blob: f608621d3b167d115ca452e014ae72ca282c535b [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_AST_AST_H_
#define V8_AST_AST_H_
#include <memory>
#include "src/ast/ast-value-factory.h"
#include "src/ast/modules.h"
#include "src/ast/variables.h"
#include "src/bailout-reason.h"
#include "src/factory.h"
#include "src/globals.h"
#include "src/isolate.h"
#include "src/label.h"
#include "src/objects/literal-objects.h"
#include "src/parsing/token.h"
#include "src/runtime/runtime.h"
namespace v8 {
namespace internal {
// The abstract syntax tree is an intermediate, light-weight
// representation of the parsed JavaScript code suitable for
// compilation to native code.
// Nodes are allocated in a separate zone, which allows faster
// allocation and constant-time deallocation of the entire syntax
// tree.
// ----------------------------------------------------------------------------
// Nodes of the abstract syntax tree. Only concrete classes are
// enumerated here.
#define DECLARATION_NODE_LIST(V) \
V(VariableDeclaration) \
V(FunctionDeclaration)
#define ITERATION_NODE_LIST(V) \
V(DoWhileStatement) \
V(WhileStatement) \
V(ForStatement) \
V(ForInStatement) \
V(ForOfStatement)
#define BREAKABLE_NODE_LIST(V) \
V(Block) \
V(SwitchStatement)
#define STATEMENT_NODE_LIST(V) \
ITERATION_NODE_LIST(V) \
BREAKABLE_NODE_LIST(V) \
V(ExpressionStatement) \
V(EmptyStatement) \
V(SloppyBlockFunctionStatement) \
V(IfStatement) \
V(ContinueStatement) \
V(BreakStatement) \
V(ReturnStatement) \
V(WithStatement) \
V(TryCatchStatement) \
V(TryFinallyStatement) \
V(DebuggerStatement) \
V(InitializeClassFieldsStatement)
#define LITERAL_NODE_LIST(V) \
V(RegExpLiteral) \
V(ObjectLiteral) \
V(ArrayLiteral)
#define EXPRESSION_NODE_LIST(V) \
LITERAL_NODE_LIST(V) \
V(Assignment) \
V(Await) \
V(BinaryOperation) \
V(NaryOperation) \
V(Call) \
V(CallNew) \
V(CallRuntime) \
V(ClassLiteral) \
V(CompareOperation) \
V(CompoundAssignment) \
V(Conditional) \
V(CountOperation) \
V(DoExpression) \
V(EmptyParentheses) \
V(FunctionLiteral) \
V(GetIterator) \
V(GetTemplateObject) \
V(ImportCallExpression) \
V(Literal) \
V(NativeFunctionLiteral) \
V(Property) \
V(ResolvedProperty) \
V(RewritableExpression) \
V(Spread) \
V(SuperCallReference) \
V(SuperPropertyReference) \
V(ThisFunction) \
V(Throw) \
V(UnaryOperation) \
V(VariableProxy) \
V(Yield) \
V(YieldStar)
#define AST_NODE_LIST(V) \
DECLARATION_NODE_LIST(V) \
STATEMENT_NODE_LIST(V) \
EXPRESSION_NODE_LIST(V)
// Forward declarations
class AstNode;
class AstNodeFactory;
class Declaration;
class BreakableStatement;
class Expression;
class IterationStatement;
class MaterializedLiteral;
class NestedVariableDeclaration;
class ProducedPreParsedScopeData;
class Statement;
#define DEF_FORWARD_DECLARATION(type) class type;
AST_NODE_LIST(DEF_FORWARD_DECLARATION)
#undef DEF_FORWARD_DECLARATION
class AstNode: public ZoneObject {
public:
#define DECLARE_TYPE_ENUM(type) k##type,
enum NodeType : uint8_t { AST_NODE_LIST(DECLARE_TYPE_ENUM) };
#undef DECLARE_TYPE_ENUM
void* operator new(size_t size, Zone* zone) { return zone->New(size); }
NodeType node_type() const { return NodeTypeField::decode(bit_field_); }
int position() const { return position_; }
#ifdef DEBUG
void Print();
void Print(Isolate* isolate);
#endif // DEBUG
// Type testing & conversion functions overridden by concrete subclasses.
#define DECLARE_NODE_FUNCTIONS(type) \
V8_INLINE bool Is##type() const; \
V8_INLINE type* As##type(); \
V8_INLINE const type* As##type() const;
AST_NODE_LIST(DECLARE_NODE_FUNCTIONS)
#undef DECLARE_NODE_FUNCTIONS
BreakableStatement* AsBreakableStatement();
IterationStatement* AsIterationStatement();
MaterializedLiteral* AsMaterializedLiteral();
private:
// Hidden to prevent accidental usage. It would have to load the
// current zone from the TLS.
void* operator new(size_t size);
int position_;
class NodeTypeField : public BitField<NodeType, 0, 6> {};
protected:
uint32_t bit_field_;
static const uint8_t kNextBitFieldIndex = NodeTypeField::kNext;
AstNode(int position, NodeType type)
: position_(position), bit_field_(NodeTypeField::encode(type)) {}
};
class Statement : public AstNode {
public:
bool IsEmpty() { return AsEmptyStatement() != nullptr; }
bool IsJump() const;
protected:
Statement(int position, NodeType type) : AstNode(position, type) {}
static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
};
class Expression : public AstNode {
public:
enum Context {
// Not assigned a context yet, or else will not be visited during
// code generation.
kUninitialized,
// Evaluated for its side effects.
kEffect,
// Evaluated for its value (and side effects).
kValue,
// Evaluated for control flow (and side effects).
kTest
};
// True iff the expression is a valid reference expression.
bool IsValidReferenceExpression() const;
// Helpers for ToBoolean conversion.
bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const;
// Symbols that cannot be parsed as array indices are considered property
// names. We do not treat symbols that can be array indexes as property
// names because [] for string objects is handled only by keyed ICs.
bool IsPropertyName() const;
// True iff the expression is a class or function expression without
// a syntactic name.
bool IsAnonymousFunctionDefinition() const;
// True iff the expression is a concise method definition.
bool IsConciseMethodDefinition() const;
// True iff the expression is an accessor function definition.
bool IsAccessorFunctionDefinition() const;
// True iff the expression is a literal represented as a smi.
bool IsSmiLiteral() const;
// True iff the expression is a literal represented as a number.
bool IsNumberLiteral() const;
// True iff the expression is a string literal.
bool IsStringLiteral() const;
// True iff the expression is the null literal.
bool IsNullLiteral() const;
// True iff the expression is the hole literal.
bool IsTheHoleLiteral() const;
// True if we can prove that the expression is the undefined literal. Note
// that this also checks for loads of the global "undefined" variable.
bool IsUndefinedLiteral() const;
protected:
Expression(int pos, NodeType type) : AstNode(pos, type) {}
static const uint8_t kNextBitFieldIndex = AstNode::kNextBitFieldIndex;
};
class BreakableStatement : public Statement {
public:
enum BreakableType {
TARGET_FOR_ANONYMOUS,
TARGET_FOR_NAMED_ONLY
};
ZoneList<const AstRawString*>* labels() const;
// Testers.
bool is_target_for_anonymous() const {
return BreakableTypeField::decode(bit_field_) == TARGET_FOR_ANONYMOUS;
}
private:
class BreakableTypeField
: public BitField<BreakableType, Statement::kNextBitFieldIndex, 1> {};
protected:
BreakableStatement(BreakableType breakable_type, int position, NodeType type)
: Statement(position, type) {
bit_field_ |= BreakableTypeField::encode(breakable_type);
}
static const uint8_t kNextBitFieldIndex = BreakableTypeField::kNext;
};
class Block : public BreakableStatement {
public:
ZoneList<Statement*>* statements() { return &statements_; }
bool ignore_completion_value() const {
return IgnoreCompletionField::decode(bit_field_);
}
inline ZoneList<const AstRawString*>* labels() const;
bool IsJump() const {
return !statements_.is_empty() && statements_.last()->IsJump() &&
labels() == nullptr; // Good enough as an approximation...
}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
private:
friend class AstNodeFactory;
ZoneList<Statement*> statements_;
Scope* scope_;
class IgnoreCompletionField
: public BitField<bool, BreakableStatement::kNextBitFieldIndex, 1> {};
class IsLabeledField
: public BitField<bool, IgnoreCompletionField::kNext, 1> {};
protected:
Block(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value)
: BreakableStatement(TARGET_FOR_NAMED_ONLY, kNoSourcePosition, kBlock),
statements_(capacity, zone),
scope_(nullptr) {
bit_field_ |= IgnoreCompletionField::encode(ignore_completion_value) |
IsLabeledField::encode(labels != nullptr);
}
};
class LabeledBlock final : public Block {
private:
friend class AstNodeFactory;
friend class Block;
LabeledBlock(Zone* zone, ZoneList<const AstRawString*>* labels, int capacity,
bool ignore_completion_value)
: Block(zone, labels, capacity, ignore_completion_value),
labels_(labels) {
DCHECK_NOT_NULL(labels);
DCHECK_GT(labels->length(), 0);
}
ZoneList<const AstRawString*>* labels_;
};
inline ZoneList<const AstRawString*>* Block::labels() const {
if (IsLabeledField::decode(bit_field_)) {
return static_cast<const LabeledBlock*>(this)->labels_;
}
return nullptr;
}
class DoExpression final : public Expression {
public:
Block* block() { return block_; }
VariableProxy* result() { return result_; }
private:
friend class AstNodeFactory;
DoExpression(Block* block, VariableProxy* result, int pos)
: Expression(pos, kDoExpression), block_(block), result_(result) {
DCHECK_NOT_NULL(block_);
DCHECK_NOT_NULL(result_);
}
Block* block_;
VariableProxy* result_;
};
class Declaration : public AstNode {
public:
typedef ThreadedList<Declaration> List;
VariableProxy* proxy() const { return proxy_; }
protected:
Declaration(VariableProxy* proxy, int pos, NodeType type)
: AstNode(pos, type), proxy_(proxy), next_(nullptr) {}
private:
VariableProxy* proxy_;
// Declarations list threaded through the declarations.
