* isolate); |
| |
| static ExternalReference page_flags(Page* page); |
| |
| static ExternalReference ForDeoptEntry(Address entry); |
| |
| static ExternalReference cpu_features(); |
| |
| static ExternalReference debug_is_active_address(Isolate* isolate); |
| static ExternalReference debug_hook_on_function_call_address( |
| Isolate* isolate); |
| |
| static ExternalReference is_profiling_address(Isolate* isolate); |
| static ExternalReference invoke_function_callback(Isolate* isolate); |
| static ExternalReference invoke_accessor_getter_callback(Isolate* isolate); |
| |
| static ExternalReference promise_hook_or_debug_is_active_address( |
| Isolate* isolate); |
| |
| V8_EXPORT_PRIVATE static ExternalReference runtime_function_table_address( |
| Isolate* isolate); |
| |
| static ExternalReference invalidate_prototype_chains_function( |
| Isolate* isolate); |
| |
| Address address() const { return reinterpret_cast<Address>(address_); } |
| |
| // Used to read out the last step action of the debugger. |
| static ExternalReference debug_last_step_action_address(Isolate* isolate); |
| |
| // Used to check for suspended generator, used for stepping across await call. |
| static ExternalReference debug_suspended_generator_address(Isolate* isolate); |
| |
| // Used to store the frame pointer to drop to when restarting a frame. |
| static ExternalReference debug_restart_fp_address(Isolate* isolate); |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| // C functions called from RegExp generated code. |
| |
| // Function NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16() |
| static ExternalReference re_case_insensitive_compare_uc16(Isolate* isolate); |
| |
| // Function RegExpMacroAssembler*::CheckStackGuardState() |
| static ExternalReference re_check_stack_guard_state(Isolate* isolate); |
| |
| // Function NativeRegExpMacroAssembler::GrowStack() |
| static ExternalReference re_grow_stack(Isolate* isolate); |
| |
| // byte NativeRegExpMacroAssembler::word_character_bitmap |
| static ExternalReference re_word_character_map(); |
| |
| #endif |
| |
| // This lets you register a function that rewrites all external references. |
| // Used by the ARM simulator to catch calls to external references. |
| static void set_redirector(Isolate* isolate, |
| ExternalReferenceRedirector* redirector); |
| |
| static ExternalReference stress_deopt_count(Isolate* isolate); |
| |
| static ExternalReference force_slow_path(Isolate* isolate); |
| |
| static ExternalReference fixed_typed_array_base_data_offset(); |
| |
| private: |
| explicit ExternalReference(void* address) |
| : address_(address) {} |
| |
| static void* Redirect(Isolate* isolate, |
| Address address_arg, |
| Type type = ExternalReference::BUILTIN_CALL) { |
| ExternalReferenceRedirector* redirector = |
| reinterpret_cast<ExternalReferenceRedirector*>( |
| isolate->external_reference_redirector()); |
| void* address = reinterpret_cast<void*>(address_arg); |
| void* answer = (redirector == nullptr) |
| ? address |
| : (*redirector)(isolate, address, type); |
| return answer; |
| } |
| |
| void* address_; |
| }; |
| |
| V8_EXPORT_PRIVATE bool operator==(ExternalReference, ExternalReference); |
| bool operator!=(ExternalReference, ExternalReference); |
| |
| size_t hash_value(ExternalReference); |
| |
| V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream&, ExternalReference); |
| |
| // ----------------------------------------------------------------------------- |
| // Utility functions |
| |
| // Computes pow(x, y) with the special cases in the spec for Math.pow. |
| double power_helper(Isolate* isolate, double x, double y); |
| double power_double_int(double x, int y); |
| double power_double_double(double x, double y); |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Constant pool support |
| |
| class ConstantPoolEntry { |
| public: |
| ConstantPoolEntry() {} |
| ConstantPoolEntry(int position, intptr_t value, bool sharing_ok) |
