blob: d4a7153d7440cf6a0a8bcc85e75d2a4dfed20e58 [file] [log] [blame]
// Copyright 2017 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/builtins/builtins-call-gen.h"
#include "src/builtins/builtins-utils-gen.h"
#include "src/builtins/builtins.h"
#include "src/globals.h"
#include "src/heap/heap-inl.h"
#include "src/isolate.h"
#include "src/macro-assembler.h"
#include "src/objects/arguments.h"
namespace v8 {
namespace internal {
void Builtins::Generate_CallFunction_ReceiverIsNullOrUndefined(
MacroAssembler* masm) {
Generate_CallFunction(masm, ConvertReceiverMode::kNullOrUndefined);
}
void Builtins::Generate_CallFunction_ReceiverIsNotNullOrUndefined(
MacroAssembler* masm) {
Generate_CallFunction(masm, ConvertReceiverMode::kNotNullOrUndefined);
}
void Builtins::Generate_CallFunction_ReceiverIsAny(MacroAssembler* masm) {
Generate_CallFunction(masm, ConvertReceiverMode::kAny);
}
void Builtins::Generate_CallBoundFunction(MacroAssembler* masm) {
Generate_CallBoundFunctionImpl(masm);
}
void Builtins::Generate_Call_ReceiverIsNullOrUndefined(MacroAssembler* masm) {
Generate_Call(masm, ConvertReceiverMode::kNullOrUndefined);
}
void Builtins::Generate_Call_ReceiverIsNotNullOrUndefined(
MacroAssembler* masm) {
Generate_Call(masm, ConvertReceiverMode::kNotNullOrUndefined);
}
void Builtins::Generate_Call_ReceiverIsAny(MacroAssembler* masm) {
Generate_Call(masm, ConvertReceiverMode::kAny);
}
void Builtins::Generate_CallVarargs(MacroAssembler* masm) {
Generate_CallOrConstructVarargs(masm, masm->isolate()->builtins()->Call());
}
void Builtins::Generate_CallForwardVarargs(MacroAssembler* masm) {
Generate_CallOrConstructForwardVarargs(masm, CallOrConstructMode::kCall,
masm->isolate()->builtins()->Call());
}
void Builtins::Generate_CallFunctionForwardVarargs(MacroAssembler* masm) {
Generate_CallOrConstructForwardVarargs(
masm, CallOrConstructMode::kCall,
masm->isolate()->builtins()->CallFunction());
}
void CallOrConstructBuiltinsAssembler::CallOrConstructWithArrayLike(
Node* target, Node* new_target, Node* arguments_list, Node* context) {
VARIABLE(var_elements, MachineRepresentation::kTagged);
VARIABLE(var_length, MachineRepresentation::kWord32);
Label if_done(this), if_arguments(this), if_array(this),
if_holey_array(this, Label::kDeferred),
if_runtime(this, Label::kDeferred);
// Perform appropriate checks on {target} (and {new_target} first).
if (new_target == nullptr) {
// Check that {target} is Callable.
Label if_target_callable(this),
if_target_not_callable(this, Label::kDeferred);
GotoIf(TaggedIsSmi(target), &if_target_not_callable);
Branch(IsCallable(target), &if_target_callable, &if_target_not_callable);
BIND(&if_target_not_callable);
{
CallRuntime(Runtime::kThrowApplyNonFunction, context, target);
Unreachable();
}
BIND(&if_target_callable);
} else {
// Check that {target} is a Constructor.
Label if_target_constructor(this),
if_target_not_constructor(this, Label::kDeferred);
GotoIf(TaggedIsSmi(target), &if_target_not_constructor);
Branch(IsConstructor(target), &if_target_constructor,
&if_target_not_constructor);
BIND(&if_target_not_constructor);
{
CallRuntime(Runtime::kThrowNotConstructor, context, target);
Unreachable();
}
BIND(&if_target_constructor);
// Check that {new_target} is a Constructor.
Label if_new_target_constructor(this),
if_new_target_not_constructor(this, Label::kDeferred);
GotoIf(TaggedIsSmi(new_target), &if_new_target_not_constructor);
Branch(IsConstructor(new_target), &if_new_target_constructor,
&if_new_target_not_constructor);
BIND(&if_new_target_not_constructor);
{
CallRuntime(Runtime::kThrowNotConstructor, context, new_target);
Unreachable();
}
BIND(&if_new_target_constructor);
}
GotoIf(TaggedIsSmi(arguments_list), &if_runtime);
Node* arguments_list_map = LoadMap(arguments_list);
Node* native_context = LoadNativeContext(context);
// Check if {arguments_list} is an (unmodified) arguments object.
Node* sloppy_arguments_map =
LoadContextElement(native_context, Context::SLOPPY_ARGUMENTS_MAP_INDEX);
GotoIf(WordEqual(arguments_list_map, sloppy_arguments_map), &if_arguments);
Node* strict_arguments_map =
LoadContextElement(native_context, Context::STRICT_ARGUMENTS_MAP_INDEX);
GotoIf(WordEqual(arguments_list_map, strict_arguments_map), &if_arguments);
// Check if {arguments_list} is a fast JSArray.