Declaration** next() { return &next_; }
Declaration* next_;
friend List;
};
class VariableDeclaration : public Declaration {
public:
inline NestedVariableDeclaration* AsNested();
private:
friend class AstNodeFactory;
class IsNestedField
: public BitField<bool, Declaration::kNextBitFieldIndex, 1> {};
protected:
VariableDeclaration(VariableProxy* proxy, int pos, bool is_nested = false)
: Declaration(proxy, pos, kVariableDeclaration) {
bit_field_ = IsNestedField::update(bit_field_, is_nested);
}
static const uint8_t kNextBitFieldIndex = IsNestedField::kNext;
};
// For var declarations that appear in a block scope.
// Only distinguished from VariableDeclaration during Scope analysis,
// so it doesn't get its own NodeType.
class NestedVariableDeclaration final : public VariableDeclaration {
public:
Scope* scope() const { return scope_; }
private:
friend class AstNodeFactory;
NestedVariableDeclaration(VariableProxy* proxy, Scope* scope, int pos)
: VariableDeclaration(proxy, pos, true), scope_(scope) {}
// Nested scope from which the declaration originated.
Scope* scope_;
};
inline NestedVariableDeclaration* VariableDeclaration::AsNested() {
return IsNestedField::decode(bit_field_)
? static_cast<NestedVariableDeclaration*>(this)
: nullptr;
}
class FunctionDeclaration final : public Declaration {
public:
FunctionLiteral* fun() const { return fun_; }
private:
friend class AstNodeFactory;
FunctionDeclaration(VariableProxy* proxy, FunctionLiteral* fun, int pos)
: Declaration(proxy, pos, kFunctionDeclaration), fun_(fun) {
DCHECK_NOT_NULL(fun);
}
FunctionLiteral* fun_;
};
class IterationStatement : public BreakableStatement {
public:
Statement* body() const { return body_; }
void set_body(Statement* s) { body_ = s; }
ZoneList<const AstRawString*>* labels() const { return labels_; }
int suspend_count() const { return suspend_count_; }
int first_suspend_id() const { return first_suspend_id_; }
void set_suspend_count(int suspend_count) { suspend_count_ = suspend_count; }
void set_first_suspend_id(int first_suspend_id) {
first_suspend_id_ = first_suspend_id;
}
protected:
IterationStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: BreakableStatement(TARGET_FOR_ANONYMOUS, pos, type),
labels_(labels),
body_(nullptr),
suspend_count_(0),
first_suspend_id_(0) {}
void Initialize(Statement* body) { body_ = body; }
static const uint8_t kNextBitFieldIndex =
BreakableStatement::kNextBitFieldIndex;
private:
ZoneList<const AstRawString*>* labels_;
Statement* body_;
int suspend_count_;
int first_suspend_id_;
};
class DoWhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
private:
friend class AstNodeFactory;
DoWhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kDoWhileStatement), cond_(nullptr) {}
Expression* cond_;
};
class WhileStatement final : public IterationStatement {
public:
void Initialize(Expression* cond, Statement* body) {
IterationStatement::Initialize(body);
cond_ = cond;
}
Expression* cond() const { return cond_; }
private:
friend class AstNodeFactory;
WhileStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kWhileStatement), cond_(nullptr) {}
Expression* cond_;
};
class ForStatement final : public IterationStatement {
public:
void Initialize(Statement* init, Expression* cond, Statement* next,
Statement* body) {
IterationStatement::Initialize(body);
init_ = init;
cond_ = cond;
next_ = next;
}
Statement* init() const { return init_; }
Expression* cond() const { return cond_; }
Statement* next() const { return next_; }
private:
friend class AstNodeFactory;
ForStatement(ZoneList<const AstRawString*>* labels, int pos)
: IterationStatement(labels, pos, kForStatement),
init_(nullptr),
cond_(nullptr),
next_(nullptr) {}
Statement* init_;
Expression* cond_;
Statement* next_;
};
class ForEachStatement : public IterationStatement {
public:
enum VisitMode {
ENUMERATE, // for (each in subject) body;
ITERATE // for (each of subject) body;
};
using IterationStatement::Initialize;
static const char* VisitModeString(VisitMode mode) {
return mode == ITERATE ? "for-of" : "for-in";
}
protected:
ForEachStatement(ZoneList<const AstRawString*>* labels, int pos,
NodeType type)
: IterationStatement(labels, pos, type) {}
};
class ForInStatement final : public ForEachStatement {
public:
void Initialize(Expression* each, Expression* subject, Statement* body) {
ForEachStatement::Initialize(body);
each_ = each;
subject_ = subject;
}
Expression* enumerable() const {
return subject();
}
Expression* each() const { return each_; }
Expression* subject() const { return subject_; }
enum ForInType { FAST_FOR_IN, SLOW_FOR_IN };
ForInType for_in_type() const { return ForInTypeField::decode(bit_field_); }
private:
friend class AstNodeFactory;
ForInStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForInStatement),
each_(nullptr),
subject_(nullptr) {
bit_field_ = ForInTypeField::update(bit_field_, SLOW_FOR_IN);
}
Expression* each_;
Expression* subject_;
class ForInTypeField
: public BitField<ForInType, ForEachStatement::kNextBitFieldIndex, 1> {};
};
class ForOfStatement final : public ForEachStatement {
public:
void Initialize(Statement* body, Variable* iterator,
Expression* assign_iterator, Expression* assign_next,
Expression* next_result, Expression* result_done,
Expression* assign_each) {
ForEachStatement::Initialize(body);
iterator_ = iterator;
assign_iterator_ = assign_iterator;
assign_next_ = assign_next;
next_result_ = next_result;
result_done_ = result_done;
assign_each_ = assign_each;
}
Variable* iterator() const {
return iterator_;
}
// iterator = subject[Symbol.iterator]()
Expression* assign_iterator() const {
return assign_iterator_;
}
// iteratorRecord.next = iterator.next
Expression* assign_next() const { return assign_next_; }
// result = iterator.next() // with type check
Expression* next_result() const {
return next_result_;
}
// result.done
Expression* result_done() const {
return result_done_;
}
// each = result.value
Expression* assign_each() const {
return assign_each_;
}
void set_assign_iterator(Expression* e) { assign_iterator_ = e; }
void set_assign_next(Expression* e) { assign_next_ = e; }
void set_next_result(Expression* e) { next_result_ = e; }
void set_result_done(Expression* e) { result_done_ = e; }
void set_assign_each(Expression* e) { assign_each_ = e; }
private:
friend class AstNodeFactory;
ForOfStatement(ZoneList<const AstRawString*>* labels, int pos)
: ForEachStatement(labels, pos, kForOfStatement),
iterator_(nullptr),
assign_iterator_(nullptr),
next_result_(nullptr),
result_done_(nullptr),
assign_each_(nullptr) {}
Variable* iterator_;
Expression* assign_iterator_;
Expression* assign_next_;
Expression* next_result_;
Expression* result_done_;
Expression* assign_each_;
};
class ExpressionStatement final : public Statement {
public:
void set_expression(Expression* e) { expression_ = e; }
Expression* expression() const { return expression_; }
bool IsJump() const { return expression_->IsThrow(); }
private:
friend class AstNodeFactory;
ExpressionStatement(Expression* expression, int pos)
: Statement(pos, kExpressionStatement), expression_(expression) {}
Expression* expression_;
};
class JumpStatement : public Statement {
public:
bool IsJump() const { return true; }
protected:
JumpStatement(int pos, NodeType type) : Statement(pos, type) {}
};
class ContinueStatement final : public JumpStatement {
public:
IterationStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
ContinueStatement(IterationStatement* target, int pos)
: JumpStatement(pos, kContinueStatement), target_(target) {}
IterationStatement* target_;
};
class BreakStatement final : public JumpStatement {
public:
BreakableStatement* target() const { return target_; }
private:
friend class AstNodeFactory;
BreakStatement(BreakableStatement* target, int pos)
: JumpStatement(pos, kBreakStatement), target_(target) {}
BreakableStatement* target_;
};
class ReturnStatement final : public JumpStatement {
public:
enum Type { kNormal, kAsyncReturn };
Expression* expression() const { return expression_; }
Type type() const { return TypeField::decode(bit_field_); }
bool is_async_return() const { return type() == kAsyncReturn; }
int end_position() const { return end_position_; }
private:
friend class AstNodeFactory;
ReturnStatement(Expression* expression, Type type, int pos, int end_position)
: JumpStatement(pos, kReturnStatement),
expression_(expression),
end_position_(end_position) {
bit_field_ |= TypeField::encode(type);
}
Expression* expression_;
int end_position_;
class TypeField
: public BitField<Type, JumpStatement::kNextBitFieldIndex, 1> {};
};
class WithStatement final : public Statement {
public:
Scope* scope() { return scope_; }
Expression* expression() const { return expression_; }
Statement* statement() const { return statement_; }
void set_statement(Statement* s) { statement_ = s; }
private:
friend class AstNodeFactory;
WithStatement(Scope* scope, Expression* expression, Statement* statement,
int pos)
: Statement(pos, kWithStatement),
scope_(scope),
expression_(expression),
statement_(statement) {}
Scope* scope_;
Expression* expression_;
Statement* statement_;
};
class CaseClause final : public ZoneObject {
public:
bool is_default() const { return label_ == nullptr; }
Expression* label() const {
DCHECK(!is_default());
return label_;
}
ZoneList<Statement*>* statements() const { return statements_; }
private:
friend class AstNodeFactory;
CaseClause(Expression* label, ZoneList<Statement*>* statements);
Expression* label_;
ZoneList<Statement*>* statements_;
};
class SwitchStatement final : public BreakableStatement {
public:
ZoneList<const AstRawString*>* labels() const { return labels_; }
Expression* tag() const { return tag_; }
void set_tag(Expression* t) { tag_ = t; }
ZoneList<CaseClause*>* cases() { return &cases_; }
private:
friend class AstNodeFactory;
SwitchStatement(Zone* zone, ZoneList<const AstRawString*>* labels,
Expression* tag, int pos)
: BreakableStatement(TARGET_FOR_ANONYMOUS, pos, kSwitchStatement),
labels_(labels),
tag_(tag),
cases_(4, zone) {}
ZoneList<const AstRawString*>* labels_;
Expression* tag_;
ZoneList<CaseClause*> cases_;
};
// If-statements always have non-null references to their then- and
// else-parts. When parsing if-statements with no explicit else-part,
// the parser implicitly creates an empty statement. Use the
// HasThenStatement() and HasElseStatement() functions to check if a
// given if-statement has a then- or an else-part containing code.