| : position_(position), |
| merged_index_(sharing_ok ? SHARING_ALLOWED : SHARING_PROHIBITED), |
| value_(value) {} |
| ConstantPoolEntry(int position, Double value) |
| : position_(position), |
| merged_index_(SHARING_ALLOWED), |
| value64_(value.AsUint64()) {} |
| |
| int position() const { return position_; } |
| bool sharing_ok() const { return merged_index_ != SHARING_PROHIBITED; } |
| bool is_merged() const { return merged_index_ >= 0; } |
| int merged_index(void) const { |
| DCHECK(is_merged()); |
| return merged_index_; |
| } |
| void set_merged_index(int index) { |
| DCHECK(sharing_ok()); |
| merged_index_ = index; |
| DCHECK(is_merged()); |
| } |
| int offset(void) const { |
| DCHECK_GE(merged_index_, 0); |
| return merged_index_; |
| } |
| void set_offset(int offset) { |
| DCHECK_GE(offset, 0); |
| merged_index_ = offset; |
| } |
| intptr_t value() const { return value_; } |
| uint64_t value64() const { return value64_; } |
| |
| enum Type { INTPTR, DOUBLE, NUMBER_OF_TYPES }; |
| |
| static int size(Type type) { |
| return (type == INTPTR) ? kPointerSize : kDoubleSize; |
| } |
| |
| enum Access { REGULAR, OVERFLOWED }; |
| |
| private: |
| int position_; |
| int merged_index_; |
| union { |
| intptr_t value_; |
| uint64_t value64_; |
| }; |
| enum { SHARING_PROHIBITED = -2, SHARING_ALLOWED = -1 }; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Embedded constant pool support |
| |
| class ConstantPoolBuilder BASE_EMBEDDED { |
| public: |
| ConstantPoolBuilder(int ptr_reach_bits, int double_reach_bits); |
| |
| // Add pointer-sized constant to the embedded constant pool |
| ConstantPoolEntry::Access AddEntry(int position, intptr_t value, |
| bool sharing_ok) { |
| ConstantPoolEntry entry(position, value, sharing_ok); |
| return AddEntry(entry, ConstantPoolEntry::INTPTR); |
| } |
| |
| // Add double constant to the embedded constant pool |
| ConstantPoolEntry::Access AddEntry(int position, Double value) { |
| ConstantPoolEntry entry(position, value); |
| return AddEntry(entry, ConstantPoolEntry::DOUBLE); |
| } |
| |
| // Add double constant to the embedded constant pool |
| ConstantPoolEntry::Access AddEntry(int position, double value) { |
| return AddEntry(position, Double(value)); |
| } |
| |
| // Previews the access type required for the next new entry to be added. |
| ConstantPoolEntry::Access NextAccess(ConstantPoolEntry::Type type) const; |
| |
| bool IsEmpty() { |
| return info_[ConstantPoolEntry::INTPTR].entries.empty() && |
| info_[ConstantPoolEntry::INTPTR].shared_entries.empty() && |
| info_[ConstantPoolEntry::DOUBLE].entries.empty() && |
| info_[ConstantPoolEntry::DOUBLE].shared_entries.empty(); |
| } |
| |
| // Emit the constant pool. Invoke only after all entries have been |
| // added and all instructions have been emitted. |
| // Returns position of the emitted pool (zero implies no constant pool). |
| int Emit(Assembler* assm); |
| |
| // Returns the label associated with the start of the constant pool. |
| // Linking to this label in the function prologue may provide an |
| // efficient means of constant pool pointer register initialization |
| // on some architectures. |
| inline Label* EmittedPosition() { return &emitted_label_; } |
| |
| private: |
| ConstantPoolEntry::Access AddEntry(ConstantPoolEntry& entry, |
| ConstantPoolEntry::Type type); |
| void EmitSharedEntries(Assembler* assm, ConstantPoolEntry::Type type); |
| void EmitGroup(Assembler* assm, ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type); |
| |
| struct PerTypeEntryInfo { |
| PerTypeEntryInfo() : regular_count(0), overflow_start(-1) {} |
| bool overflow() const { |
| return (overflow_start >= 0 && |
| overflow_start < static_cast<int>(entries.size())); |
| } |
| int regular_reach_bits; |
| int regular_count; |
| int overflow_start; |
| std::vector<ConstantPoolEntry> entries; |
| std::vector<ConstantPoolEntry> shared_entries; |
| }; |
| |
| Label emitted_label_; // Records pc_offset of emitted pool |
