| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_ARM |
| |
| #include "src/assembler-inl.h" |
| #include "src/code-stubs.h" |
| #include "src/counters.h" |
| #include "src/debug/debug.h" |
| #include "src/deoptimizer.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/objects-inl.h" |
| #include "src/runtime/runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address, |
| ExitFrameType exit_frame_type) { |
| #if defined(__thumb__) |
| // Thumb mode builtin. |
| DCHECK_EQ(1, reinterpret_cast<intptr_t>( |
| ExternalReference(address, masm->isolate()).address()) & |
| 1); |
| #endif |
| __ mov(r5, Operand(ExternalReference(address, masm->isolate()))); |
| if (exit_frame_type == BUILTIN_EXIT) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK(exit_frame_type == EXIT); |
| __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithExitFrame), |
| RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| namespace { |
| |
| void AdaptorWithExitFrameType(MacroAssembler* masm, |
| Builtins::ExitFrameType exit_frame_type) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments excluding receiver |
| // -- r1 : target |
| // -- r3 : new.target |
| // -- r5 : entry point |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[4 * (argc - 1)] : first argument |
| // -- sp[4 * argc] : receiver |
| // ----------------------------------- |
| __ AssertFunction(r1); |
| |
| // Make sure we operate in the context of the called function (for example |
| // ConstructStubs implemented in C++ will be run in the context of the caller |
| // instead of the callee, due to the way that [[Construct]] is defined for |
| // ordinary functions). |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| // CEntryStub expects r0 to contain the number of arguments including the |
| // receiver and the extra arguments. |
| __ add(r0, r0, Operand(BuiltinExitFrameConstants::kNumExtraArgsWithReceiver)); |
| |
| // Insert extra arguments. |
| __ PushRoot(Heap::kTheHoleValueRootIndex); // Padding. |
| __ SmiTag(r0); |
| __ Push(r0, r1, r3); |
| __ SmiUntag(r0); |
| |
| // Jump to the C entry runtime stub directly here instead of using |
| // JumpToExternalReference. We have already loaded entry point to r5 |
| // in Generate_adaptor. |
| __ mov(r1, r5); |
| CEntryStub stub(masm->isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| exit_frame_type == Builtins::BUILTIN_EXIT); |
| __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| } // namespace |
| |
| void Builtins::Generate_AdaptorWithExitFrame(MacroAssembler* masm) { |
| AdaptorWithExitFrameType(masm, EXIT); |
| } |
| |
| void Builtins::Generate_AdaptorWithBuiltinExitFrame(MacroAssembler* masm) { |
| AdaptorWithExitFrameType(masm, BUILTIN_EXIT); |
| } |
| |
| // Load the built-in InternalArray function from the current context. |
| static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, |
| Register result) { |
| // Load the InternalArray function from the current native context. |
| __ LoadNativeContextSlot(Context::INTERNAL_ARRAY_FUNCTION_INDEX, result); |
| } |
| |
| // Load the built-in Array function from the current context. |
| static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { |
| // Load the Array function from the current native context. |
| __ LoadNativeContextSlot(Context::ARRAY_FUNCTION_INDEX, result); |
| } |
| |
| void Builtins::Generate_InternalArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code, one_or_more_arguments, two_or_more_arguments; |
| |
| // Get the InternalArray function. |
| GenerateLoadInternalArrayFunction(masm, r1); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin InternalArray functions should be maps. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ SmiTst(r2); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| __ CompareObjectType(r2, r3, r4, MAP_TYPE); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForInternalArrayFunction); |
| } |
| |
| // Run the native code for the InternalArray function called as a normal |
| // function. |
| // tail call a stub |
| InternalArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| void Builtins::Generate_ArrayConstructor(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| Label generic_array_code, one_or_more_arguments, two_or_more_arguments; |
| |
| // Get the Array function. |
| GenerateLoadArrayFunction(masm, r1); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array functions should be maps. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); |
| __ SmiTst(r2); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CompareObjectType(r2, r3, r4, MAP_TYPE); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| } |
| |
| __ mov(r3, r1); |
| // Run the native code for the Array function called as a normal function. |
| // tail call a stub |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| ArrayConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| static void GenerateTailCallToSharedCode(MacroAssembler* masm) { |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset)); |
| __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(r2); |
| } |
| |
| static void GenerateTailCallToReturnedCode(MacroAssembler* masm, |
| Runtime::FunctionId function_id) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee) |
| // -- r1 : target function (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // ----------------------------------- |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| // Push the number of arguments to the callee. |
| __ SmiTag(r0); |
| __ push(r0); |
| // Push a copy of the target function and the new target. |
| __ push(r1); |
| __ push(r3); |
| // Push function as parameter to the runtime call. |
| __ Push(r1); |
| |
| __ CallRuntime(function_id, 1); |
| __ mov(r2, r0); |
| |
| // Restore target function and new target. |
| __ pop(r3); |
| __ pop(r1); |
| __ pop(r0); |
| __ SmiUntag(r0, r0); |
| } |
| __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(r2); |
| } |
| |
| namespace { |
| |
| void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : number of arguments |
| // -- r1 : constructor function |
| // -- r3 : new target |
| // -- cp : context |
| // -- lr : return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| Register scratch = r2; |
| |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| |
| // Preserve the incoming parameters on the stack. |
| __ SmiTag(r0); |
| __ Push(cp, r0); |
| __ SmiUntag(r0); |
| |
| // The receiver for the builtin/api call. |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| |
| // Set up pointer to last argument. |
| __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(r5, r0); |
| // ----------- S t a t e ------------- |
| // -- r0: number of arguments (untagged) |
| // -- r1: constructor function |
| // -- r3: new target |
| // -- r4: pointer to last argument |
| // -- r5: counter |
| // -- sp[0*kPointerSize]: the hole (receiver) |
| // -- sp[1*kPointerSize]: number of arguments (tagged) |
| // -- sp[2*kPointerSize]: context |
| // ----------------------------------- |
| __ b(&entry); |
| __ bind(&loop); |
| __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2)); |
| __ push(scratch); |
| __ bind(&entry); |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ b(ge, &loop); |
| |
| // Call the function. |
| // r0: number of arguments (untagged) |
| // r1: constructor function |
| // r3: new target |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, r3, actual, CALL_FUNCTION); |
| |
| // Restore context from the frame. |
| __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| // Restore smi-tagged arguments count from the frame. |
| __ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ add(sp, sp, Operand(scratch, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ Jump(lr); |
| } |
| |
| // The construct stub for ES5 constructor functions and ES6 class constructors. |
| void Generate_JSConstructStubGeneric(MacroAssembler* masm, |
| bool restrict_constructor_return) { |
| // ----------- S t a t e ------------- |
| // -- r0: number of arguments (untagged) |
| // -- r1: constructor function |
| // -- r3: new target |
| // -- cp: context |
| // -- lr: return address |
| // -- sp[...]: constructor arguments |
| // ----------------------------------- |
| |
| // Enter a construct frame. |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); |
| Label post_instantiation_deopt_entry, not_create_implicit_receiver; |
| |
| // Preserve the incoming parameters on the stack. |
| __ LoadRoot(r4, Heap::kTheHoleValueRootIndex); |
| __ SmiTag(r0); |
| __ Push(cp, r0, r1, r4, r3); |
| |
| // ----------- S t a t e ------------- |
| // -- sp[0*kPointerSize]: new target |
| // -- sp[1*kPointerSize]: padding |
| // -- r1 and sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments (tagged) |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ tst(r4, Operand(SharedFunctionInfo::kDerivedConstructorMask)); |
| __ b(ne, ¬_create_implicit_receiver); |
| |
| // If not derived class constructor: Allocate the new receiver object. |
| __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, |
| r4, r5); |
| __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), |
| RelocInfo::CODE_TARGET); |
| __ b(&post_instantiation_deopt_entry); |
| |
| // Else: use TheHoleValue as receiver for constructor call |
| __ bind(¬_create_implicit_receiver); |
| __ LoadRoot(r0, Heap::kTheHoleValueRootIndex); |
| |
| // ----------- S t a t e ------------- |
| // -- r0: receiver |
| // -- Slot 3 / sp[0*kPointerSize]: new target |
| // -- Slot 2 / sp[1*kPointerSize]: constructor function |
| // -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged) |
| // -- Slot 0 / sp[3*kPointerSize]: context |
| // ----------------------------------- |
| // Deoptimizer enters here. |
| masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset( |
| masm->pc_offset()); |
| __ bind(&post_instantiation_deopt_entry); |
| |
| // Restore new target. |