class IfStatement final : public Statement {
public:
bool HasThenStatement() const { return !then_statement()->IsEmpty(); }
bool HasElseStatement() const { return !else_statement()->IsEmpty(); }
Expression* condition() const { return condition_; }
Statement* then_statement() const { return then_statement_; }
Statement* else_statement() const { return else_statement_; }
void set_then_statement(Statement* s) { then_statement_ = s; }
void set_else_statement(Statement* s) { else_statement_ = s; }
bool IsJump() const {
return HasThenStatement() && then_statement()->IsJump()
&& HasElseStatement() && else_statement()->IsJump();
}
private:
friend class AstNodeFactory;
IfStatement(Expression* condition, Statement* then_statement,
Statement* else_statement, int pos)
: Statement(pos, kIfStatement),
condition_(condition),
then_statement_(then_statement),
else_statement_(else_statement) {}
Expression* condition_;
Statement* then_statement_;
Statement* else_statement_;
};
class TryStatement : public Statement {
public:
Block* try_block() const { return try_block_; }
void set_try_block(Block* b) { try_block_ = b; }
protected:
TryStatement(Block* try_block, int pos, NodeType type)
: Statement(pos, type), try_block_(try_block) {}
private:
Block* try_block_;
};
class TryCatchStatement final : public TryStatement {
public:
Scope* scope() { return scope_; }
Block* catch_block() const { return catch_block_; }
void set_catch_block(Block* b) { catch_block_ = b; }
// Prediction of whether exceptions thrown into the handler for this try block
// will be caught.
//
// BytecodeGenerator tracks the state of catch prediction, which can change
// with each TryCatchStatement encountered. The tracked catch prediction is
// later compiled into the code's handler table. The runtime uses this
// information to implement a feature that notifies the debugger when an
// uncaught exception is thrown, _before_ the exception propagates to the top.
//
// If this try/catch statement is meant to rethrow (HandlerTable::UNCAUGHT),
// the catch prediction value is set to the same value as the surrounding
// catch prediction.
//
// Since it's generally undecidable whether an exception will be caught, our
// prediction is only an approximation.
// ---------------------------------------------------------------------------
inline HandlerTable::CatchPrediction GetCatchPrediction(
HandlerTable::CatchPrediction outer_catch_prediction) const {
if (catch_prediction_ == HandlerTable::UNCAUGHT) {
return outer_catch_prediction;
}
return catch_prediction_;
}
// Indicates whether or not code should be generated to clear the pending
// exception. The pending exception is cleared for cases where the exception
// is not guaranteed to be rethrown, indicated by the value
// HandlerTable::UNCAUGHT. If both the current and surrounding catch handler's
// are predicted uncaught, the exception is not cleared.
//
// If this handler is not going to simply rethrow the exception, this method
// indicates that the isolate's pending exception message should be cleared
// before executing the catch_block.
// In the normal use case, this flag is always on because the message object
// is not needed anymore when entering the catch block and should not be
// kept alive.
// The use case where the flag is off is when the catch block is guaranteed
// to rethrow the caught exception (using %ReThrow), which reuses the
// pending message instead of generating a new one.
// (When the catch block doesn't rethrow but is guaranteed to perform an
// ordinary throw, not clearing the old message is safe but not very
// useful.)
inline bool ShouldClearPendingException(
HandlerTable::CatchPrediction outer_catch_prediction) const {
return catch_prediction_ != HandlerTable::UNCAUGHT ||
outer_catch_prediction != HandlerTable::UNCAUGHT;
}
private:
friend class AstNodeFactory;
TryCatchStatement(Block* try_block, Scope* scope, Block* catch_block,
HandlerTable::CatchPrediction catch_prediction, int pos)
: TryStatement(try_block, pos, kTryCatchStatement),
scope_(scope),
catch_block_(catch_block),
catch_prediction_(catch_prediction) {}
Scope* scope_;
Block* catch_block_;
HandlerTable::CatchPrediction catch_prediction_;
};
class TryFinallyStatement final : public TryStatement {
public:
Block* finally_block() const { return finally_block_; }
void set_finally_block(Block* b) { finally_block_ = b; }
private:
friend class AstNodeFactory;
TryFinallyStatement(Block* try_block, Block* finally_block, int pos)
: TryStatement(try_block, pos, kTryFinallyStatement),
finally_block_(finally_block) {}
Block* finally_block_;
};
class DebuggerStatement final : public Statement {
private:
friend class AstNodeFactory;
explicit DebuggerStatement(int pos) : Statement(pos, kDebuggerStatement) {}
};
class EmptyStatement final : public Statement {
private:
friend class AstNodeFactory;
explicit EmptyStatement(int pos) : Statement(pos, kEmptyStatement) {}
};
// Delegates to another statement, which may be overwritten.
// This was introduced to implement ES2015 Annex B3.3 for conditionally making
// sloppy-mode block-scoped functions have a var binding, which is changed
// from one statement to another during parsing.
class SloppyBlockFunctionStatement final : public Statement {
public:
Statement* statement() const { return statement_; }
void set_statement(Statement* statement) { statement_ = statement; }
private:
friend class AstNodeFactory;
explicit SloppyBlockFunctionStatement(Statement* statement)
: Statement(kNoSourcePosition, kSloppyBlockFunctionStatement),
statement_(statement) {}
Statement* statement_;
};
class Literal final : public Expression {
public:
enum Type {
kSmi,
kHeapNumber,
kBigInt,
kString,
kSymbol,
kBoolean,
kUndefined,
kNull,
kTheHole,
};
Type type() const { return TypeField::decode(bit_field_); }
// Returns true if literal represents a property name (i.e. cannot be parsed
// as array indices).
bool IsPropertyName() const;
// Returns true if literal represents an array index.
// Note, that in general the following statement is not true:
// key->IsPropertyName() != key->AsArrayIndex(...)
// but for non-computed LiteralProperty properties the following is true:
// property->key()->IsPropertyName() != property->key()->AsArrayIndex(...)
bool AsArrayIndex(uint32_t* index) const;
const AstRawString* AsRawPropertyName() {
DCHECK(IsPropertyName());
return string_;
}
Smi* AsSmiLiteral() const {
DCHECK_EQ(kSmi, type());
return Smi::FromInt(smi_);
}
// Returns true if literal represents a Number.
bool IsNumber() const { return type() == kHeapNumber || type() == kSmi; }
double AsNumber() const {
DCHECK(IsNumber());
switch (type()) {
case kSmi:
return smi_;
case kHeapNumber:
return number_;
default:
UNREACHABLE();
}
}
AstBigInt AsBigInt() const {
DCHECK_EQ(type(), kBigInt);
return bigint_;
}
bool IsString() const { return type() == kString; }
const AstRawString* AsRawString() {
DCHECK_EQ(type(), kString);
return string_;
}
AstSymbol AsSymbol() {
DCHECK_EQ(type(), kSymbol);
return symbol_;
}
V8_EXPORT_PRIVATE bool ToBooleanIsTrue() const;
bool ToBooleanIsFalse() const { return !ToBooleanIsTrue(); }
bool ToUint32(uint32_t* value) const;
// Returns an appropriate Object representing this Literal, allocating
// a heap object if needed.
Handle<Object> BuildValue(Isolate* isolate) const;
// Support for using Literal as a HashMap key. NOTE: Currently, this works
// only for string and number literals!
uint32_t Hash();
static bool Match(void* literal1, void* literal2);
private:
friend class AstNodeFactory;
class TypeField : public BitField<Type, Expression::kNextBitFieldIndex, 4> {};
Literal(int smi, int position) : Expression(position, kLiteral), smi_(smi) {
bit_field_ = TypeField::update(bit_field_, kSmi);
}
Literal(double number, int position)
: Expression(position, kLiteral), number_(number) {
bit_field_ = TypeField::update(bit_field_, kHeapNumber);
}
Literal(AstBigInt bigint, int position)
: Expression(position, kLiteral), bigint_(bigint) {
bit_field_ = TypeField::update(bit_field_, kBigInt);
}
Literal(const AstRawString* string, int position)
: Expression(position, kLiteral), string_(string) {
bit_field_ = TypeField::update(bit_field_, kString);
}
Literal(AstSymbol symbol, int position)
: Expression(position, kLiteral), symbol_(symbol) {
bit_field_ = TypeField::update(bit_field_, kSymbol);
}
Literal(bool boolean, int position)
: Expression(position, kLiteral), boolean_(boolean) {
bit_field_ = TypeField::update(bit_field_, kBoolean);
}
Literal(Type type, int position) : Expression(position, kLiteral) {
DCHECK(type == kNull || type == kUndefined || type == kTheHole);
bit_field_ = TypeField::update(bit_field_, type);
}
union {
const AstRawString* string_;
int smi_;
double number_;
AstSymbol symbol_;
AstBigInt bigint_;
bool boolean_;
};
};
// Base class for literals that need space in the type feedback vector.
class MaterializedLiteral : public Expression {
public:
// A Materializedliteral is simple if the values consist of only
// constants and simple object and array literals.
bool IsSimple() const;
protected:
MaterializedLiteral(int pos, NodeType type) : Expression(pos, type) {}
friend class CompileTimeValue;
friend class ArrayLiteral;
friend class ObjectLiteral;
// Populate the depth field and any flags the literal has, returns the depth.
int InitDepthAndFlags();
bool NeedsInitialAllocationSite();
// Populate the constant properties/elements fixed array.
void BuildConstants(Isolate* isolate);
// If the expression is a literal, return the literal value;
// if the expression is a materialized literal and is simple return a
// compile time value as encoded by CompileTimeValue::GetValue().
// Otherwise, return undefined literal as the placeholder
// in the object literal boilerplate.