| PerTypeEntryInfo info_[ConstantPoolEntry::NUMBER_OF_TYPES]; |
| }; |
| |
| class HeapObjectRequest { |
| public: |
| explicit HeapObjectRequest(double heap_number, int offset = -1); |
| explicit HeapObjectRequest(CodeStub* code_stub, int offset = -1); |
| |
| enum Kind { kHeapNumber, kCodeStub }; |
| Kind kind() const { return kind_; } |
| |
| double heap_number() const { |
| DCHECK_EQ(kind(), kHeapNumber); |
| return value_.heap_number; |
| } |
| |
| CodeStub* code_stub() const { |
| DCHECK_EQ(kind(), kCodeStub); |
| return value_.code_stub; |
| } |
| |
| // The code buffer offset at the time of the request. |
| int offset() const { |
| DCHECK_GE(offset_, 0); |
| return offset_; |
| } |
| void set_offset(int offset) { |
| DCHECK_LT(offset_, 0); |
| offset_ = offset; |
| DCHECK_GE(offset_, 0); |
| } |
| |
| private: |
| Kind kind_; |
| |
| union { |
| double heap_number; |
| CodeStub* code_stub; |
| } value_; |
| |
| int offset_; |
| }; |
| |
| // Base type for CPU Registers. |
| // |
| // 1) We would prefer to use an enum for registers, but enum values are |
| // assignment-compatible with int, which has caused code-generation bugs. |
| // |
| // 2) By not using an enum, we are possibly preventing the compiler from |
| // doing certain constant folds, which may significantly reduce the |
| // code generated for some assembly instructions (because they boil down |
| // to a few constants). If this is a problem, we could change the code |
| // such that we use an enum in optimized mode, and the class in debug |
| // mode. This way we get the compile-time error checking in debug mode |
| // and best performance in optimized code. |
| template <typename SubType, int kAfterLastRegister> |
| class RegisterBase { |
| // Internal enum class; used for calling constexpr methods, where we need to |
| // pass an integral type as template parameter. |
| enum class RegisterCode : int { kFirst = 0, kAfterLast = kAfterLastRegister }; |
| |
| public: |
| static constexpr int kCode_no_reg = -1; |
| static constexpr int kNumRegisters = kAfterLastRegister; |
| |
| static constexpr SubType no_reg() { return SubType{kCode_no_reg}; } |
| |
| template <int code> |
| static constexpr SubType from_code() { |
| static_assert(code >= 0 && code < kNumRegisters, "must be valid reg code"); |
| return SubType{code}; |
| } |
| |
| constexpr operator RegisterCode() const { |
| return static_cast<RegisterCode>(reg_code_); |
| } |
| |
| template <RegisterCode reg_code> |
| static constexpr int code() { |
| static_assert( |
| reg_code >= RegisterCode::kFirst && reg_code < RegisterCode::kAfterLast, |
| "must be valid reg"); |
| return static_cast<int>(reg_code); |
| } |
| |
| template <RegisterCode reg_code> |
| static constexpr int bit() { |
| return 1 << code<reg_code>(); |
| } |
| |
| static SubType from_code(int code) { |
| DCHECK_LE(0, code); |
| DCHECK_GT(kNumRegisters, code); |
| return SubType{code}; |
| } |
| |
| template <RegisterCode... reg_codes> |
| static constexpr RegList ListOf() { |
| return CombineRegLists(RegisterBase::bit<reg_codes>()...); |
| } |
| |
| bool is_valid() const { return reg_code_ != kCode_no_reg; } |
| |
| int code() const { |
| DCHECK(is_valid()); |
| return reg_code_; |
| } |
| |
| int bit() const { return 1 << code(); } |
| |
| inline constexpr bool operator==(SubType other) const { |
| return reg_code_ == other.reg_code_; |
| } |
| inline constexpr bool operator!=(SubType other) const { |
| return reg_code_ != other.reg_code_; |
| } |
| |
| protected: |
| explicit constexpr RegisterBase(int code) : reg_code_(code) {} |
| int reg_code_; |
| }; |
| |
| template <typename SubType, int kAfterLastRegister> |
| inline std::ostream& operator<<(std::ostream& os, |
| RegisterBase<SubType, kAfterLastRegister> reg) { |
| return reg.is_valid() ? os << "r" << reg.code() : os << "<invalid reg>"; |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| #endif // V8_ASSEMBLER_H_ |