| __ Pop(r3); |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ Push(r0, r0); |
| |
| // ----------- S t a t e ------------- |
| // -- r3: new target |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: implicit receiver |
| // -- sp[2*kPointerSize]: padding |
| // -- sp[3*kPointerSize]: constructor function |
| // -- sp[4*kPointerSize]: number of arguments (tagged) |
| // -- sp[5*kPointerSize]: context |
| // ----------------------------------- |
| |
| // Restore constructor function and argument count. |
| __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| __ SmiUntag(r0); |
| |
| // Set up pointer to last argument. |
| __ add(r4, fp, Operand(StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ mov(r5, r0); |
| // ----------- S t a t e ------------- |
| // -- r0: number of arguments (untagged) |
| // -- r3: new target |
| // -- r4: pointer to last argument |
| // -- r5: counter |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: implicit receiver |
| // -- sp[2*kPointerSize]: padding |
| // -- r1 and sp[3*kPointerSize]: constructor function |
| // -- sp[4*kPointerSize]: number of arguments (tagged) |
| // -- sp[5*kPointerSize]: context |
| // ----------------------------------- |
| __ b(&entry); |
| |
| __ bind(&loop); |
| __ ldr(r6, MemOperand(r4, r5, LSL, kPointerSizeLog2)); |
| __ push(r6); |
| __ bind(&entry); |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ b(ge, &loop); |
| |
| // Call the function. |
| ParameterCount actual(r0); |
| __ InvokeFunction(r1, r3, actual, CALL_FUNCTION); |
| |
| // ----------- S t a t e ------------- |
| // -- r0: constructor result |
| // -- sp[0*kPointerSize]: implicit receiver |
| // -- sp[1*kPointerSize]: padding |
| // -- sp[2*kPointerSize]: constructor function |
| // -- sp[3*kPointerSize]: number of arguments |
| // -- sp[4*kPointerSize]: context |
| // ----------------------------------- |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset( |
| masm->pc_offset()); |
| |
| // Restore the context from the frame. |
| __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, do_throw, other_result, leave_frame; |
| |
| // If the result is undefined, we jump out to using the implicit receiver. |
| __ JumpIfRoot(r0, Heap::kUndefinedValueRootIndex, &use_receiver); |
| |
| // Otherwise we do a smi check and fall through to check if the return value |
| // is a valid receiver. |
| |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(r0, &other_result); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense. |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE); |
| __ b(ge, &leave_frame); |
| |
| // The result is now neither undefined nor an object. |
| __ bind(&other_result); |
| __ ldr(r4, MemOperand(fp, ConstructFrameConstants::kConstructorOffset)); |
| __ ldr(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ tst(r4, Operand(SharedFunctionInfo::kClassConstructorMask)); |
| |
| if (restrict_constructor_return) { |
| // Throw if constructor function is a class constructor |
| __ b(eq, &use_receiver); |
| } else { |
| __ b(ne, &use_receiver); |
| __ CallRuntime( |
| Runtime::kIncrementUseCounterConstructorReturnNonUndefinedPrimitive); |
| __ b(&use_receiver); |
| } |
| |
| __ bind(&do_throw); |
| __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ ldr(r0, MemOperand(sp, 0 * kPointerSize)); |
| __ JumpIfRoot(r0, Heap::kTheHoleValueRootIndex, &do_throw); |
| |
| __ bind(&leave_frame); |
| // Restore smi-tagged arguments count from the frame. |
| __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset)); |
| // Leave construct frame. |
| } |
| // Remove caller arguments from the stack and return. |
| STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); |
| __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ add(sp, sp, Operand(kPointerSize)); |
| __ Jump(lr); |
| } |
| } // namespace |
| |
| void Builtins::Generate_JSConstructStubGenericRestrictedReturn( |
| MacroAssembler* masm) { |
| Generate_JSConstructStubGeneric(masm, true); |
| } |
| void Builtins::Generate_JSConstructStubGenericUnrestrictedReturn( |
| MacroAssembler* masm) { |
| Generate_JSConstructStubGeneric(masm, false); |
| } |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) { |
| Generate_JSBuiltinsConstructStubHelper(masm); |
| } |
| |
| // static |
| void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the value to pass to the generator |
| // -- r1 : the JSGeneratorObject to resume |
| // -- lr : return address |
| // ----------------------------------- |
| __ AssertGeneratorObject(r1); |
| |
| // Store input value into generator object. |
| __ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset)); |
| __ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0, r3, |
| kLRHasNotBeenSaved, kDontSaveFPRegs); |
| |
| // Load suspended function and context. |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| __ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| |
| Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator; |
| Label stepping_prepared; |
| Register scratch = r5; |
| |
| // Flood function if we are stepping. |
| ExternalReference debug_hook = |
| ExternalReference::debug_hook_on_function_call_address(masm->isolate()); |
| __ mov(scratch, Operand(debug_hook)); |
| __ ldrsb(scratch, MemOperand(scratch)); |
| __ cmp(scratch, Operand(0)); |
| __ b(ne, &prepare_step_in_if_stepping); |
| |
| // Flood function if we need to continue stepping in the suspended |
| // generator. |
| ExternalReference debug_suspended_generator = |
| ExternalReference::debug_suspended_generator_address(masm->isolate()); |
| __ mov(scratch, Operand(debug_suspended_generator)); |
| __ ldr(scratch, MemOperand(scratch)); |
| __ cmp(scratch, Operand(r1)); |
| __ b(eq, &prepare_step_in_suspended_generator); |
| __ bind(&stepping_prepared); |
| |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label stack_overflow; |
| __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); |
| __ b(lo, &stack_overflow); |
| |
| // Push receiver. |
| __ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset)); |
| __ Push(scratch); |
| |
| // ----------- S t a t e ------------- |
| // -- r1 : the JSGeneratorObject to resume |
| // -- r4 : generator function |
| // -- cp : generator context |
| // -- lr : return address |
| // -- sp[0] : generator receiver |
| // ----------------------------------- |
| |
| // Push holes for arguments to generator function. Since the parser forced |
| // context allocation for any variables in generators, the actual argument |
| // values have already been copied into the context and these dummy values |
| // will never be used. |
| __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r3, |
| FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset)); |
| { |
| Label done_loop, loop; |
| __ bind(&loop); |
| __ sub(r3, r3, Operand(1), SetCC); |
| __ b(mi, &done_loop); |
| __ PushRoot(Heap::kTheHoleValueRootIndex); |
| __ b(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Underlying function needs to have bytecode available. |
| if (FLAG_debug_code) { |
| __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset)); |
| __ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE); |
| __ Assert(eq, AbortReason::kMissingBytecodeArray); |
| } |
| |
| // Resume (Ignition/TurboFan) generator object. |
| { |
| __ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r0, FieldMemOperand( |
| r0, SharedFunctionInfo::kFormalParameterCountOffset)); |
| // We abuse new.target both to indicate that this is a resume call and to |
| // pass in the generator object. In ordinary calls, new.target is always |
| // undefined because generator functions are non-constructable. |
| __ Move(r3, r1); |
| __ Move(r1, r4); |
| __ ldr(scratch, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ add(scratch, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(scratch); |
| } |
| |
| __ bind(&prepare_step_in_if_stepping); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1, r4); |
| __ CallRuntime(Runtime::kDebugOnFunctionCall); |
| __ Pop(r1); |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&prepare_step_in_suspended_generator); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1); |
| __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator); |
| __ Pop(r1); |
| __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset)); |
| } |
| __ b(&stepping_prepared); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); // This should be unreachable. |
| } |
| } |
| |
| void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| __ push(r1); |
| __ CallRuntime(Runtime::kThrowConstructedNonConstructable); |
| } |
| |
| static void Generate_StackOverflowCheck(MacroAssembler* masm, Register num_args, |
| Register scratch, |
| Label* stack_overflow) { |
| // Check the stack for overflow. We are not trying to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); |
| // Make scratch the space we have left. The stack might already be overflowed |
| // here which will cause scratch to become negative. |
| __ sub(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ cmp(scratch, Operand(num_args, LSL, kPointerSizeLog2)); |
| __ b(le, stack_overflow); // Signed comparison. |
| } |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Called from Generate_JS_Entry |
| // r0: new.target |
| // r1: function |
| // r2: receiver |
| // r3: argc |
| // r4: argv |
| // r5-r6, r8 and cp may be clobbered |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Enter an internal frame. |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| |
| // Setup the context (we need to use the caller context from the isolate). |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| masm->isolate()); |
| __ mov(cp, Operand(context_address)); |
| __ ldr(cp, MemOperand(cp)); |
| |
| // Push the function and the receiver onto the stack. |
| __ Push(r1, r2); |
| |
| // Check if we have enough stack space to push all arguments. |
| // Clobbers r2. |
| Label enough_stack_space, stack_overflow; |