Handle<Object> GetBoilerplateValue(Expression* expression, Isolate* isolate);
};
// Node for capturing a regexp literal.
class RegExpLiteral final : public MaterializedLiteral {
public:
Handle<String> pattern() const { return pattern_->string(); }
const AstRawString* raw_pattern() const { return pattern_; }
int flags() const { return flags_; }
private:
friend class AstNodeFactory;
RegExpLiteral(const AstRawString* pattern, int flags, int pos)
: MaterializedLiteral(pos, kRegExpLiteral),
flags_(flags),
pattern_(pattern) {}
int const flags_;
const AstRawString* const pattern_;
};
// Base class for Array and Object literals, providing common code for handling
// nested subliterals.
class AggregateLiteral : public MaterializedLiteral {
public:
enum Flags {
kNoFlags = 0,
kIsShallow = 1,
kDisableMementos = 1 << 1,
kNeedsInitialAllocationSite = 1 << 2,
};
bool is_initialized() const { return 0 < depth_; }
int depth() const {
DCHECK(is_initialized());
return depth_;
}
bool is_shallow() const { return depth() == 1; }
bool needs_initial_allocation_site() const {
return NeedsInitialAllocationSiteField::decode(bit_field_);
}
int ComputeFlags(bool disable_mementos = false) const {
int flags = kNoFlags;
if (is_shallow()) flags |= kIsShallow;
if (disable_mementos) flags |= kDisableMementos;
if (needs_initial_allocation_site()) flags |= kNeedsInitialAllocationSite;
return flags;
}
// An AggregateLiteral is simple if the values consist of only
// constants and simple object and array literals.
bool is_simple() const { return IsSimpleField::decode(bit_field_); }
private:
int depth_ : 31;
class NeedsInitialAllocationSiteField
: public BitField<bool, MaterializedLiteral::kNextBitFieldIndex, 1> {};
class IsSimpleField
: public BitField<bool, NeedsInitialAllocationSiteField::kNext, 1> {};
protected:
friend class AstNodeFactory;
AggregateLiteral(int pos, NodeType type)
: MaterializedLiteral(pos, type), depth_(0) {
bit_field_ |= NeedsInitialAllocationSiteField::encode(false) |
IsSimpleField::encode(false);
}
void set_is_simple(bool is_simple) {
bit_field_ = IsSimpleField::update(bit_field_, is_simple);
}
void set_depth(int depth) {
DCHECK(!is_initialized());
depth_ = depth;
}
void set_needs_initial_allocation_site(bool required) {
bit_field_ = NeedsInitialAllocationSiteField::update(bit_field_, required);
}
static const uint8_t kNextBitFieldIndex = IsSimpleField::kNext;
};
// Common supertype for ObjectLiteralProperty and ClassLiteralProperty
class LiteralProperty : public ZoneObject {
public:
Expression* key() const { return key_; }
Expression* value() const { return value_; }
bool is_computed_name() const { return is_computed_name_; }
bool NeedsSetFunctionName() const;
protected:
LiteralProperty(Expression* key, Expression* value, bool is_computed_name)
: key_(key), value_(value), is_computed_name_(is_computed_name) {}
Expression* key_;
Expression* value_;
bool is_computed_name_;
};
// Property is used for passing information
// about an object literal's properties from the parser
// to the code generator.
class ObjectLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t {
CONSTANT, // Property with constant value (compile time).
COMPUTED, // Property with computed value (execution time).
MATERIALIZED_LITERAL, // Property value is a materialized literal.
GETTER,
SETTER, // Property is an accessor function.
PROTOTYPE, // Property is __proto__.
SPREAD
};
Kind kind() const { return kind_; }
bool IsCompileTimeValue() const;
void set_emit_store(bool emit_store);
bool emit_store() const;
bool IsNullPrototype() const {
return IsPrototype() && value()->IsNullLiteral();
}
bool IsPrototype() const { return kind() == PROTOTYPE; }
private:
friend class AstNodeFactory;
ObjectLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_computed_name);
ObjectLiteralProperty(AstValueFactory* ast_value_factory, Expression* key,
Expression* value, bool is_computed_name);
Kind kind_;
bool emit_store_;
};
// An object literal has a boilerplate object that is used
// for minimizing the work when constructing it at runtime.
class ObjectLiteral final : public AggregateLiteral {
public:
typedef ObjectLiteralProperty Property;
Handle<BoilerplateDescription> constant_properties() const {
DCHECK(!constant_properties_.is_null());
return constant_properties_;
}
int properties_count() const { return boilerplate_properties_; }
ZoneList<Property*>* properties() const { return properties_; }
bool has_elements() const { return HasElementsField::decode(bit_field_); }
bool has_rest_property() const {
return HasRestPropertyField::decode(bit_field_);
}
bool fast_elements() const { return FastElementsField::decode(bit_field_); }
bool has_null_prototype() const {
return HasNullPrototypeField::decode(bit_field_);
}
bool is_empty() const {
DCHECK(is_initialized());
return !has_elements() && properties_count() == 0 &&
properties()->length() == 0;
}
bool IsEmptyObjectLiteral() const {
return is_empty() && !has_null_prototype();
}
// Populate the depth field and flags, returns the depth.
int InitDepthAndFlags();
// Get the constant properties fixed array, populating it if necessary.
Handle<BoilerplateDescription> GetOrBuildConstantProperties(
Isolate* isolate) {
if (constant_properties_.is_null()) {
BuildConstantProperties(isolate);
}
return constant_properties();
}
// Populate the constant properties fixed array.
void BuildConstantProperties(Isolate* isolate);
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
void CalculateEmitStore(Zone* zone);
// Determines whether the {CreateShallowObjectLiteratal} builtin can be used.
bool IsFastCloningSupported() const;
// Assemble bitfield of flags for the CreateObjectLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
int flags = AggregateLiteral::ComputeFlags(disable_mementos);
if (fast_elements()) flags |= kFastElements;
if (has_null_prototype()) flags |= kHasNullPrototype;
return flags;
}
int EncodeLiteralType() {
int flags = kNoFlags;
if (fast_elements()) flags |= kFastElements;
if (has_null_prototype()) flags |= kHasNullPrototype;
return flags;
}
enum Flags {
kFastElements = 1 << 3,
kHasNullPrototype = 1 << 4,
};
STATIC_ASSERT(
static_cast<int>(AggregateLiteral::kNeedsInitialAllocationSite) <
static_cast<int>(kFastElements));
struct Accessors: public ZoneObject {
Accessors() : getter(nullptr), setter(nullptr) {}
ObjectLiteralProperty* getter;
ObjectLiteralProperty* setter;
};
private:
friend class AstNodeFactory;
ObjectLiteral(ZoneList<Property*>* properties,
uint32_t boilerplate_properties, int pos,
bool has_rest_property)
: AggregateLiteral(pos, kObjectLiteral),
boilerplate_properties_(boilerplate_properties),
properties_(properties) {
bit_field_ |= HasElementsField::encode(false) |
HasRestPropertyField::encode(has_rest_property) |
FastElementsField::encode(false) |
HasNullPrototypeField::encode(false);
}
void InitFlagsForPendingNullPrototype(int i);
void set_has_elements(bool has_elements) {
bit_field_ = HasElementsField::update(bit_field_, has_elements);
}
void set_fast_elements(bool fast_elements) {
bit_field_ = FastElementsField::update(bit_field_, fast_elements);
}
void set_has_null_protoype(bool has_null_prototype) {
bit_field_ = HasNullPrototypeField::update(bit_field_, has_null_prototype);
}
uint32_t boilerplate_properties_;
Handle<BoilerplateDescription> constant_properties_;
ZoneList<Property*>* properties_;
class HasElementsField
: public BitField<bool, AggregateLiteral::kNextBitFieldIndex, 1> {};
class HasRestPropertyField
: public BitField<bool, HasElementsField::kNext, 1> {};
class FastElementsField
: public BitField<bool, HasRestPropertyField::kNext, 1> {};
class HasNullPrototypeField
: public BitField<bool, FastElementsField::kNext, 1> {};
};
// A map from property names to getter/setter pairs allocated in the zone.
class AccessorTable
: public base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*),
ZoneAllocationPolicy> {
public:
explicit AccessorTable(Zone* zone)
: base::TemplateHashMap<Literal, ObjectLiteral::Accessors,
bool (*)(void*, void*), ZoneAllocationPolicy>(
Literal::Match, ZoneAllocationPolicy(zone)),
zone_(zone) {}
Iterator lookup(Literal* literal) {
Iterator it = find(literal, true, ZoneAllocationPolicy(zone_));
if (it->second == nullptr) {
it->second = new (zone_) ObjectLiteral::Accessors();
}
return it;
}
private:
Zone* zone_;
};
// An array literal has a literals object that is used
// for minimizing the work when constructing it at runtime.
class ArrayLiteral final : public AggregateLiteral {
public:
Handle<ConstantElementsPair> constant_elements() const {
return constant_elements_;
}
ZoneList<Expression*>* values() const { return values_; }
bool is_empty() const;
// Populate the depth field and flags, returns the depth.
int InitDepthAndFlags();
// Get the constant elements fixed array, populating it if necessary.
Handle<ConstantElementsPair> GetOrBuildConstantElements(Isolate* isolate) {
if (constant_elements_.is_null()) {
BuildConstantElements(isolate);
}
return constant_elements();
}
// Populate the constant elements fixed array.
void BuildConstantElements(Isolate* isolate);
// Determines whether the {CreateShallowArrayLiteral} builtin can be used.
bool IsFastCloningSupported() const;
// Assemble bitfield of flags for the CreateArrayLiteral helper.
int ComputeFlags(bool disable_mementos = false) const {
return AggregateLiteral::ComputeFlags(disable_mementos);
}
// Provide a mechanism for iterating through values to rewrite spreads.