Branch(IsJSArrayMap(arguments_list_map), &if_array, &if_runtime);
BIND(&if_array);
{
// Try to extract the elements from a JSArray object.
var_elements.Bind(
LoadObjectField(arguments_list, JSArray::kElementsOffset));
var_length.Bind(LoadAndUntagToWord32ObjectField(arguments_list,
JSArray::kLengthOffset));
// Holey arrays and double backing stores need special treatment.
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
STATIC_ASSERT(LAST_FAST_ELEMENTS_KIND == HOLEY_DOUBLE_ELEMENTS);
Node* kind = LoadMapElementsKind(arguments_list_map);
GotoIf(Int32GreaterThan(kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)),
&if_runtime);
Branch(Word32And(kind, Int32Constant(1)), &if_holey_array, &if_done);
}
BIND(&if_holey_array);
{
// For holey JSArrays we need to check that the array prototype chain
// protector is intact and our prototype is the Array.prototype actually.
GotoIfNot(IsPrototypeInitialArrayPrototype(context, arguments_list_map),
&if_runtime);
Branch(IsNoElementsProtectorCellInvalid(), &if_runtime, &if_done);
}
BIND(&if_arguments);
{
// Try to extract the elements from an JSArgumentsObject.
Node* length =
LoadObjectField(arguments_list, JSArgumentsObject::kLengthOffset);
Node* elements =
LoadObjectField(arguments_list, JSArgumentsObject::kElementsOffset);
Node* elements_length = LoadFixedArrayBaseLength(elements);
GotoIfNot(WordEqual(length, elements_length), &if_runtime);
var_elements.Bind(elements);
var_length.Bind(SmiToWord32(length));
Goto(&if_done);
}
BIND(&if_runtime);
{
// Ask the runtime to create the list (actually a FixedArray).
Node* elements =
CallRuntime(Runtime::kCreateListFromArrayLike, context, arguments_list);
var_elements.Bind(elements);
var_length.Bind(
LoadAndUntagToWord32ObjectField(elements, FixedArray::kLengthOffset));
Goto(&if_done);
}
// Tail call to the appropriate builtin (depending on whether we have
// a {new_target} passed).
BIND(&if_done);
{
Label if_not_double(this), if_double(this);
Node* elements = var_elements.value();
Node* length = var_length.value();
Node* args_count = Int32Constant(0); // args already on the stack
Branch(IsFixedDoubleArray(elements), &if_double, &if_not_double);
BIND(&if_not_double);
if (new_target == nullptr) {
Callable callable = CodeFactory::CallVarargs(isolate());
TailCallStub(callable, context, target, args_count, elements, length);
} else {
Callable callable = CodeFactory::ConstructVarargs(isolate());
TailCallStub(callable, context, target, new_target, args_count, elements,
length);
}
BIND(&if_double);
{
// Kind is hardcoded here because CreateListFromArrayLike will only
// produce holey double arrays.
CallOrConstructDoubleVarargs(target, new_target, elements, length,
args_count, context,
Int32Constant(HOLEY_DOUBLE_ELEMENTS));
}
}
}
// Takes a FixedArray of doubles and creates a new FixedArray with those doubles
// boxed as HeapNumbers, then tail calls CallVarargs/ConstructVarargs depending
// on whether {new_target} was passed.
void CallOrConstructBuiltinsAssembler::CallOrConstructDoubleVarargs(
Node* target, Node* new_target, Node* elements, Node* length,
Node* args_count, Node* context, Node* kind) {
Label if_holey_double(this), if_packed_double(this), if_done(this);
const ElementsKind new_kind = PACKED_ELEMENTS;
const ParameterMode mode = INTPTR_PARAMETERS;
const WriteBarrierMode barrier_mode = UPDATE_WRITE_BARRIER;
Node* intptr_length = ChangeInt32ToIntPtr(length);
// Allocate a new FixedArray of Objects.
Node* new_elements =
AllocateFixedArray(new_kind, intptr_length, mode,
CodeStubAssembler::kAllowLargeObjectAllocation);
Branch(Word32Equal(kind, Int32Constant(HOLEY_DOUBLE_ELEMENTS)),
&if_holey_double, &if_packed_double);
BIND(&if_holey_double);
{
// Fill the FixedArray with pointers to HeapObjects.