| Generate_StackOverflowCheck(masm, r3, r2, &stack_overflow); |
| __ b(&enough_stack_space); |
| __ bind(&stack_overflow); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| |
| __ bind(&enough_stack_space); |
| |
| // Remember new.target. |
| __ mov(r5, r0); |
| |
| // Copy arguments to the stack in a loop. |
| // r1: function |
| // r3: argc |
| // r4: argv, i.e. points to first arg |
| Label loop, entry; |
| __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2)); |
| // r2 points past last arg. |
| __ b(&entry); |
| __ bind(&loop); |
| __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter |
| __ ldr(r0, MemOperand(r0)); // dereference handle |
| __ push(r0); // push parameter |
| __ bind(&entry); |
| __ cmp(r4, r2); |
| __ b(ne, &loop); |
| |
| // Setup new.target and argc. |
| __ mov(r0, Operand(r3)); |
| __ mov(r3, Operand(r5)); |
| |
| // Initialize all JavaScript callee-saved registers, since they will be seen |
| // by the garbage collector as part of handlers. |
| __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); |
| __ mov(r5, Operand(r4)); |
| __ mov(r6, Operand(r4)); |
| __ mov(r8, Operand(r4)); |
| if (kR9Available == 1) { |
| __ mov(r9, Operand(r4)); |
| } |
| |
| // Invoke the code. |
| Handle<Code> builtin = is_construct |
| ? BUILTIN_CODE(masm->isolate(), Construct) |
| : masm->isolate()->builtins()->Call(); |
| __ Call(builtin, RelocInfo::CODE_TARGET); |
| |
| // Exit the JS frame and remove the parameters (except function), and |
| // return. |
| // Respect ABI stack constraint. |
| } |
| __ Jump(lr); |
| |
| // r0: result |
| } |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| static void ReplaceClosureCodeWithOptimizedCode( |
| MacroAssembler* masm, Register optimized_code, Register closure, |
| Register scratch1, Register scratch2, Register scratch3) { |
| // Store code entry in the closure. |
| __ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset)); |
| __ mov(scratch1, optimized_code); // Write barrier clobbers scratch1 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, scratch1, scratch2, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| } |
| |
| static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch) { |
| Register args_count = scratch; |
| |
| // Get the arguments + receiver count. |
| __ ldr(args_count, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(args_count, |
| FieldMemOperand(args_count, BytecodeArray::kParameterSizeOffset)); |
| |
| // Leave the frame (also dropping the register file). |
| __ LeaveFrame(StackFrame::INTERPRETED); |
| |
| // Drop receiver + arguments. |
| __ add(sp, sp, args_count, LeaveCC); |
| } |
| |
| // Tail-call |function_id| if |smi_entry| == |marker| |
| static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm, |
| Register smi_entry, |
| OptimizationMarker marker, |
| Runtime::FunctionId function_id) { |
| Label no_match; |
| __ cmp(smi_entry, Operand(Smi::FromEnum(marker))); |
| __ b(ne, &no_match); |
| GenerateTailCallToReturnedCode(masm, function_id); |
| __ bind(&no_match); |
| } |
| |
| static void MaybeTailCallOptimizedCodeSlot(MacroAssembler* masm, |
| Register feedback_vector, |
| Register scratch1, Register scratch2, |
| Register scratch3) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee if needed, and caller) |
| // -- r3 : new target (preserved for callee if needed, and caller) |
| // -- r1 : target function (preserved for callee if needed, and caller) |
| // -- feedback vector (preserved for caller if needed) |
| // ----------------------------------- |
| DCHECK( |
| !AreAliased(feedback_vector, r0, r1, r3, scratch1, scratch2, scratch3)); |
| |
| Label optimized_code_slot_is_cell, fallthrough; |
| |
| Register closure = r1; |
| Register optimized_code_entry = scratch1; |
| |
| __ ldr( |
| optimized_code_entry, |
| FieldMemOperand(feedback_vector, FeedbackVector::kOptimizedCodeOffset)); |
| |
| // Check if the code entry is a Smi. If yes, we interpret it as an |
| // optimisation marker. Otherwise, interpret is as a weak cell to a code |
| // object. |
| __ JumpIfNotSmi(optimized_code_entry, &optimized_code_slot_is_cell); |
| |
| { |
| // Optimized code slot is a Smi optimization marker. |
| |
| // Fall through if no optimization trigger. |
| __ cmp(optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kNone))); |
| __ b(eq, &fallthrough); |
| |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kLogFirstExecution, |
| Runtime::kFunctionFirstExecution); |
| TailCallRuntimeIfMarkerEquals(masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimized, |
| Runtime::kCompileOptimized_NotConcurrent); |
| TailCallRuntimeIfMarkerEquals( |
| masm, optimized_code_entry, |
| OptimizationMarker::kCompileOptimizedConcurrent, |
| Runtime::kCompileOptimized_Concurrent); |
| |
| { |
| // Otherwise, the marker is InOptimizationQueue, so fall through hoping |
| // that an interrupt will eventually update the slot with optimized code. |
| if (FLAG_debug_code) { |
| __ cmp( |
| optimized_code_entry, |
| Operand(Smi::FromEnum(OptimizationMarker::kInOptimizationQueue))); |
| __ Assert(eq, AbortReason::kExpectedOptimizationSentinel); |
| } |
| __ jmp(&fallthrough); |
| } |
| } |
| |
| { |
| // Optimized code slot is a WeakCell. |
| __ bind(&optimized_code_slot_is_cell); |
| |
| __ ldr(optimized_code_entry, |
| FieldMemOperand(optimized_code_entry, WeakCell::kValueOffset)); |
| __ JumpIfSmi(optimized_code_entry, &fallthrough); |
| |
| // Check if the optimized code is marked for deopt. If it is, call the |
| // runtime to clear it. |
| Label found_deoptimized_code; |
| __ ldr(scratch2, FieldMemOperand(optimized_code_entry, |
| Code::kCodeDataContainerOffset)); |
| __ ldr( |
| scratch2, |
| FieldMemOperand(scratch2, CodeDataContainer::kKindSpecificFlagsOffset)); |
| __ tst(scratch2, Operand(1 << Code::kMarkedForDeoptimizationBit)); |
| __ b(ne, &found_deoptimized_code); |
| |
| // Optimized code is good, get it into the closure and link the closure into |
| // the optimized functions list, then tail call the optimized code. |
| // The feedback vector is no longer used, so re-use it as a scratch |
| // register. |
| ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure, |
| scratch2, scratch3, feedback_vector); |
| __ add(optimized_code_entry, optimized_code_entry, |
| Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(optimized_code_entry); |
| |
| // Optimized code slot contains deoptimized code, evict it and re-enter the |
| // closure's code. |
| __ bind(&found_deoptimized_code); |
| GenerateTailCallToReturnedCode(masm, Runtime::kEvictOptimizedCodeSlot); |
| } |
| |
| // Fall-through if the optimized code cell is clear and there is no |
| // optimization marker. |
| __ bind(&fallthrough); |
| } |
| |
| // Advance the current bytecode offset. This simulates what all bytecode |
| // handlers do upon completion of the underlying operation. |
| static void AdvanceBytecodeOffset(MacroAssembler* masm, Register bytecode_array, |
| Register bytecode_offset, Register bytecode, |
| Register scratch1) { |
| Register bytecode_size_table = scratch1; |
| DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table, |
| bytecode)); |
| |
| __ mov( |
| bytecode_size_table, |
| Operand(ExternalReference::bytecode_size_table_address(masm->isolate()))); |
| |
| // Check if the bytecode is a Wide or ExtraWide prefix bytecode. |
| Label load_size, extra_wide; |
| STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide)); |
| STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide)); |
| __ cmp(bytecode, Operand(0x1)); |
| __ b(hi, &load_size); |
| __ b(eq, &extra_wide); |
| |
| // Load the next bytecode and update table to the wide scaled table. |
| __ add(bytecode_offset, bytecode_offset, Operand(1)); |
| __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ add(bytecode_size_table, bytecode_size_table, |
| Operand(kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| __ jmp(&load_size); |
| |
| __ bind(&extra_wide); |
| // Load the next bytecode and update table to the extra wide scaled table. |
| __ add(bytecode_offset, bytecode_offset, Operand(1)); |
| __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset)); |
| __ add(bytecode_size_table, bytecode_size_table, |
| Operand(2 * kIntSize * interpreter::Bytecodes::kBytecodeCount)); |
| |
| // Load the size of the current bytecode. |
| __ bind(&load_size); |
| __ ldr(scratch1, MemOperand(bytecode_size_table, bytecode, LSL, 2)); |
| __ add(bytecode_offset, bytecode_offset, scratch1); |
| } |
| |
| // Generate code for entering a JS function with the interpreter. |
| // On entry to the function the receiver and arguments have been pushed on the |
| // stack left to right. The actual argument count matches the formal parameter |
| // count expected by the function. |
| // |
| // The live registers are: |
| // o r1: the JS function object being called. |
| // o r3: the incoming new target or generator object |
| // o cp: our context |
| // o fp: the caller's frame pointer |
| // o sp: stack pointer |
| // o lr: return address |
| // |
| // The function builds an interpreter frame. See InterpreterFrameConstants in |
| // frames.h for its layout. |
| void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| Register closure = r1; |
| Register feedback_vector = r2; |
| |
| // Load the feedback vector from the closure. |
| __ ldr(feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| // Read off the optimized code slot in the feedback vector, and if there |
| // is optimized code or an optimization marker, call that instead. |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5); |
| |
| // Open a frame scope to indicate that there is a frame on the stack. The |
| // MANUAL indicates that the scope shouldn't actually generate code to set up |
| // the frame (that is done below). |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ PushStandardFrame(closure); |
| |