ZoneList<Expression*>::iterator FirstSpreadOrEndValue() const {
return (first_spread_index_ >= 0) ? values_->begin() + first_spread_index_
: values_->end();
}
ZoneList<Expression*>::iterator BeginValue() const {
return values_->begin();
}
ZoneList<Expression*>::iterator EndValue() const { return values_->end(); }
private:
friend class AstNodeFactory;
ArrayLiteral(ZoneList<Expression*>* values, int first_spread_index, int pos)
: AggregateLiteral(pos, kArrayLiteral),
first_spread_index_(first_spread_index),
values_(values) {
}
int first_spread_index_;
Handle<ConstantElementsPair> constant_elements_;
ZoneList<Expression*>* values_;
};
class VariableProxy final : public Expression {
public:
bool IsValidReferenceExpression() const {
return !is_this() && !is_new_target();
}
Handle<String> name() const { return raw_name()->string(); }
const AstRawString* raw_name() const {
return is_resolved() ? var_->raw_name() : raw_name_;
}
Variable* var() const {
DCHECK(is_resolved());
return var_;
}
void set_var(Variable* v) {
DCHECK(!is_resolved());
DCHECK_NOT_NULL(v);
var_ = v;
}
bool is_this() const { return IsThisField::decode(bit_field_); }
bool is_assigned() const { return IsAssignedField::decode(bit_field_); }
void set_is_assigned() {
bit_field_ = IsAssignedField::update(bit_field_, true);
if (is_resolved()) {
var()->set_maybe_assigned();
}
}
bool is_resolved() const { return IsResolvedField::decode(bit_field_); }
void set_is_resolved() {
bit_field_ = IsResolvedField::update(bit_field_, true);
}
bool is_new_target() const { return IsNewTargetField::decode(bit_field_); }
void set_is_new_target() {
bit_field_ = IsNewTargetField::update(bit_field_, true);
}
HoleCheckMode hole_check_mode() const {
HoleCheckMode mode = HoleCheckModeField::decode(bit_field_);
DCHECK_IMPLIES(mode == HoleCheckMode::kRequired,
var()->binding_needs_init() ||
var()->local_if_not_shadowed()->binding_needs_init());
return mode;
}
void set_needs_hole_check() {
bit_field_ =
HoleCheckModeField::update(bit_field_, HoleCheckMode::kRequired);
}
// Bind this proxy to the variable var.
void BindTo(Variable* var);
void set_next_unresolved(VariableProxy* next) { next_unresolved_ = next; }
VariableProxy* next_unresolved() { return next_unresolved_; }
private:
friend class AstNodeFactory;
VariableProxy(Variable* var, int start_position);
VariableProxy(const AstRawString* name, VariableKind variable_kind,
int start_position)
: Expression(start_position, kVariableProxy),
raw_name_(name),
next_unresolved_(nullptr) {
bit_field_ |= IsThisField::encode(variable_kind == THIS_VARIABLE) |
IsAssignedField::encode(false) |
IsResolvedField::encode(false) |
HoleCheckModeField::encode(HoleCheckMode::kElided);
}
explicit VariableProxy(const VariableProxy* copy_from);
class IsThisField : public BitField<bool, Expression::kNextBitFieldIndex, 1> {
};
class IsAssignedField : public BitField<bool, IsThisField::kNext, 1> {};
class IsResolvedField : public BitField<bool, IsAssignedField::kNext, 1> {};
class IsNewTargetField : public BitField<bool, IsResolvedField::kNext, 1> {};
class HoleCheckModeField
: public BitField<HoleCheckMode, IsNewTargetField::kNext, 1> {};
union {
const AstRawString* raw_name_; // if !is_resolved_
Variable* var_; // if is_resolved_
};
VariableProxy* next_unresolved_;
};
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind {
VARIABLE,
NAMED_PROPERTY,
KEYED_PROPERTY,
NAMED_SUPER_PROPERTY,
KEYED_SUPER_PROPERTY
};
class Property final : public Expression {
public:
bool IsValidReferenceExpression() const { return true; }
Expression* obj() const { return obj_; }
Expression* key() const { return key_; }
bool IsSuperAccess() { return obj()->IsSuperPropertyReference(); }
// Returns the properties assign type.
static LhsKind GetAssignType(Property* property) {
if (property == nullptr) return VARIABLE;
bool super_access = property->IsSuperAccess();
return (property->key()->IsPropertyName())
? (super_access ? NAMED_SUPER_PROPERTY : NAMED_PROPERTY)
: (super_access ? KEYED_SUPER_PROPERTY : KEYED_PROPERTY);
}
private:
friend class AstNodeFactory;
Property(Expression* obj, Expression* key, int pos)
: Expression(pos, kProperty), obj_(obj), key_(key) {
}
Expression* obj_;
Expression* key_;
};
// ResolvedProperty pairs a receiver field with a value field. It allows Call
// to support arbitrary receivers while still taking advantage of TypeFeedback.
class ResolvedProperty final : public Expression {
public:
VariableProxy* object() const { return object_; }
VariableProxy* property() const { return property_; }
void set_object(VariableProxy* e) { object_ = e; }
void set_property(VariableProxy* e) { property_ = e; }
private:
friend class AstNodeFactory;
ResolvedProperty(VariableProxy* obj, VariableProxy* property, int pos)
: Expression(pos, kResolvedProperty), object_(obj), property_(property) {}
VariableProxy* object_;
VariableProxy* property_;
};
class Call final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
bool is_possibly_eval() const {
return IsPossiblyEvalField::decode(bit_field_);
}
bool is_tagged_template() const {
return IsTaggedTemplateField::decode(bit_field_);
}
bool only_last_arg_is_spread() {
return !arguments_->is_empty() && arguments_->last()->IsSpread();
}
enum CallType {
GLOBAL_CALL,
WITH_CALL,
NAMED_PROPERTY_CALL,
KEYED_PROPERTY_CALL,
NAMED_SUPER_PROPERTY_CALL,
KEYED_SUPER_PROPERTY_CALL,
SUPER_CALL,
RESOLVED_PROPERTY_CALL,
OTHER_CALL
};
enum PossiblyEval {
IS_POSSIBLY_EVAL,
NOT_EVAL,
};
// Helpers to determine how to handle the call.
CallType GetCallType() const;
enum class TaggedTemplateTag { kTrue };
private:
friend class AstNodeFactory;
Call(Expression* expression, ZoneList<Expression*>* arguments, int pos,
PossiblyEval possibly_eval)
: Expression(pos, kCall),
expression_(expression),
arguments_(arguments) {
bit_field_ |=
IsPossiblyEvalField::encode(possibly_eval == IS_POSSIBLY_EVAL) |
IsTaggedTemplateField::encode(false);
}
Call(Expression* expression, ZoneList<Expression*>* arguments, int pos,
TaggedTemplateTag tag)
: Expression(pos, kCall), expression_(expression), arguments_(arguments) {
bit_field_ |= IsPossiblyEvalField::encode(false) |
IsTaggedTemplateField::encode(true);
}
class IsPossiblyEvalField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class IsTaggedTemplateField
: public BitField<bool, IsPossiblyEvalField::kNext, 1> {};
Expression* expression_;
ZoneList<Expression*>* arguments_;
};
class CallNew final : public Expression {
public:
Expression* expression() const { return expression_; }
ZoneList<Expression*>* arguments() const { return arguments_; }
bool only_last_arg_is_spread() {
return !arguments_->is_empty() && arguments_->last()->IsSpread();
}
private:
friend class AstNodeFactory;
CallNew(Expression* expression, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallNew),
expression_(expression),
arguments_(arguments) {
}
Expression* expression_;
ZoneList<Expression*>* arguments_;
};
// The CallRuntime class does not represent any official JavaScript
// language construct. Instead it is used to call a C or JS function
// with a set of arguments. This is used from the builtins that are
// implemented in JavaScript.
class CallRuntime final : public Expression {
public:
ZoneList<Expression*>* arguments() const { return arguments_; }
bool is_jsruntime() const { return function_ == nullptr; }
int context_index() const {
DCHECK(is_jsruntime());
return context_index_;
}
const Runtime::Function* function() const {
DCHECK(!is_jsruntime());
return function_;
}
const char* debug_name();
private:
friend class AstNodeFactory;
CallRuntime(const Runtime::Function* function,
ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
function_(function),
arguments_(arguments) {}
CallRuntime(int context_index, ZoneList<Expression*>* arguments, int pos)
: Expression(pos, kCallRuntime),
context_index_(context_index),
function_(nullptr),
arguments_(arguments) {}
int context_index_;
const Runtime::Function* function_;
ZoneList<Expression*>* arguments_;
};
class UnaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
UnaryOperation(Token::Value op, Expression* expression, int pos)
: Expression(pos, kUnaryOperation), expression_(expression) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsUnaryOp(op));
}
Expression* expression_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class BinaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
// Returns true if one side is a Smi literal, returning the other side's
// sub-expression in |subexpr| and the literal Smi in |literal|.
bool IsSmiLiteralOperation(Expression** subexpr, Smi** literal);
private:
friend class AstNodeFactory;
BinaryOperation(Token::Value op, Expression* left, Expression* right, int pos)
: Expression(pos, kBinaryOperation), left_(left), right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
}
Expression* left_;
Expression* right_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class NaryOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* first() const { return first_; }
Expression* subsequent(size_t index) const {
return subsequent_[index].expression;
}
size_t subsequent_length() const { return subsequent_.size(); }
int subsequent_op_position(size_t index) const {
return subsequent_[index].op_position;
}
void AddSubsequent(Expression* expr, int pos) {
subsequent_.emplace_back(expr, pos);
}
private:
friend class AstNodeFactory;
NaryOperation(Zone* zone, Token::Value op, Expression* first,
size_t initial_subsequent_size)
: Expression(first->position(), kNaryOperation),
first_(first),
subsequent_(zone) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsBinaryOp(op));
DCHECK_NE(op, Token::EXP);
subsequent_.reserve(initial_subsequent_size);
}
// Nary operations store the first (lhs) child expression inline, and the
// child expressions (rhs of each op) are stored out-of-line, along with
// their operation's position. Note that the Nary operation expression's
// position has no meaning.
//
// So an nary add:
//
// expr + expr + expr + ...
//
// is stored as:
//
// (expr) [(+ expr), (+ expr), ...]