CopyFixedArrayElements(HOLEY_DOUBLE_ELEMENTS, elements, new_kind,
new_elements, intptr_length, intptr_length,
barrier_mode);
Goto(&if_done);
}
BIND(&if_packed_double);
{
CopyFixedArrayElements(PACKED_DOUBLE_ELEMENTS, elements, new_kind,
new_elements, intptr_length, intptr_length,
barrier_mode);
Goto(&if_done);
}
BIND(&if_done);
{
if (new_target == nullptr) {
Callable callable = CodeFactory::CallVarargs(isolate());
TailCallStub(callable, context, target, args_count, new_elements, length);
} else {
Callable callable = CodeFactory::ConstructVarargs(isolate());
TailCallStub(callable, context, target, new_target, args_count,
new_elements, length);
}
}
}
void CallOrConstructBuiltinsAssembler::CallOrConstructWithSpread(
Node* target, Node* new_target, Node* spread, Node* args_count,
Node* context) {
Label if_done(this), if_holey(this), if_runtime(this, Label::kDeferred);
VARIABLE(spread_result, MachineRepresentation::kTagged, spread);
GotoIf(TaggedIsSmi(spread), &if_runtime);
Node* spread_map = LoadMap(spread);
GotoIfNot(IsJSArrayMap(spread_map), &if_runtime);
// Check that we have the original ArrayPrototype.
GotoIfNot(IsPrototypeInitialArrayPrototype(context, spread_map), &if_runtime);
// Check that the ArrayPrototype hasn't been modified in a way that would
// affect iteration.
Node* protector_cell = LoadRoot(Heap::kArrayIteratorProtectorRootIndex);
DCHECK(isolate()->heap()->array_iterator_protector()->IsPropertyCell());
GotoIfNot(
WordEqual(LoadObjectField(protector_cell, PropertyCell::kValueOffset),
SmiConstant(Isolate::kProtectorValid)),
&if_runtime);
// Check that the map of the initial array iterator hasn't changed.
Node* native_context = LoadNativeContext(context);
Node* arr_it_proto_map = LoadMap(CAST(LoadContextElement(
native_context, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_INDEX)));
Node* initial_map = LoadContextElement(
native_context, Context::INITIAL_ARRAY_ITERATOR_PROTOTYPE_MAP_INDEX);
GotoIfNot(WordEqual(arr_it_proto_map, initial_map), &if_runtime);
Node* kind = LoadMapElementsKind(spread_map);
STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0);
STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1);
STATIC_ASSERT(PACKED_ELEMENTS == 2);
STATIC_ASSERT(HOLEY_ELEMENTS == 3);
STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4);
STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5);
STATIC_ASSERT(LAST_FAST_ELEMENTS_KIND == HOLEY_DOUBLE_ELEMENTS);
GotoIf(Int32GreaterThan(kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)),
&if_runtime);
Branch(Word32And(kind, Int32Constant(1)), &if_holey, &if_done);
// Check the NoElementsProtector cell for holey arrays.
BIND(&if_holey);
{ Branch(IsNoElementsProtectorCellInvalid(), &if_runtime, &if_done); }
BIND(&if_runtime);
{
Node* spread_iterable = LoadContextElement(LoadNativeContext(context),
Context::SPREAD_ITERABLE_INDEX);
spread_result.Bind(CallJS(CodeFactory::Call(isolate()), context,
spread_iterable, UndefinedConstant(), spread));
CSA_ASSERT(this, IsJSArray(spread_result.value()));
Goto(&if_done);
}
BIND(&if_done);
{
// The result from if_runtime can be an array of doubles.
Label if_not_double(this), if_double(this);
Node* elements =
LoadObjectField(spread_result.value(), JSArray::kElementsOffset);
Node* length = LoadAndUntagToWord32ObjectField(spread_result.value(),
JSArray::kLengthOffset);
Node* kind = LoadMapElementsKind(LoadMap(elements));
CSA_ASSERT(this, Int32LessThanOrEqual(
kind, Int32Constant(LAST_FAST_ELEMENTS_KIND)));
Branch(Int32GreaterThan(kind, Int32Constant(HOLEY_ELEMENTS)), &if_double,
&if_not_double);
BIND(&if_not_double);
{
if (new_target == nullptr) {
Callable callable = CodeFactory::CallVarargs(isolate());
TailCallStub(callable, context, target, args_count, elements, length);
} else {
Callable callable = CodeFactory::ConstructVarargs(isolate());
TailCallStub(callable, context, target, new_target, args_count,
elements, length);
}
}
BIND(&if_double);
{
CallOrConstructDoubleVarargs(target, new_target, elements, length,
args_count, context, kind);
}
}
}
TF_BUILTIN(CallWithArrayLike, CallOrConstructBuiltinsAssembler) {
Node* target = Parameter(CallWithArrayLikeDescriptor::kTarget);
Node* new_target = nullptr;
Node* arguments_list = Parameter(CallWithArrayLikeDescriptor::kArgumentsList);
Node* context = Parameter(CallWithArrayLikeDescriptor::kContext);
CallOrConstructWithArrayLike(target, new_target, arguments_list, context);
}
TF_BUILTIN(CallWithSpread, CallOrConstructBuiltinsAssembler) {
Node* target = Parameter(CallWithSpreadDescriptor::kTarget);
Node* new_target = nullptr;
Node* spread = Parameter(CallWithSpreadDescriptor::kSpread);
Node* args_count = Parameter(CallWithSpreadDescriptor::kArgumentsCount);
Node* context = Parameter(CallWithSpreadDescriptor::kContext);
CallOrConstructWithSpread(target, new_target, spread, args_count, context);
}
} // namespace internal
} // namespace v8