| // Get the bytecode array from the function object (or from the DebugInfo if |
| // it is present) and load it into kInterpreterBytecodeArrayRegister. |
| Label maybe_load_debug_bytecode_array, bytecode_array_loaded; |
| __ ldr(r0, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset)); |
| __ ldr(r4, FieldMemOperand(r0, SharedFunctionInfo::kDebugInfoOffset)); |
| __ SmiTst(r4); |
| __ b(ne, &maybe_load_debug_bytecode_array); |
| __ bind(&bytecode_array_loaded); |
| |
| // Increment invocation count for the function. |
| __ ldr(r9, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| __ add(r9, r9, Operand(1)); |
| __ str(r9, FieldMemOperand(feedback_vector, |
| FeedbackVector::kInvocationCountOffset)); |
| |
| // Check function data field is actually a BytecodeArray object. |
| if (FLAG_debug_code) { |
| __ SmiTst(kInterpreterBytecodeArrayRegister); |
| __ Assert( |
| ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert( |
| eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Reset code age. |
| __ mov(r9, Operand(BytecodeArray::kNoAgeBytecodeAge)); |
| __ strb(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kBytecodeAgeOffset)); |
| |
| // Load the initial bytecode offset. |
| __ mov(kInterpreterBytecodeOffsetRegister, |
| Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); |
| |
| // Push bytecode array and Smi tagged bytecode array offset. |
| __ SmiTag(r0, kInterpreterBytecodeOffsetRegister); |
| __ Push(kInterpreterBytecodeArrayRegister, r0); |
| |
| // Allocate the local and temporary register file on the stack. |
| { |
| // Load frame size from the BytecodeArray object. |
| __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kFrameSizeOffset)); |
| |
| // Do a stack check to ensure we don't go over the limit. |
| Label ok; |
| __ sub(r9, sp, Operand(r4)); |
| __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); |
| __ cmp(r9, Operand(r2)); |
| __ b(hs, &ok); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&ok); |
| |
| // If ok, push undefined as the initial value for all register file entries. |
| Label loop_header; |
| Label loop_check; |
| __ LoadRoot(r9, Heap::kUndefinedValueRootIndex); |
| __ b(&loop_check, al); |
| __ bind(&loop_header); |
| // TODO(rmcilroy): Consider doing more than one push per loop iteration. |
| __ push(r9); |
| // Continue loop if not done. |
| __ bind(&loop_check); |
| __ sub(r4, r4, Operand(kPointerSize), SetCC); |
| __ b(&loop_header, ge); |
| } |
| |
| // If the bytecode array has a valid incoming new target or generator object |
| // register, initialize it with incoming value which was passed in r3. |
| __ ldr(r9, FieldMemOperand( |
| kInterpreterBytecodeArrayRegister, |
| BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset)); |
| __ cmp(r9, Operand::Zero()); |
| __ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne); |
| |
| // Load accumulator with undefined. |
| __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); |
| |
| // Load the dispatch table into a register and dispatch to the bytecode |
| // handler at the current bytecode offset. |
| Label do_dispatch; |
| __ bind(&do_dispatch); |
| __ mov(kInterpreterDispatchTableRegister, |
| Operand(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ ldr(r4, MemOperand(kInterpreterDispatchTableRegister, r1, LSL, |
| kPointerSizeLog2)); |
| __ Call(r4); |
| masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset()); |
| |
| // Any returns to the entry trampoline are either due to the return bytecode |
| // or the interpreter tail calling a builtin and then a dispatch. |
| |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Check if we should return. |
| Label do_return; |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| __ cmp(r1, Operand(static_cast<int>(interpreter::Bytecode::kReturn))); |
| __ b(&do_return, eq); |
| |
| // Advance to the next bytecode and dispatch. |
| AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r1, r2); |
| __ jmp(&do_dispatch); |
| |
| __ bind(&do_return); |
| // The return value is in r0. |
| LeaveInterpreterFrame(masm, r2); |
| __ Jump(lr); |
| |
| // Load debug copy of the bytecode array if it exists. |
| // kInterpreterBytecodeArrayRegister is already loaded with |
| // SharedFunctionInfo::kFunctionDataOffset. |
| __ bind(&maybe_load_debug_bytecode_array); |
| __ ldr(r9, FieldMemOperand(r4, DebugInfo::kFlagsOffset)); |
| __ SmiUntag(r9); |
| __ tst(r9, Operand(DebugInfo::kHasBreakInfo)); |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| FieldMemOperand(r4, DebugInfo::kDebugBytecodeArrayOffset), ne); |
| __ b(&bytecode_array_loaded); |
| } |
| |
| static void Generate_InterpreterPushArgs(MacroAssembler* masm, |
| Register num_args, Register index, |
| Register limit, Register scratch) { |
| // Find the address of the last argument. |
| __ mov(limit, num_args); |
| __ mov(limit, Operand(limit, LSL, kPointerSizeLog2)); |
| __ sub(limit, index, limit); |
| |
| Label loop_header, loop_check; |
| __ b(al, &loop_check); |
| __ bind(&loop_header); |
| __ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex)); |
| __ push(scratch); |
| __ bind(&loop_check); |
| __ cmp(index, limit); |
| __ b(gt, &loop_header); |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenCallImpl( |
| MacroAssembler* masm, ConvertReceiverMode receiver_mode, |
| InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r2 : the address of the first argument to be pushed. Subsequent |
| // arguments should be consecutive above this, in the same order as |
| // they are to be pushed onto the stack. |
| // -- r1 : the target to call (can be any Object). |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| __ add(r3, r0, Operand(1)); // Add one for receiver. |
| |
| Generate_StackOverflowCheck(masm, r3, r4, &stack_overflow); |
| |
| // Push "undefined" as the receiver arg if we need to. |
| if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ mov(r3, r0); // Argument count is correct. |
| } |
| |
| // Push the arguments. r2, r4, r5 will be modified. |
| Generate_InterpreterPushArgs(masm, r3, r2, r4, r5); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(r2); // Pass the spread in a register |
| __ sub(r0, r0, Operand(1)); // Subtract one for spread |
| } |
| |
| // Call the target. |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| __ Jump( |
| masm->isolate()->builtins()->CallFunction(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_InterpreterPushArgsThenConstructImpl( |
| MacroAssembler* masm, InterpreterPushArgsMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (not including receiver) |
| // -- r3 : new target |
| // -- r1 : constructor to call |
| // -- r2 : allocation site feedback if available, undefined otherwise. |
| // -- r4 : address of the first argument |
| // ----------------------------------- |
| Label stack_overflow; |
| |
| // Push a slot for the receiver to be constructed. |
| __ mov(r5, Operand::Zero()); |
| __ push(r5); |
| |
| Generate_StackOverflowCheck(masm, r0, r5, &stack_overflow); |
| |
| // Push the arguments. r5, r4, r6 will be modified. |
| Generate_InterpreterPushArgs(masm, r0, r4, r5, r6); |
| |
| if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| __ Pop(r2); // Pass the spread in a register |
| __ sub(r0, r0, Operand(1)); // Subtract one for spread |
| } else { |
| __ AssertUndefinedOrAllocationSite(r2, r5); |
| } |
| |
| if (mode == InterpreterPushArgsMode::kJSFunction) { |
| __ AssertFunction(r1); |
| |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset)); |
| // Jump to the construct function. |
| __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) { |
| // Call the constructor with r0, r1, and r3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread), |
| RelocInfo::CODE_TARGET); |
| } else { |
| DCHECK_EQ(InterpreterPushArgsMode::kOther, mode); |
| // Call the constructor with r0, r1, and r3 unmodified. |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| __ bind(&stack_overflow); |
| { |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| // Unreachable code. |
| __ bkpt(0); |
| } |
| } |
| |
| static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) { |
| // Set the return address to the correct point in the interpreter entry |
| // trampoline. |
| Smi* interpreter_entry_return_pc_offset( |
| masm->isolate()->heap()->interpreter_entry_return_pc_offset()); |
| DCHECK_NE(interpreter_entry_return_pc_offset, Smi::kZero); |
| __ Move(r2, BUILTIN_CODE(masm->isolate(), InterpreterEntryTrampoline)); |
| __ add(lr, r2, Operand(interpreter_entry_return_pc_offset->value() + |
| Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Initialize the dispatch table register. |
| __ mov(kInterpreterDispatchTableRegister, |
| Operand(ExternalReference::interpreter_dispatch_table_address( |
| masm->isolate()))); |
| |
| // Get the bytecode array pointer from the frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| |
| if (FLAG_debug_code) { |
| // Check function data field is actually a BytecodeArray object. |
| __ SmiTst(kInterpreterBytecodeArrayRegister); |
| __ Assert( |
| ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| __ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg, |
| BYTECODE_ARRAY_TYPE); |
| __ Assert( |
| eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); |
| } |
| |
| // Get the target bytecode offset from the frame. |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Dispatch to the target bytecode. |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ ldr(scratch, MemOperand(kInterpreterDispatchTableRegister, r1, LSL, |
| kPointerSizeLog2)); |
| __ Jump(scratch); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeAdvance(MacroAssembler* masm) { |
| // Get bytecode array and bytecode offset from the stack frame. |
| __ ldr(kInterpreterBytecodeArrayRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp)); |
| __ ldr(kInterpreterBytecodeOffsetRegister, |
| MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| __ SmiUntag(kInterpreterBytecodeOffsetRegister); |