// '-.--' '-----------.-----------'
// first subsequent entry list
Expression* first_;
struct NaryOperationEntry {
Expression* expression;
int op_position;
NaryOperationEntry(Expression* e, int pos)
: expression(e), op_position(pos) {}
};
ZoneVector<NaryOperationEntry> subsequent_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class CountOperation final : public Expression {
public:
bool is_prefix() const { return IsPrefixField::decode(bit_field_); }
bool is_postfix() const { return !is_prefix(); }
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* expression() const { return expression_; }
private:
friend class AstNodeFactory;
CountOperation(Token::Value op, bool is_prefix, Expression* expr, int pos)
: Expression(pos, kCountOperation), expression_(expr) {
bit_field_ |= IsPrefixField::encode(is_prefix) | TokenField::encode(op);
}
class IsPrefixField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class TokenField : public BitField<Token::Value, IsPrefixField::kNext, 7> {};
Expression* expression_;
};
class CompareOperation final : public Expression {
public:
Token::Value op() const { return OperatorField::decode(bit_field_); }
Expression* left() const { return left_; }
Expression* right() const { return right_; }
// Match special cases.
bool IsLiteralCompareTypeof(Expression** expr, Literal** literal);
bool IsLiteralCompareUndefined(Expression** expr);
bool IsLiteralCompareNull(Expression** expr);
private:
friend class AstNodeFactory;
CompareOperation(Token::Value op, Expression* left, Expression* right,
int pos)
: Expression(pos, kCompareOperation), left_(left), right_(right) {
bit_field_ |= OperatorField::encode(op);
DCHECK(Token::IsCompareOp(op));
}
Expression* left_;
Expression* right_;
class OperatorField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
};
class Spread final : public Expression {
public:
Expression* expression() const { return expression_; }
int expression_position() const { return expr_pos_; }
private:
friend class AstNodeFactory;
Spread(Expression* expression, int pos, int expr_pos)
: Expression(pos, kSpread),
expr_pos_(expr_pos),
expression_(expression) {}
int expr_pos_;
Expression* expression_;
};
class Conditional final : public Expression {
public:
Expression* condition() const { return condition_; }
Expression* then_expression() const { return then_expression_; }
Expression* else_expression() const { return else_expression_; }
private:
friend class AstNodeFactory;
Conditional(Expression* condition, Expression* then_expression,
Expression* else_expression, int position)
: Expression(position, kConditional),
condition_(condition),
then_expression_(then_expression),
else_expression_(else_expression) {}
Expression* condition_;
Expression* then_expression_;
Expression* else_expression_;
};
class Assignment : public Expression {
public:
Token::Value op() const { return TokenField::decode(bit_field_); }
Expression* target() const { return target_; }
Expression* value() const { return value_; }
// The assignment was generated as part of block-scoped sloppy-mode
// function hoisting, see
// ES#sec-block-level-function-declarations-web-legacy-compatibility-semantics
LookupHoistingMode lookup_hoisting_mode() const {
return static_cast<LookupHoistingMode>(
LookupHoistingModeField::decode(bit_field_));
}
void set_lookup_hoisting_mode(LookupHoistingMode mode) {
bit_field_ =
LookupHoistingModeField::update(bit_field_, static_cast<bool>(mode));
}
protected:
Assignment(NodeType type, Token::Value op, Expression* target,
Expression* value, int pos);
private:
friend class AstNodeFactory;
class TokenField
: public BitField<Token::Value, Expression::kNextBitFieldIndex, 7> {};
class LookupHoistingModeField : public BitField<bool, TokenField::kNext, 1> {
};
Expression* target_;
Expression* value_;
};
class CompoundAssignment final : public Assignment {
public:
BinaryOperation* binary_operation() const { return binary_operation_; }
private:
friend class AstNodeFactory;
CompoundAssignment(Token::Value op, Expression* target, Expression* value,
int pos, BinaryOperation* binary_operation)
: Assignment(kCompoundAssignment, op, target, value, pos),
binary_operation_(binary_operation) {}
BinaryOperation* binary_operation_;
};
// The RewritableExpression class is a wrapper for AST nodes that wait
// for some potential rewriting. However, even if such nodes are indeed
// rewritten, the RewritableExpression wrapper nodes will survive in the
// final AST and should be just ignored, i.e., they should be treated as
// equivalent to the wrapped nodes. For this reason and to simplify later
// phases, RewritableExpressions are considered as exceptions of AST nodes
// in the following sense:
//
// 1. IsRewritableExpression and AsRewritableExpression behave as usual.
// 2. All other Is* and As* methods are practically delegated to the
// wrapped node, i.e. IsArrayLiteral() will return true iff the
// wrapped node is an array literal.
//
// Furthermore, an invariant that should be respected is that the wrapped
// node is not a RewritableExpression.
class RewritableExpression final : public Expression {
public:
Expression* expression() const { return expr_; }
bool is_rewritten() const { return IsRewrittenField::decode(bit_field_); }
void set_rewritten() {
bit_field_ = IsRewrittenField::update(bit_field_, true);
}
void Rewrite(Expression* new_expression) {
DCHECK(!is_rewritten());
DCHECK_NOT_NULL(new_expression);
DCHECK(!new_expression->IsRewritableExpression());
expr_ = new_expression;
set_rewritten();
}
Scope* scope() const { return scope_; }
void set_scope(Scope* scope) { scope_ = scope; }
private:
friend class AstNodeFactory;
RewritableExpression(Expression* expression, Scope* scope)
: Expression(expression->position(), kRewritableExpression),
expr_(expression),
scope_(scope) {
bit_field_ |= IsRewrittenField::encode(false);
DCHECK(!expression->IsRewritableExpression());
}
Expression* expr_;
Scope* scope_;
class IsRewrittenField
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
};
// There are several types of Suspend node:
//
// Yield
// YieldStar
// Await
//
// Our Yield is different from the JS yield in that it "returns" its argument as
// is, without wrapping it in an iterator result object. Such wrapping, if
// desired, must be done beforehand (see the parser).
class Suspend : public Expression {
public:
// With {kNoControl}, the {Suspend} behaves like yield, except that it never
// throws and never causes the current generator to return. This is used to
// desugar yield*.
// TODO(caitp): remove once yield* desugaring for async generators is handled
// in BytecodeGenerator.
enum OnAbruptResume { kOnExceptionThrow, kNoControl };
Expression* expression() const { return expression_; }
OnAbruptResume on_abrupt_resume() const {
return OnAbruptResumeField::decode(bit_field_);
}
int suspend_id() const { return suspend_id_; }
void set_suspend_id(int id) { suspend_id_ = id; }
inline bool IsInitialYield() const { return suspend_id_ == 0 && IsYield(); }
private:
friend class AstNodeFactory;
friend class Yield;
friend class YieldStar;
friend class Await;
Suspend(NodeType node_type, Expression* expression, int pos,
OnAbruptResume on_abrupt_resume)
: Expression(pos, node_type), suspend_id_(-1), expression_(expression) {
bit_field_ |= OnAbruptResumeField::encode(on_abrupt_resume);
}
int suspend_id_;
Expression* expression_;
class OnAbruptResumeField
: public BitField<OnAbruptResume, Expression::kNextBitFieldIndex, 1> {};
};
class Yield final : public Suspend {
private:
friend class AstNodeFactory;
Yield(Expression* expression, int pos, OnAbruptResume on_abrupt_resume)
: Suspend(kYield, expression, pos, on_abrupt_resume) {}
};
class YieldStar final : public Suspend {
public:
// In addition to the normal suspend for yield*, a yield* in an async
// generator has 2 additional suspends:
// - One for awaiting the iterator result of closing the generator when
// resumed with a "throw" completion, and a throw method is not present
// on the delegated iterator (await_iterator_close_suspend_id)
// - One for awaiting the iterator result yielded by the delegated iterator
// (await_delegated_iterator_output_suspend_id)
int await_iterator_close_suspend_id() const {
return await_iterator_close_suspend_id_;
}
void set_await_iterator_close_suspend_id(int id) {
await_iterator_close_suspend_id_ = id;
}
int await_delegated_iterator_output_suspend_id() const {
return await_delegated_iterator_output_suspend_id_;
}
void set_await_delegated_iterator_output_suspend_id(int id) {
await_delegated_iterator_output_suspend_id_ = id;
}
inline int suspend_count() const {
if (await_iterator_close_suspend_id_ != -1) {
DCHECK_NE(-1, await_delegated_iterator_output_suspend_id_);
return 3;
}
return 1;
}
private:
friend class AstNodeFactory;
YieldStar(Expression* expression, int pos)
: Suspend(kYieldStar, expression, pos,
Suspend::OnAbruptResume::kNoControl),
await_iterator_close_suspend_id_(-1),
await_delegated_iterator_output_suspend_id_(-1) {}
int await_iterator_close_suspend_id_;
int await_delegated_iterator_output_suspend_id_;
};
class Await final : public Suspend {
private:
friend class AstNodeFactory;
Await(Expression* expression, int pos)
: Suspend(kAwait, expression, pos, Suspend::kOnExceptionThrow) {}
};
class Throw final : public Expression {
public:
Expression* exception() const { return exception_; }
private:
friend class AstNodeFactory;
Throw(Expression* exception, int pos)
: Expression(pos, kThrow), exception_(exception) {}
Expression* exception_;
};
class FunctionLiteral final : public Expression {
public:
enum FunctionType {
kAnonymousExpression,
kNamedExpression,
kDeclaration,
kAccessorOrMethod,
kWrapped,
};
enum IdType { kIdTypeInvalid = -1, kIdTypeTopLevel = 0 };
enum ParameterFlag { kNoDuplicateParameters, kHasDuplicateParameters };
enum EagerCompileHint { kShouldEagerCompile, kShouldLazyCompile };
// Empty handle means that the function does not have a shared name (i.e.
// the name will be set dynamically after creation of the function closure).
MaybeHandle<String> name() const {
return raw_name_ ? raw_name_->string() : MaybeHandle<String>();
}
Handle<String> name(Isolate* isolate) const;
bool has_shared_name() const { return raw_name_ != nullptr; }
const AstConsString* raw_name() const { return raw_name_; }
void set_raw_name(const AstConsString* name) { raw_name_ = name; }
DeclarationScope* scope() const { return scope_; }
ZoneList<Statement*>* body() const { return body_; }
void set_function_token_position(int pos) { function_token_position_ = pos; }
int function_token_position() const { return function_token_position_; }
int start_position() const;
int end_position() const;
bool is_declaration() const { return function_type() == kDeclaration; }
bool is_named_expression() const {
return function_type() == kNamedExpression;
}
bool is_anonymous_expression() const {
return function_type() == kAnonymousExpression;
}
bool is_wrapped() const { return function_type() == kWrapped; }
LanguageMode language_mode() const;
static bool NeedsHomeObject(Expression* expr);
int expected_property_count() {
// Not valid for lazy functions.