| |
| // Load the current bytecode. |
| __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister)); |
| |
| // Advance to the next bytecode. |
| AdvanceBytecodeOffset(masm, kInterpreterBytecodeArrayRegister, |
| kInterpreterBytecodeOffsetRegister, r1, r2); |
| |
| // Convert new bytecode offset to a Smi and save in the stackframe. |
| __ SmiTag(r2, kInterpreterBytecodeOffsetRegister); |
| __ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp)); |
| |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_InterpreterEnterBytecodeDispatch(MacroAssembler* masm) { |
| Generate_InterpreterEnterBytecode(masm); |
| } |
| |
| void Builtins::Generate_CheckOptimizationMarker(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // -- r1 : target function (preserved for callee) |
| // ----------------------------------- |
| Register closure = r1; |
| |
| // Get the feedback vector. |
| Register feedback_vector = r2; |
| __ ldr(feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| |
| // The feedback vector must be defined. |
| if (FLAG_debug_code) { |
| __ CompareRoot(feedback_vector, Heap::kUndefinedValueRootIndex); |
| __ Assert(ne, AbortReason::kExpectedFeedbackVector); |
| } |
| |
| // Is there an optimization marker or optimized code in the feedback vector? |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5); |
| |
| // Otherwise, tail call the SFI code. |
| GenerateTailCallToSharedCode(masm); |
| } |
| |
| void Builtins::Generate_CompileLazyDeoptimizedCode(MacroAssembler* masm) { |
| // Set the code slot inside the JSFunction to the trampoline to the |
| // interpreter entry. |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset)); |
| __ str(r2, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ RecordWriteField(r1, JSFunction::kCodeOffset, r2, r4, kLRHasNotBeenSaved, |
| kDontSaveFPRegs, OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| // Jump to compile lazy. |
| Generate_CompileLazy(masm); |
| } |
| |
| void Builtins::Generate_CompileLazy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // -- r1 : target function (preserved for callee) |
| // ----------------------------------- |
| // First lookup code, maybe we don't need to compile! |
| Label gotta_call_runtime; |
| |
| Register closure = r1; |
| Register feedback_vector = r2; |
| |
| // Do we have a valid feedback vector? |
| __ ldr(feedback_vector, |
| FieldMemOperand(closure, JSFunction::kFeedbackVectorOffset)); |
| __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset)); |
| __ JumpIfRoot(feedback_vector, Heap::kUndefinedValueRootIndex, |
| &gotta_call_runtime); |
| |
| // Is there an optimization marker or optimized code in the feedback vector? |
| MaybeTailCallOptimizedCodeSlot(masm, feedback_vector, r4, r6, r5); |
| |
| // We found no optimized code. |
| Register entry = r4; |
| __ ldr(entry, |
| FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset)); |
| |
| // If SFI points to anything other than CompileLazy, install that. |
| __ ldr(entry, FieldMemOperand(entry, SharedFunctionInfo::kCodeOffset)); |
| __ Move(r5, masm->CodeObject()); |
| __ cmp(entry, r5); |
| __ b(eq, &gotta_call_runtime); |
| |
| // Install the SFI's code entry. |
| __ str(entry, FieldMemOperand(closure, JSFunction::kCodeOffset)); |
| __ mov(r9, entry); // Write barrier clobbers r9 below. |
| __ RecordWriteField(closure, JSFunction::kCodeOffset, r9, r5, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET, |
| OMIT_SMI_CHECK); |
| __ add(entry, entry, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(entry); |
| |
| __ bind(&gotta_call_runtime); |
| GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy); |
| } |
| |
| // Lazy deserialization design doc: http://goo.gl/dxkYDZ. |
| void Builtins::Generate_DeserializeLazy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee) |
| // -- r3 : new target (preserved for callee) |
| // -- r1 : target function (preserved for callee) |
| // ----------------------------------- |
| |
| Label deserialize_in_runtime; |
| |
| Register target = r1; // Must be preserved |
| Register scratch0 = r2; |
| Register scratch1 = r4; |
| |
| CHECK(scratch0 != r0 && scratch0 != r3 && scratch0 != r1); |
| CHECK(scratch1 != r0 && scratch1 != r3 && scratch1 != r1); |
| CHECK(scratch0 != scratch1); |
| |
| // Load the builtin id for lazy deserialization from SharedFunctionInfo. |
| |
| __ AssertFunction(target); |
| __ ldr(scratch0, |
| FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset)); |
| |
| __ ldr(scratch1, |
| FieldMemOperand(scratch0, SharedFunctionInfo::kFunctionDataOffset)); |
| __ AssertSmi(scratch1); |
| |
| // The builtin may already have been deserialized. If that is the case, it is |
| // stored in the builtins table, and we can copy to correct code object to |
| // both the shared function info and function without calling into runtime. |
| // |
| // Otherwise, we need to call into runtime to deserialize. |
| |
| { |
| // Load the code object at builtins_table[builtin_id] into scratch1. |
| |
| __ SmiUntag(scratch1); |
| __ Move(scratch0, |
| Operand(ExternalReference::builtins_address(masm->isolate()))); |
| __ ldr(scratch1, MemOperand(scratch0, scratch1, LSL, kPointerSizeLog2)); |
| |
| // Check if the loaded code object has already been deserialized. This is |
| // the case iff it does not equal DeserializeLazy. |
| |
| __ Move(scratch0, masm->CodeObject()); |
| __ cmp(scratch1, scratch0); |
| __ b(eq, &deserialize_in_runtime); |
| } |
| |
| { |
| // If we've reached this spot, the target builtin has been deserialized and |
| // we simply need to copy it over. First to the shared function info. |
| |
| Register target_builtin = scratch1; |
| Register shared = scratch0; |
| |
| __ ldr(shared, |
| FieldMemOperand(target, JSFunction::kSharedFunctionInfoOffset)); |
| |
| CHECK(r5 != target && r5 != scratch0 && r5 != scratch1); |
| CHECK(r9 != target && r9 != scratch0 && r9 != scratch1); |
| |
| __ str(target_builtin, |
| FieldMemOperand(shared, SharedFunctionInfo::kCodeOffset)); |
| __ mov(r9, target_builtin); // Write barrier clobbers r9 below. |
| __ RecordWriteField(shared, SharedFunctionInfo::kCodeOffset, r9, r5, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, |
| OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| |
| // And second to the target function. |
| |
| __ str(target_builtin, FieldMemOperand(target, JSFunction::kCodeOffset)); |
| __ mov(r9, target_builtin); // Write barrier clobbers r9 below. |
| __ RecordWriteField(target, JSFunction::kCodeOffset, r9, r5, |
| kLRHasNotBeenSaved, kDontSaveFPRegs, |
| OMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
| |
| // All copying is done. Jump to the deserialized code object. |
| |
| __ add(target_builtin, target_builtin, |
| Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(target_builtin); |
| } |
| |
| __ bind(&deserialize_in_runtime); |
| GenerateTailCallToReturnedCode(masm, Runtime::kDeserializeLazy); |
| } |
| |
| void Builtins::Generate_InstantiateAsmJs(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argument count (preserved for callee) |
| // -- r1 : new target (preserved for callee) |
| // -- r3 : target function (preserved for callee) |
| // ----------------------------------- |
| Label failed; |
| { |
| FrameScope scope(masm, StackFrame::INTERNAL); |
| // Preserve argument count for later compare. |
| __ Move(r4, r0); |
| // Push the number of arguments to the callee. |
| __ SmiTag(r0); |
| __ push(r0); |
| // Push a copy of the target function and the new target. |
| __ push(r1); |
| __ push(r3); |
| |
| // The function. |
| __ push(r1); |
| // Copy arguments from caller (stdlib, foreign, heap). |
| Label args_done; |
| for (int j = 0; j < 4; ++j) { |
| Label over; |
| if (j < 3) { |
| __ cmp(r4, Operand(j)); |
| __ b(ne, &over); |
| } |
| for (int i = j - 1; i >= 0; --i) { |
| __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerSPOffset + |
| i * kPointerSize)); |
| __ push(r4); |
| } |
| for (int i = 0; i < 3 - j; ++i) { |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| } |
| if (j < 3) { |
| __ jmp(&args_done); |
| __ bind(&over); |
| } |
| } |
| __ bind(&args_done); |
| |
| // Call runtime, on success unwind frame, and parent frame. |
| __ CallRuntime(Runtime::kInstantiateAsmJs, 4); |
| // A smi 0 is returned on failure, an object on success. |
| __ JumpIfSmi(r0, &failed); |
| |
| __ Drop(2); |
| __ pop(r4); |
| __ SmiUntag(r4); |
| scope.GenerateLeaveFrame(); |
| |
| __ add(r4, r4, Operand(1)); |
| __ Drop(r4); |
| __ Ret(); |
| |
| __ bind(&failed); |
| // Restore target function and new target. |
| __ pop(r3); |
| __ pop(r1); |
| __ pop(r0); |
| __ SmiUntag(r0); |
| } |
| // On failure, tail call back to regular js by re-calling the function |
| // which has be reset to the compile lazy builtin. |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(r4); |
| } |
| |
| namespace { |
| void Generate_ContinueToBuiltinHelper(MacroAssembler* masm, |
| bool java_script_builtin, |
| bool with_result) { |
| const RegisterConfiguration* config(RegisterConfiguration::Default()); |
| int allocatable_register_count = config->num_allocatable_general_registers(); |
| if (with_result) { |
| // Overwrite the hole inserted by the deoptimizer with the return value from |
| // the LAZY deopt point. |
| __ str(r0, |
| MemOperand( |
| sp, config->num_allocatable_general_registers() * kPointerSize + |
| BuiltinContinuationFrameConstants::kFixedFrameSize)); |
| } |
| for (int i = allocatable_register_count - 1; i >= 0; --i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| __ Pop(Register::from_code(code)); |
| if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) { |
| __ SmiUntag(Register::from_code(code)); |
| } |
| } |
| __ ldr(fp, MemOperand( |
| sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| |
| UseScratchRegisterScope temps(masm); |
| Register scratch = temps.Acquire(); |
| __ Pop(scratch); |
| __ add(sp, sp, |
| Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp)); |
| __ Pop(lr); |
| __ add(pc, scratch, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| } // namespace |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, false); |
| } |
| |
| void Builtins::Generate_ContinueToCodeStubBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, false, true); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, false); |
| } |
| |
| void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult( |
| MacroAssembler* masm) { |
| Generate_ContinueToBuiltinHelper(masm, true, true); |
| } |
| |
| void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kNotifyDeoptimized); |
| } |
| |
| DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code()); |
| __ pop(r0); |
| __ Ret(); |
| } |
| |
| static void Generate_OnStackReplacementHelper(MacroAssembler* masm, |
| bool has_handler_frame) { |
| // Lookup the function in the JavaScript frame. |
| if (has_handler_frame) { |
| __ ldr(r0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(r0, MemOperand(r0, JavaScriptFrameConstants::kFunctionOffset)); |
| } else { |
| __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| // Pass function as argument. |
| __ push(r0); |
| __ CallRuntime(Runtime::kCompileForOnStackReplacement); |
| } |
| |
| // If the code object is null, just return to the caller. |
| Label skip; |
| __ cmp(r0, Operand(Smi::kZero)); |
| __ b(ne, &skip); |
| __ Ret(); |
| |
| __ bind(&skip); |
| |
| // Drop any potential handler frame that is be sitting on top of the actual |
| // JavaScript frame. This is the case then OSR is triggered from bytecode. |
| if (has_handler_frame) { |
| __ LeaveFrame(StackFrame::STUB); |
| } |
| |
| // Load deoptimization data from the code object. |
| // <deopt_data> = <code>[#deoptimization_data_offset] |
| __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset)); |
| |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(masm); |
| __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start |
| |
| // Load the OSR entrypoint offset from the deoptimization data. |
| // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset] |
| __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt( |
| DeoptimizationData::kOsrPcOffsetIndex))); |
| |
| // Compute the target address = code start + osr_offset |
| __ add(lr, r0, Operand::SmiUntag(r1)); |
| |
| // And "return" to the OSR entry point of the function. |
| __ Ret(); |
| } |
| } |
| |
| void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, false); |
| } |
| |
| void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) { |
| Generate_OnStackReplacementHelper(masm, true); |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : argArray |
| // -- sp[4] : thisArg |
| // -- sp[8] : receiver |
| // ----------------------------------- |
| |
| // 1. Load receiver into r1, argArray into r2 (if present), remove all |
| // arguments from the stack (including the receiver), and push thisArg (if |
| // present) instead. |
| { |
| __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
| __ mov(r2, r5); |
| __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver |
| __ sub(r4, r0, Operand(1), SetCC); |
| __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArg |
| __ sub(r4, r4, Operand(1), SetCC, ge); |
| __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argArray |
| __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ str(r5, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argArray |
| // -- r1 : receiver |
| // -- sp[0] : thisArg |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable receiver here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Tail call with no arguments if argArray is null or undefined. |
| Label no_arguments; |
| __ JumpIfRoot(r2, Heap::kNullValueRootIndex, &no_arguments); |
| __ JumpIfRoot(r2, Heap::kUndefinedValueRootIndex, &no_arguments); |
| |
| // 4a. Apply the receiver to the given argArray. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| |
| // 4b. The argArray is either null or undefined, so we tail call without any |
| // arguments to the receiver. |
| __ bind(&no_arguments); |
| { |
| __ mov(r0, Operand(0)); |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) { |
| // 1. Make sure we have at least one argument. |
| // r0: actual number of arguments |
| { |
| Label done; |
| __ cmp(r0, Operand::Zero()); |
| __ b(ne, &done); |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ add(r0, r0, Operand(1)); |
| __ bind(&done); |
| } |
| |
| // 2. Get the callable to call (passed as receiver) from the stack. |
| // r0: actual number of arguments |
| __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| |
| // 3. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| // r0: actual number of arguments |
| // r1: callable |
| { |
| Register scratch = r3; |
| Label loop; |
| // Calculate the copy start address (destination). Copy end address is sp. |
| __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| |
| __ bind(&loop); |
| __ ldr(scratch, MemOperand(r2, -kPointerSize)); |
| __ str(scratch, MemOperand(r2)); |
| __ sub(r2, r2, Operand(kPointerSize)); |
| __ cmp(r2, sp); |
| __ b(ne, &loop); |
| // Adjust the actual number of arguments and remove the top element |
| // (which is a copy of the last argument). |
| __ sub(r0, r0, Operand(1)); |
| __ pop(); |
| } |
| |
| // 4. Call the callable. |
| __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectApply(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : argumentsList |
| // -- sp[4] : thisArgument |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into r1 (if present), argumentsList into r2 (if present), |
| // remove all arguments from the stack (including the receiver), and push |
| // thisArgument (if present) instead. |
| { |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| __ mov(r5, r1); |
| __ mov(r2, r1); |
| __ sub(r4, r0, Operand(1), SetCC); |
| __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target |
| __ sub(r4, r4, Operand(1), SetCC, ge); |
| __ ldr(r5, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // thisArgument |
| __ sub(r4, r4, Operand(1), SetCC, ge); |
| __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList |
| __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| __ str(r5, MemOperand(sp, 0)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r1 : target |
| // -- sp[0] : thisArgument |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for callable target here, |
| // since that's the first thing the Call/CallWithArrayLike builtins |
| // will do. |
| |
| // 3. Apply the target to the given argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : argc |
| // -- sp[0] : new.target (optional) |
| // -- sp[4] : argumentsList |
| // -- sp[8] : target |
| // -- sp[12] : receiver |
| // ----------------------------------- |
| |
| // 1. Load target into r1 (if present), argumentsList into r2 (if present), |
| // new.target into r3 (if present, otherwise use target), remove all |
| // arguments from the stack (including the receiver), and push thisArgument |
| // (if present) instead. |
| { |
| __ LoadRoot(r1, Heap::kUndefinedValueRootIndex); |
| __ mov(r2, r1); |
| __ str(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // receiver |
| __ sub(r4, r0, Operand(1), SetCC); |
| __ ldr(r1, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // target |
| __ mov(r3, r1); // new.target defaults to target |
| __ sub(r4, r4, Operand(1), SetCC, ge); |
| __ ldr(r2, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // argumentsList |
| __ sub(r4, r4, Operand(1), SetCC, ge); |
| __ ldr(r3, MemOperand(sp, r4, LSL, kPointerSizeLog2), ge); // new.target |
| __ add(sp, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| } |
| |
| // ----------- S t a t e ------------- |
| // -- r2 : argumentsList |
| // -- r3 : new.target |
| // -- r1 : target |
| // -- sp[0] : receiver (undefined) |
| // ----------------------------------- |
| |
| // 2. We don't need to check explicitly for constructor target here, |
| // since that's the first thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 3. We don't need to check explicitly for constructor new.target here, |
| // since that's the second thing the Construct/ConstructWithArrayLike |
| // builtins will do. |
| |
| // 4. Construct the target with the given new.target and argumentsList. |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ SmiTag(r0); |
| __ mov(r4, Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | |
| fp.bit() | lr.bit()); |
| __ Push(Smi::kZero); // Padding. |
| __ add(fp, sp, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp)); |
| } |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : result being passed through |
| // ----------------------------------- |
| // Get the number of arguments passed (as a smi), tear down the frame and |
| // then tear down the parameters. |
| __ ldr(r1, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR); |
| __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1)); |
| __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r1 : target |
| // -- r0 : number of parameters on the stack (not including the receiver) |
| // -- r2 : arguments list (a FixedArray) |
| // -- r4 : len (number of elements to push from args) |
| // -- r3 : new.target (for [[Construct]]) |
| // ----------------------------------- |
| __ AssertFixedArray(r2); |
| |
| Register scratch = r8; |
| |
| // Check for stack overflow. |
| { |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack limit". |
| Label done; |
| __ LoadRoot(scratch, Heap::kRealStackLimitRootIndex); |
| // The stack might already be overflowed here which will cause 'scratch' to |
| // become negative. |
| __ sub(scratch, sp, scratch); |
| // Check if the arguments will overflow the stack. |
| __ cmp(scratch, Operand(r4, LSL, kPointerSizeLog2)); |
| __ b(gt, &done); // Signed comparison. |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&done); |