DCHECK_NOT_NULL(body_);
return expected_property_count_;
}
int parameter_count() { return parameter_count_; }
int function_length() { return function_length_; }
bool AllowsLazyCompilation();
bool CanSuspend() {
if (suspend_count() > 0) {
DCHECK(IsResumableFunction(kind()));
return true;
}
return false;
}
// Returns either name or inferred name as a cstring.
std::unique_ptr<char[]> GetDebugName() const;
Handle<String> inferred_name() const {
if (!inferred_name_.is_null()) {
DCHECK_NULL(raw_inferred_name_);
return inferred_name_;
}
if (raw_inferred_name_ != nullptr) {
return raw_inferred_name_->string();
}
UNREACHABLE();
}
// Only one of {set_inferred_name, set_raw_inferred_name} should be called.
void set_inferred_name(Handle<String> inferred_name) {
DCHECK(!inferred_name.is_null());
inferred_name_ = inferred_name;
DCHECK(raw_inferred_name_ == nullptr || raw_inferred_name_->IsEmpty());
raw_inferred_name_ = nullptr;
}
const AstConsString* raw_inferred_name() { return raw_inferred_name_; }
void set_raw_inferred_name(const AstConsString* raw_inferred_name) {
DCHECK_NOT_NULL(raw_inferred_name);
raw_inferred_name_ = raw_inferred_name;
DCHECK(inferred_name_.is_null());
inferred_name_ = Handle<String>();
}
bool pretenure() const { return Pretenure::decode(bit_field_); }
void set_pretenure() { bit_field_ = Pretenure::update(bit_field_, true); }
bool has_duplicate_parameters() const {
// Not valid for lazy functions.
DCHECK_NOT_NULL(body_);
return HasDuplicateParameters::decode(bit_field_);
}
// This is used as a heuristic on when to eagerly compile a function
// literal. We consider the following constructs as hints that the
// function will be called immediately:
// - (function() { ... })();
// - var x = function() { ... }();
bool ShouldEagerCompile() const;
void SetShouldEagerCompile();
FunctionType function_type() const {
return FunctionTypeBits::decode(bit_field_);
}
FunctionKind kind() const;
bool dont_optimize() {
return dont_optimize_reason() != BailoutReason::kNoReason;
}
BailoutReason dont_optimize_reason() {
return DontOptimizeReasonField::decode(bit_field_);
}
void set_dont_optimize_reason(BailoutReason reason) {
bit_field_ = DontOptimizeReasonField::update(bit_field_, reason);
}
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
int suspend_count() { return suspend_count_; }
void set_suspend_count(int suspend_count) { suspend_count_ = suspend_count; }
int return_position() {
return std::max(start_position(), end_position() - (has_braces_ ? 1 : 0));
}
int function_literal_id() const { return function_literal_id_; }
void set_function_literal_id(int function_literal_id) {
function_literal_id_ = function_literal_id;
}
void set_requires_instance_fields_initializer(bool value) {
bit_field_ = RequiresInstanceFieldsInitializer::update(bit_field_, value);
}
bool requires_instance_fields_initializer() const {
return RequiresInstanceFieldsInitializer::decode(bit_field_);
}
ProducedPreParsedScopeData* produced_preparsed_scope_data() const {
return produced_preparsed_scope_data_;
}
private:
friend class AstNodeFactory;
FunctionLiteral(
Zone* zone, const AstRawString* name, AstValueFactory* ast_value_factory,
DeclarationScope* scope, ZoneList<Statement*>* body,
int expected_property_count, int parameter_count, int function_length,
FunctionType function_type, ParameterFlag has_duplicate_parameters,
EagerCompileHint eager_compile_hint, int position, bool has_braces,
int function_literal_id,
ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr)
: Expression(position, kFunctionLiteral),
expected_property_count_(expected_property_count),
parameter_count_(parameter_count),
function_length_(function_length),
function_token_position_(kNoSourcePosition),
suspend_count_(0),
has_braces_(has_braces),
raw_name_(name ? ast_value_factory->NewConsString(name) : nullptr),
scope_(scope),
body_(body),
raw_inferred_name_(ast_value_factory->empty_cons_string()),
function_literal_id_(function_literal_id),
produced_preparsed_scope_data_(produced_preparsed_scope_data) {
bit_field_ |= FunctionTypeBits::encode(function_type) |
Pretenure::encode(false) |
HasDuplicateParameters::encode(has_duplicate_parameters ==
kHasDuplicateParameters) |
DontOptimizeReasonField::encode(BailoutReason::kNoReason) |
RequiresInstanceFieldsInitializer::encode(false);
if (eager_compile_hint == kShouldEagerCompile) SetShouldEagerCompile();
DCHECK_EQ(body == nullptr, expected_property_count < 0);
}
class FunctionTypeBits
: public BitField<FunctionType, Expression::kNextBitFieldIndex, 3> {};
class Pretenure : public BitField<bool, FunctionTypeBits::kNext, 1> {};
class HasDuplicateParameters : public BitField<bool, Pretenure::kNext, 1> {};
class DontOptimizeReasonField
: public BitField<BailoutReason, HasDuplicateParameters::kNext, 8> {};
class RequiresInstanceFieldsInitializer
: public BitField<bool, DontOptimizeReasonField::kNext, 1> {};
int expected_property_count_;
int parameter_count_;
int function_length_;
int function_token_position_;
int suspend_count_;
bool has_braces_;
const AstConsString* raw_name_;
DeclarationScope* scope_;
ZoneList<Statement*>* body_;
const AstConsString* raw_inferred_name_;
Handle<String> inferred_name_;
int function_literal_id_;
ProducedPreParsedScopeData* produced_preparsed_scope_data_;
};
// Property is used for passing information
// about a class literal's properties from the parser to the code generator.
class ClassLiteralProperty final : public LiteralProperty {
public:
enum Kind : uint8_t { METHOD, GETTER, SETTER, FIELD };
Kind kind() const { return kind_; }
bool is_static() const { return is_static_; }
void set_computed_name_var(Variable* var) { computed_name_var_ = var; }
Variable* computed_name_var() const { return computed_name_var_; }
private:
friend class AstNodeFactory;
ClassLiteralProperty(Expression* key, Expression* value, Kind kind,
bool is_static, bool is_computed_name);
Kind kind_;
bool is_static_;
Variable* computed_name_var_;
};
class InitializeClassFieldsStatement final : public Statement {
public:
typedef ClassLiteralProperty Property;
ZoneList<Property*>* fields() const { return fields_; }
private:
friend class AstNodeFactory;
InitializeClassFieldsStatement(ZoneList<Property*>* fields, int pos)
: Statement(pos, kInitializeClassFieldsStatement), fields_(fields) {}
ZoneList<Property*>* fields_;
};
class ClassLiteral final : public Expression {
public:
typedef ClassLiteralProperty Property;
Scope* scope() const { return scope_; }
Variable* class_variable() const { return class_variable_; }
Expression* extends() const { return extends_; }
FunctionLiteral* constructor() const { return constructor_; }
ZoneList<Property*>* properties() const { return properties_; }
int start_position() const { return position(); }
int end_position() const { return end_position_; }
bool has_name_static_property() const {
return HasNameStaticProperty::decode(bit_field_);
}
bool has_static_computed_names() const {
return HasStaticComputedNames::decode(bit_field_);
}
bool is_anonymous_expression() const {
return IsAnonymousExpression::decode(bit_field_);
}
bool IsAnonymousFunctionDefinition() const {
return is_anonymous_expression();
}
FunctionLiteral* static_fields_initializer() const {
return static_fields_initializer_;
}
FunctionLiteral* instance_fields_initializer_function() const {
return instance_fields_initializer_function_;
}
private:
friend class AstNodeFactory;
ClassLiteral(Scope* scope, Variable* class_variable, Expression* extends,
FunctionLiteral* constructor, ZoneList<Property*>* properties,
FunctionLiteral* static_fields_initializer,
FunctionLiteral* instance_fields_initializer_function,
int start_position, int end_position,
bool has_name_static_property, bool has_static_computed_names,
bool is_anonymous)
: Expression(start_position, kClassLiteral),
end_position_(end_position),
scope_(scope),
class_variable_(class_variable),
extends_(extends),
constructor_(constructor),
properties_(properties),
static_fields_initializer_(static_fields_initializer),
instance_fields_initializer_function_(
instance_fields_initializer_function) {
bit_field_ |= HasNameStaticProperty::encode(has_name_static_property) |
HasStaticComputedNames::encode(has_static_computed_names) |
IsAnonymousExpression::encode(is_anonymous);
}
int end_position_;
Scope* scope_;
Variable* class_variable_;
Expression* extends_;
FunctionLiteral* constructor_;
ZoneList<Property*>* properties_;
FunctionLiteral* static_fields_initializer_;
FunctionLiteral* instance_fields_initializer_function_;
class HasNameStaticProperty
: public BitField<bool, Expression::kNextBitFieldIndex, 1> {};
class HasStaticComputedNames
: public BitField<bool, HasNameStaticProperty::kNext, 1> {};
class IsAnonymousExpression
: public BitField<bool, HasStaticComputedNames::kNext, 1> {};
};
class NativeFunctionLiteral final : public Expression {
public:
Handle<String> name() const { return name_->string(); }
const AstRawString* raw_name() const { return name_; }
v8::Extension* extension() const { return extension_; }
private:
friend class AstNodeFactory;
NativeFunctionLiteral(const AstRawString* name, v8::Extension* extension,
int pos)
: Expression(pos, kNativeFunctionLiteral),
name_(name),
extension_(extension) {}
const AstRawString* name_;
v8::Extension* extension_;
};
class ThisFunction final : public Expression {
private:
friend class AstNodeFactory;
explicit ThisFunction(int pos) : Expression(pos, kThisFunction) {}
};
class SuperPropertyReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
Expression* home_object() const { return home_object_; }
private:
friend class AstNodeFactory;
SuperPropertyReference(VariableProxy* this_var, Expression* home_object,
int pos)
: Expression(pos, kSuperPropertyReference),
this_var_(this_var),
home_object_(home_object) {
DCHECK(this_var->is_this());
DCHECK(home_object->IsProperty());
}
VariableProxy* this_var_;
Expression* home_object_;
};
class SuperCallReference final : public Expression {
public:
VariableProxy* this_var() const { return this_var_; }
VariableProxy* new_target_var() const { return new_target_var_; }
VariableProxy* this_function_var() const { return this_function_var_; }
private:
friend class AstNodeFactory;
SuperCallReference(VariableProxy* this_var, VariableProxy* new_target_var,
VariableProxy* this_function_var, int pos)
: Expression(pos, kSuperCallReference),
this_var_(this_var),
new_target_var_(new_target_var),
this_function_var_(this_function_var) {
DCHECK(this_var->is_this());
DCHECK(new_target_var->raw_name()->IsOneByteEqualTo(".new.target"));
DCHECK(this_function_var->raw_name()->IsOneByteEqualTo(".this_function"));
}
VariableProxy* this_var_;
VariableProxy* new_target_var_;
VariableProxy* this_function_var_;
};
// This AST Node is used to represent a dynamic import call --
// import(argument).