| } |
| |
| // Push arguments onto the stack (thisArgument is already on the stack). |
| { |
| __ mov(r6, Operand(0)); |
| __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); |
| Label done, loop; |
| __ bind(&loop); |
| __ cmp(r6, r4); |
| __ b(eq, &done); |
| __ add(scratch, r2, Operand(r6, LSL, kPointerSizeLog2)); |
| __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize)); |
| __ cmp(scratch, r5); |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex, eq); |
| __ Push(scratch); |
| __ add(r6, r6, Operand(1)); |
| __ b(&loop); |
| __ bind(&done); |
| __ add(r0, r0, r6); |
| } |
| |
| // Tail-call to the actual Call or Construct builtin. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm, |
| CallOrConstructMode mode, |
| Handle<Code> code) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r3 : the new.target (for [[Construct]] calls) |
| // -- r1 : the target to call (can be any Object) |
| // -- r2 : start index (to support rest parameters) |
| // ----------------------------------- |
| |
| Register scratch = r6; |
| |
| // Check if new.target has a [[Construct]] internal method. |
| if (mode == CallOrConstructMode::kConstruct) { |
| Label new_target_constructor, new_target_not_constructor; |
| __ JumpIfSmi(r3, &new_target_not_constructor); |
| __ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); |
| __ tst(scratch, Operand(Map::IsConstructorBit::kMask)); |
| __ b(ne, &new_target_constructor); |
| __ bind(&new_target_not_constructor); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ Push(r3); |
| __ CallRuntime(Runtime::kThrowNotConstructor); |
| } |
| __ bind(&new_target_constructor); |
| } |
| |
| // Check if we have an arguments adaptor frame below the function frame. |
| Label arguments_adaptor, arguments_done; |
| __ ldr(r4, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| __ ldr(scratch, |
| MemOperand(r4, CommonFrameConstants::kContextOrFrameTypeOffset)); |
| __ cmp(scratch, |
| Operand(StackFrame::TypeToMarker(StackFrame::ARGUMENTS_ADAPTOR))); |
| __ b(eq, &arguments_adaptor); |
| { |
| __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
| __ ldr(r5, FieldMemOperand(r5, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r5, FieldMemOperand( |
| r5, SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ mov(r4, fp); |
| } |
| __ b(&arguments_done); |
| __ bind(&arguments_adaptor); |
| { |
| // Load the length from the ArgumentsAdaptorFrame. |
| __ ldr(r5, MemOperand(r4, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| __ SmiUntag(r5); |
| } |
| __ bind(&arguments_done); |
| |
| Label stack_done, stack_overflow; |
| __ sub(r5, r5, r2, SetCC); |
| __ b(le, &stack_done); |
| { |
| // Check for stack overflow. |
| Generate_StackOverflowCheck(masm, r5, r2, &stack_overflow); |
| |
| // Forward the arguments from the caller frame. |
| { |
| Label loop; |
| __ add(r4, r4, Operand(kPointerSize)); |
| __ add(r0, r0, r5); |
| __ bind(&loop); |
| { |
| __ ldr(scratch, MemOperand(r4, r5, LSL, kPointerSizeLog2)); |
| __ push(scratch); |
| __ sub(r5, r5, Operand(1), SetCC); |
| __ b(ne, &loop); |
| } |
| } |
| } |
| __ b(&stack_done); |
| __ bind(&stack_overflow); |
| __ TailCallRuntime(Runtime::kThrowStackOverflow); |
| __ bind(&stack_done); |
| |
| // Tail-call to the {code} handler. |
| __ Jump(code, RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_CallFunction(MacroAssembler* masm, |
| ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // ----------------------------------- |
| __ AssertFunction(r1); |
| |
| // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) |
| // Check that the function is not a "classConstructor". |
| Label class_constructor; |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ tst(r3, Operand(SharedFunctionInfo::kClassConstructorMask)); |
| __ b(ne, &class_constructor); |
| |
| // Enter the context of the function; ToObject has to run in the function |
| // context, and we also need to take the global proxy from the function |
| // context in case of conversion. |
| __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| // We need to convert the receiver for non-native sloppy mode functions. |
| Label done_convert; |
| __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kCompilerHintsOffset)); |
| __ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask | |
| SharedFunctionInfo::IsStrictBit::kMask)); |
| __ b(ne, &done_convert); |
| { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // -- r2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| if (mode == ConvertReceiverMode::kNullOrUndefined) { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r3); |
| } else { |
| Label convert_to_object, convert_receiver; |
| __ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| __ JumpIfSmi(r3, &convert_to_object); |
| STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); |
| __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE); |
| __ b(hs, &done_convert); |
| if (mode != ConvertReceiverMode::kNotNullOrUndefined) { |
| Label convert_global_proxy; |
| __ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex, |
| &convert_global_proxy); |
| __ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object); |
| __ bind(&convert_global_proxy); |
| { |
| // Patch receiver to global proxy. |
| __ LoadGlobalProxy(r3); |
| } |
| __ b(&convert_receiver); |
| } |
| __ bind(&convert_to_object); |
| { |
| // Convert receiver using ToObject. |
| // TODO(bmeurer): Inline the allocation here to avoid building the frame |
| // in the fast case? (fall back to AllocateInNewSpace?) |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ SmiTag(r0); |
| __ Push(r0, r1); |
| __ mov(r0, r3); |
| __ Push(cp); |
| __ Call(BUILTIN_CODE(masm->isolate(), ToObject), |
| RelocInfo::CODE_TARGET); |
| __ Pop(cp); |
| __ mov(r3, r0); |
| __ Pop(r0, r1); |
| __ SmiUntag(r0); |
| } |
| __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ bind(&convert_receiver); |
| } |
| __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| } |
| __ bind(&done_convert); |
| |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSFunction) |
| // -- r2 : the shared function info. |
| // -- cp : the function context. |
| // ----------------------------------- |
| |
| __ ldr(r2, |
| FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); |
| ParameterCount actual(r0); |
| ParameterCount expected(r2); |
| __ InvokeFunctionCode(r1, no_reg, expected, actual, JUMP_FUNCTION); |
| |
| // The function is a "classConstructor", need to raise an exception. |
| __ bind(&class_constructor); |
| { |
| FrameScope frame(masm, StackFrame::INTERNAL); |
| __ push(r1); |
| __ CallRuntime(Runtime::kThrowConstructorNonCallableError); |
| } |
| } |
| |
| namespace { |
| |
| void Generate_PushBoundArguments(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : target (checked to be a JSBoundFunction) |
| // -- r3 : new.target (only in case of [[Construct]]) |
| // ----------------------------------- |
| |
| // Load [[BoundArguments]] into r2 and length of that into r4. |
| Label no_bound_arguments; |
| __ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset)); |
| __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| __ SmiUntag(r4); |
| __ cmp(r4, Operand(0)); |
| __ b(eq, &no_bound_arguments); |
| { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : target (checked to be a JSBoundFunction) |
| // -- r2 : the [[BoundArguments]] (implemented as FixedArray) |
| // -- r3 : new.target (only in case of [[Construct]]) |
| // -- r4 : the number of [[BoundArguments]] |
| // ----------------------------------- |
| |
| // Reserve stack space for the [[BoundArguments]]. |
| { |
| Label done; |
| __ sub(sp, sp, Operand(r4, LSL, kPointerSizeLog2)); |
| // Check the stack for overflow. We are not trying to catch interruptions |
| // (i.e. debug break and preemption) here, so check the "real stack |
| // limit". |
| __ CompareRoot(sp, Heap::kRealStackLimitRootIndex); |
| __ b(gt, &done); // Signed comparison. |
| // Restore the stack pointer. |
| __ add(sp, sp, Operand(r4, LSL, kPointerSizeLog2)); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterFrame(StackFrame::INTERNAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| } |
| __ bind(&done); |
| } |
| |
| Register scratch = r6; |
| |
| // Relocate arguments down the stack. |
| { |
| Label loop, done_loop; |
| __ mov(r5, Operand(0)); |
| __ bind(&loop); |
| __ cmp(r5, r0); |
| __ b(gt, &done_loop); |
| __ ldr(scratch, MemOperand(sp, r4, LSL, kPointerSizeLog2)); |
| __ str(scratch, MemOperand(sp, r5, LSL, kPointerSizeLog2)); |
| __ add(r4, r4, Operand(1)); |
| __ add(r5, r5, Operand(1)); |
| __ b(&loop); |
| __ bind(&done_loop); |
| } |
| |
| // Copy [[BoundArguments]] to the stack (below the arguments). |
| { |
| Label loop; |
| __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset)); |
| __ SmiUntag(r4); |
| __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ bind(&loop); |
| __ sub(r4, r4, Operand(1), SetCC); |
| __ ldr(scratch, MemOperand(r2, r4, LSL, kPointerSizeLog2)); |
| __ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| __ add(r0, r0, Operand(1)); |
| __ b(gt, &loop); |
| } |
| } |
| __ bind(&no_bound_arguments); |
| } |
| |
| } // namespace |
| |
| // static |
| void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSBoundFunction) |
| // ----------------------------------- |
| __ AssertBoundFunction(r1); |
| |
| // Patch the receiver to [[BoundThis]]. |
| __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset)); |
| __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Call the [[BoundTargetFunction]] via the Call builtin. |
| __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the target to call (can be any Object). |
| // ----------------------------------- |
| |
| Label non_callable, non_function, non_smi; |
| __ JumpIfSmi(r1, &non_callable); |
| __ bind(&non_smi); |
| __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE); |
| __ Jump(masm->isolate()->builtins()->CallFunction(mode), |
| RelocInfo::CODE_TARGET, eq); |
| __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Call]] internal method. |
| __ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset)); |
| __ tst(r4, Operand(Map::IsCallableBit::kMask)); |
| __ b(eq, &non_callable); |
| |
| // Check if target is a proxy and call CallProxy external builtin |
| __ cmp(r5, Operand(JS_PROXY_TYPE)); |
| __ b(ne, &non_function); |
| __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET); |
| |
| // 2. Call to something else, which might have a [[Call]] internal method (if |
| // not we raise an exception). |
| __ bind(&non_function); |
| // Overwrite the original receiver the (original) target. |
| __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| // Let the "call_as_function_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1); |
| __ Jump(masm->isolate()->builtins()->CallFunction( |
| ConvertReceiverMode::kNotNullOrUndefined), |
| RelocInfo::CODE_TARGET); |
| |
| // 3. Call to something that is not callable. |
| __ bind(&non_callable); |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| __ Push(r1); |
| __ CallRuntime(Runtime::kThrowCalledNonCallable); |
| } |
| } |
| |
| // static |
| void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the constructor to call (checked to be a JSFunction) |
| // -- r3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertFunction(r1); |
| |
| // Calling convention for function specific ConstructStubs require |
| // r2 to contain either an AllocationSite or undefined. |
| __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); |
| |
| // Tail call to the function-specific construct stub (still in the caller |
| // context at this point). |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset)); |
| __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| // static |
| void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the function to call (checked to be a JSBoundFunction) |
| // -- r3 : the new target (checked to be a constructor) |
| // ----------------------------------- |
| __ AssertBoundFunction(r1); |
| |
| // Push the [[BoundArguments]] onto the stack. |
| Generate_PushBoundArguments(masm); |
| |
| // Patch new.target to [[BoundTargetFunction]] if new.target equals target. |
| __ cmp(r1, r3); |
| __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset), |
| eq); |
| |
| // Construct the [[BoundTargetFunction]] via the Construct builtin. |
| __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_Construct(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : the number of arguments (not including the receiver) |
| // -- r1 : the constructor to call (can be any Object) |
| // -- r3 : the new target (either the same as the constructor or |
| // the JSFunction on which new was invoked initially) |
| // ----------------------------------- |
| |
| // Check if target is a Smi. |
| Label non_constructor, non_proxy; |
| __ JumpIfSmi(r1, &non_constructor); |
| |
| // Dispatch based on instance type. |
| __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Check if target has a [[Construct]] internal method. |
| __ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset)); |
| __ tst(r2, Operand(Map::IsConstructorBit::kMask)); |
| __ b(eq, &non_constructor); |
| |
| // Only dispatch to bound functions after checking whether they are |
| // constructors. |
| __ cmp(r5, Operand(JS_BOUND_FUNCTION_TYPE)); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction), |
| RelocInfo::CODE_TARGET, eq); |
| |
| // Only dispatch to proxies after checking whether they are constructors. |
| __ cmp(r5, Operand(JS_PROXY_TYPE)); |
| __ b(ne, &non_proxy); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy), |
| RelocInfo::CODE_TARGET); |
| |
| // Called Construct on an exotic Object with a [[Construct]] internal method. |
| __ bind(&non_proxy); |
| { |
| // Overwrite the original receiver with the (original) target. |
| __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); |
| // Let the "call_as_constructor_delegate" take care of the rest. |
| __ LoadNativeContextSlot(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1); |
| __ Jump(masm->isolate()->builtins()->CallFunction(), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // Called Construct on an Object that doesn't have a [[Construct]] internal |
| // method. |
| __ bind(&non_constructor); |
| __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInNewSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r1 : requested object size (untagged) |
| // -- lr : return address |
| // ----------------------------------- |
| __ SmiTag(r1); |
| __ Push(r1); |
| __ Move(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInNewSpace); |
| } |
| |
| // static |
| void Builtins::Generate_AllocateInOldSpace(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r1 : requested object size (untagged) |
| // -- lr : return address |
| // ----------------------------------- |
| __ SmiTag(r1); |
| __ Move(r2, Smi::FromInt(AllocateTargetSpace::encode(OLD_SPACE))); |
| __ Push(r1, r2); |
| __ Move(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAllocateInTargetSpace); |
| } |
| |
| // static |
| void Builtins::Generate_Abort(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r1 : message_id as Smi |
| // -- lr : return address |
| // ----------------------------------- |
| __ Push(r1); |
| __ Move(cp, Smi::kZero); |
| __ TailCallRuntime(Runtime::kAbort); |
| } |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : actual number of arguments |
| // -- r1 : function (passed through to callee) |
| // -- r2 : expected number of arguments |
| // -- r3 : new target (passed through to callee) |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments, stack_overflow; |
| |
| Label enough, too_few; |
| __ cmp(r0, r2); |
| __ b(lt, &too_few); |
| __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ b(eq, &dont_adapt_arguments); |
| |
| Register scratch = r5; |
| |
| { // Enough parameters: actual >= expected |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow); |
| |
| // Calculate copy start address into r0 and copy end address into r4. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); |
| // adjust for return address and receiver |
| __ add(r0, r0, Operand(2 * kPointerSize)); |
| __ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| // r4: copy end address |
| |
| Label copy; |
| __ bind(©); |
| __ ldr(scratch, MemOperand(r0, 0)); |
| __ push(scratch); |
| __ cmp(r0, r4); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kPointerSize)); |
| __ b(ne, ©); |
| |
| __ b(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| Generate_StackOverflowCheck(masm, r2, scratch, &stack_overflow); |
| |
| // Calculate copy start address into r0 and copy end address is fp. |
| // r0: actual number of arguments as a smi |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); |
| |
| // Copy the arguments (including the receiver) to the new stack frame. |
| // r0: copy start address |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| Label copy; |
| __ bind(©); |
| |
| // Adjust load for return address and receiver. |
| __ ldr(scratch, MemOperand(r0, 2 * kPointerSize)); |
| __ push(scratch); |
| |
| __ cmp(r0, fp); // Compare before moving to next argument. |
| __ sub(r0, r0, Operand(kPointerSize)); |
| __ b(ne, ©); |
| |
| // Fill the remaining expected arguments with undefined. |
| // r1: function |
| // r2: expected number of arguments |
| // r3: new target (passed through to callee) |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| __ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2)); |
| // Adjust for frame. |
| __ sub(r4, r4, |
| Operand(ArgumentsAdaptorFrameConstants::kFixedFrameSizeFromFp + |
| kPointerSize)); |
| |
| Label fill; |
| __ bind(&fill); |
| __ push(scratch); |
| __ cmp(sp, r4); |
| __ b(ne, &fill); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ mov(r0, r2); |
| // r0 : expected number of arguments |
| // r1 : function (passed through to callee) |
| // r3 : new target (passed through to callee) |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Call(r4); |
| |
| // Store offset of return address for deoptimizer. |
| masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); |
| |
| // Exit frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ Jump(lr); |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ ldr(r4, FieldMemOperand(r1, JSFunction::kCodeOffset)); |
| __ add(r4, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| __ Jump(r4); |
| |
| __ bind(&stack_overflow); |
| { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ CallRuntime(Runtime::kThrowStackOverflow); |
| __ bkpt(0); |
| } |
| } |
| |
| void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) { |
| { |
| FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
| |
| // Save all parameter registers (see wasm-linkage.cc). They might be |
| // overwritten in the runtime call below. We don't have any callee-saved |
| // registers in wasm, so no need to store anything else. |
| constexpr RegList gp_regs = Register::ListOf<r0, r1, r2, r3>(); |
| constexpr DwVfpRegister lowest_fp_reg = d0; |
| constexpr DwVfpRegister highest_fp_reg = d7; |
| |
| __ stm(db_w, sp, gp_regs); |
| __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg); |
| |
| // Initialize cp register with kZero, CEntryStub will use it to set the |
| // current context on the isolate. |
| __ Move(cp, Smi::kZero); |
| __ CallRuntime(Runtime::kWasmCompileLazy); |
| // Store returned instruction start in r8. |
| __ add(r8, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| |
| // Restore registers. |
| __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg); |
| __ ldm(ia_w, sp, gp_regs); |
| } |
| // Now jump to the instructions of the returned code object. |
| __ Jump(r8); |
| } |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_ARM |