class ImportCallExpression final : public Expression {
public:
Expression* argument() const { return argument_; }
private:
friend class AstNodeFactory;
ImportCallExpression(Expression* argument, int pos)
: Expression(pos, kImportCallExpression), argument_(argument) {}
Expression* argument_;
};
// This class is produced when parsing the () in arrow functions without any
// arguments and is not actually a valid expression.
class EmptyParentheses final : public Expression {
private:
friend class AstNodeFactory;
explicit EmptyParentheses(int pos) : Expression(pos, kEmptyParentheses) {}
};
// Represents the spec operation `GetIterator()`
// (defined at https://tc39.github.io/ecma262/#sec-getiterator). Ignition
// desugars this into a LoadIC / JSLoadNamed, CallIC, and a type-check to
// validate return value of the Symbol.iterator() call.
enum class IteratorType { kNormal, kAsync };
class GetIterator final : public Expression {
public:
IteratorType hint() const { return hint_; }
Expression* iterable() const { return iterable_; }
Expression* iterable_for_call_printer() const {
return destructured_iterable_ != nullptr ? destructured_iterable_
: iterable_;
}
private:
friend class AstNodeFactory;
GetIterator(Expression* iterable, Expression* destructured_iterable,
IteratorType hint, int pos)
: Expression(pos, kGetIterator),
hint_(hint),
iterable_(iterable),
destructured_iterable_(destructured_iterable) {}
GetIterator(Expression* iterable, IteratorType hint, int pos)
: Expression(pos, kGetIterator),
hint_(hint),
iterable_(iterable),
destructured_iterable_(nullptr) {}
IteratorType hint_;
Expression* iterable_;
// iterable_ is the variable proxy, while destructured_iterable_ points to
// the raw value stored in the variable proxy. This is only used for
// pretty printing error messages.
Expression* destructured_iterable_;
};
// Represents the spec operation `GetTemplateObject(templateLiteral)`
// (defined at https://tc39.github.io/ecma262/#sec-gettemplateobject).
class GetTemplateObject final : public Expression {
public:
const ZoneList<const AstRawString*>* cooked_strings() const {
return cooked_strings_;
}
const ZoneList<const AstRawString*>* raw_strings() const {
return raw_strings_;
}
int hash() const { return hash_; }
Handle<TemplateObjectDescription> GetOrBuildDescription(Isolate* isolate);
private:
friend class AstNodeFactory;
GetTemplateObject(const ZoneList<const AstRawString*>* cooked_strings,
const ZoneList<const AstRawString*>* raw_strings, int hash,
int pos)
: Expression(pos, kGetTemplateObject),
cooked_strings_(cooked_strings),
raw_strings_(raw_strings),
hash_(hash) {}
const ZoneList<const AstRawString*>* cooked_strings_;
const ZoneList<const AstRawString*>* raw_strings_;
int hash_;
};
// ----------------------------------------------------------------------------
// Basic visitor
// Sub-class should parametrize AstVisitor with itself, e.g.:
// class SpecificVisitor : public AstVisitor<SpecificVisitor> { ... }
template <class Subclass>
class AstVisitor BASE_EMBEDDED {
public:
void Visit(AstNode* node) { impl()->Visit(node); }
void VisitDeclarations(Declaration::List* declarations) {
for (Declaration* decl : *declarations) Visit(decl);
}
void VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Statement* stmt = statements->at(i);
Visit(stmt);
if (stmt->IsJump()) break;
}
}
void VisitExpressions(ZoneList<Expression*>* expressions) {
for (int i = 0; i < expressions->length(); i++) {
// The variable statement visiting code may pass null expressions
// to this code. Maybe this should be handled by introducing an
// undefined expression or literal? Revisit this code if this
// changes.
Expression* expression = expressions->at(i);
if (expression != nullptr) Visit(expression);
}
}
protected:
Subclass* impl() { return static_cast<Subclass*>(this); }
};
#define GENERATE_VISIT_CASE(NodeType) \
case AstNode::k##NodeType: \
return this->impl()->Visit##NodeType(static_cast<NodeType*>(node));
#define GENERATE_AST_VISITOR_SWITCH() \
switch (node->node_type()) { \
AST_NODE_LIST(GENERATE_VISIT_CASE) \
}
#define DEFINE_AST_VISITOR_SUBCLASS_MEMBERS() \
public: \
void VisitNoStackOverflowCheck(AstNode* node) { \
GENERATE_AST_VISITOR_SWITCH() \
} \
\
void Visit(AstNode* node) { \
if (CheckStackOverflow()) return; \
VisitNoStackOverflowCheck(node); \
} \
\
void SetStackOverflow() { stack_overflow_ = true; } \
void ClearStackOverflow() { stack_overflow_ = false; } \
bool HasStackOverflow() const { return stack_overflow_; } \
\
bool CheckStackOverflow() { \
if (stack_overflow_) return true; \
if (GetCurrentStackPosition() < stack_limit_) { \
stack_overflow_ = true; \
return true; \
} \
return false; \
} \
\
private: \
void InitializeAstVisitor(Isolate* isolate) { \
stack_limit_ = isolate->stack_guard()->real_climit(); \
stack_overflow_ = false; \
} \
\
void InitializeAstVisitor(uintptr_t stack_limit) { \
stack_limit_ = stack_limit; \
stack_overflow_ = false; \
} \
\
uintptr_t stack_limit_; \
bool stack_overflow_
#define DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW() \
public: \
void Visit(AstNode* node) { GENERATE_AST_VISITOR_SWITCH() } \
\
private:
// ----------------------------------------------------------------------------
// AstNode factory
class AstNodeFactory final BASE_EMBEDDED {
public:
AstNodeFactory(AstValueFactory* ast_value_factory, Zone* zone)
: zone_(zone), ast_value_factory_(ast_value_factory) {}
AstValueFactory* ast_value_factory() const { return ast_value_factory_; }
VariableDeclaration* NewVariableDeclaration(VariableProxy* proxy, int pos) {
return new (zone_) VariableDeclaration(proxy, pos);
}
NestedVariableDeclaration* NewNestedVariableDeclaration(VariableProxy* proxy,
Scope* scope,
int pos) {
return new (zone_) NestedVariableDeclaration(proxy, scope, pos);
}
FunctionDeclaration* NewFunctionDeclaration(VariableProxy* proxy,
FunctionLiteral* fun, int pos) {
return new (zone_) FunctionDeclaration(proxy, fun, pos);
}
Block* NewBlock(int capacity, bool ignore_completion_value,
ZoneList<const AstRawString*>* labels = nullptr) {
return labels != nullptr
? new (zone_) LabeledBlock(zone_, labels, capacity,
ignore_completion_value)
: new (zone_)
Block(zone_, labels, capacity, ignore_completion_value);
}
#define STATEMENT_WITH_LABELS(NodeType) \
NodeType* New##NodeType(ZoneList<const AstRawString*>* labels, int pos) { \
return new (zone_) NodeType(labels, pos); \
}
STATEMENT_WITH_LABELS(DoWhileStatement)
STATEMENT_WITH_LABELS(WhileStatement)
STATEMENT_WITH_LABELS(ForStatement)
#undef STATEMENT_WITH_LABELS
SwitchStatement* NewSwitchStatement(ZoneList<const AstRawString*>* labels,
Expression* tag, int pos) {
return new (zone_) SwitchStatement(zone_, labels, tag, pos);
}
ForEachStatement* NewForEachStatement(ForEachStatement::VisitMode visit_mode,
ZoneList<const AstRawString*>* labels,
int pos) {
switch (visit_mode) {
case ForEachStatement::ENUMERATE: {
return new (zone_) ForInStatement(labels, pos);
}
case ForEachStatement::ITERATE: {
return new (zone_) ForOfStatement(labels, pos);
}
}
UNREACHABLE();
}
ForOfStatement* NewForOfStatement(ZoneList<const AstRawString*>* labels,
int pos) {
return new (zone_) ForOfStatement(labels, pos);
}
ExpressionStatement* NewExpressionStatement(Expression* expression, int pos) {
return new (zone_) ExpressionStatement(expression, pos);
}
ContinueStatement* NewContinueStatement(IterationStatement* target, int pos) {
return new (zone_) ContinueStatement(target, pos);
}
BreakStatement* NewBreakStatement(BreakableStatement* target, int pos) {
return new (zone_) BreakStatement(target, pos);
}
ReturnStatement* NewReturnStatement(Expression* expression, int pos,
int end_position = kNoSourcePosition) {
return new (zone_) ReturnStatement(expression, ReturnStatement::kNormal,
pos, end_position);
}
ReturnStatement* NewAsyncReturnStatement(
Expression* expression, int pos, int end_position = kNoSourcePosition) {
return new (zone_) ReturnStatement(
expression, ReturnStatement::kAsyncReturn, pos, end_position);
}
WithStatement* NewWithStatement(Scope* scope,
Expression* expression,
Statement* statement,
int pos) {
return new (zone_) WithStatement(scope, expression, statement, pos);
}
IfStatement* NewIfStatement(Expression* condition, Statement* then_statement,
Statement* else_statement, int pos) {
return new (zone_)
IfStatement(condition, then_statement, else_statement, pos);
}