| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/assembler-inl.h" |
| #include "src/compiler/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| enum ImmediateMode { |
| kArithmeticImm, // 12 bit unsigned immediate shifted left 0 or 12 bits |
| kShift32Imm, // 0 - 31 |
| kShift64Imm, // 0 - 63 |
| kLogical32Imm, |
| kLogical64Imm, |
| kLoadStoreImm8, // signed 8 bit or 12 bit unsigned scaled by access size |
| kLoadStoreImm16, |
| kLoadStoreImm32, |
| kLoadStoreImm64, |
| kNoImmediate |
| }; |
| |
| |
| // Adds Arm64-specific methods for generating operands. |
| class Arm64OperandGenerator final : public OperandGenerator { |
| public: |
| explicit Arm64OperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, ImmediateMode mode) { |
| if (CanBeImmediate(node, mode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the zero register if the node has the immediate value zero, otherwise |
| // assign a register. |
| InstructionOperand UseRegisterOrImmediateZero(Node* node) { |
| if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || |
| (IsFloatConstant(node) && |
| (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the provided node if it has the required value, or create a |
| // TempImmediate otherwise. |
| InstructionOperand UseImmediateOrTemp(Node* node, int32_t value) { |
| if (GetIntegerConstantValue(node) == value) { |
| return UseImmediate(node); |
| } |
| return TempImmediate(value); |
| } |
| |
| bool IsIntegerConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kInt32Constant) || |
| (node->opcode() == IrOpcode::kInt64Constant); |
| } |
| |
| int64_t GetIntegerConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kInt32Constant) { |
| return OpParameter<int32_t>(node); |
| } |
| DCHECK_EQ(IrOpcode::kInt64Constant, node->opcode()); |
| return OpParameter<int64_t>(node); |
| } |
| |
| bool IsFloatConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kFloat32Constant) || |
| (node->opcode() == IrOpcode::kFloat64Constant); |
| } |
| |
| double GetFloatConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kFloat32Constant) { |
| return OpParameter<float>(node); |
| } |
| DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); |
| return OpParameter<double>(node); |
| } |
| |
| bool CanBeImmediate(Node* node, ImmediateMode mode) { |
| return IsIntegerConstant(node) && |
| CanBeImmediate(GetIntegerConstantValue(node), mode); |
| } |
| |
| bool CanBeImmediate(int64_t value, ImmediateMode mode) { |
| unsigned ignored; |
| switch (mode) { |
| case kLogical32Imm: |
| // TODO(dcarney): some unencodable values can be handled by |
| // switching instructions. |
| return Assembler::IsImmLogical(static_cast<uint64_t>(value), 32, |
| &ignored, &ignored, &ignored); |
| case kLogical64Imm: |
| return Assembler::IsImmLogical(static_cast<uint64_t>(value), 64, |
| &ignored, &ignored, &ignored); |
| case kArithmeticImm: |
| return Assembler::IsImmAddSub(value); |
| case kLoadStoreImm8: |
| return IsLoadStoreImmediate(value, 0); |
| case kLoadStoreImm16: |
| return IsLoadStoreImmediate(value, 1); |
| case kLoadStoreImm32: |
| return IsLoadStoreImmediate(value, 2); |
| case kLoadStoreImm64: |
| return IsLoadStoreImmediate(value, 3); |
| case kNoImmediate: |
| return false; |
| case kShift32Imm: // Fall through. |
| case kShift64Imm: |
| // Shift operations only observe the bottom 5 or 6 bits of the value. |
| // All possible shifts can be encoded by discarding bits which have no |
| // effect. |
| return true; |
| } |
| return false; |
| } |
| |
| bool CanBeLoadStoreShiftImmediate(Node* node, MachineRepresentation rep) { |
| // TODO(arm64): Load and Store on 128 bit Q registers is not supported yet. |
| DCHECK_GT(MachineRepresentation::kSimd128, rep); |
| return IsIntegerConstant(node) && |
| (GetIntegerConstantValue(node) == ElementSizeLog2Of(rep)); |
| } |
| |
| private: |
| bool IsLoadStoreImmediate(int64_t value, unsigned size) { |
| return Assembler::IsImmLSScaled(value, size) || |
| Assembler::IsImmLSUnscaled(value); |
| } |
| }; |
| |
| |
| namespace { |
| |
| void VisitRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); |
| } |
| |
| void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, Node* node, |
| ImmediateMode operand_mode) { |
| Arm64OperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseOperand(node->InputAt(1), operand_mode)); |
| } |
| |
| void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| Arm64OperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| struct ExtendingLoadMatcher { |
| ExtendingLoadMatcher(Node* node, InstructionSelector* selector) |
| : matches_(false), selector_(selector), base_(nullptr), immediate_(0) { |
| Initialize(node); |
| } |
| |
| bool Matches() const { return matches_; } |
| |
| Node* base() const { |
| DCHECK(Matches()); |
| return base_; |
| } |
| int64_t immediate() const { |
| DCHECK(Matches()); |
| return immediate_; |
| } |
| ArchOpcode opcode() const { |
| DCHECK(Matches()); |
| return opcode_; |
| } |
| |
| private: |
| bool matches_; |
| InstructionSelector* selector_; |
| Node* base_; |
| int64_t immediate_; |
| ArchOpcode opcode_; |
| |
| void Initialize(Node* node) { |
| Int64BinopMatcher m(node); |
| // When loading a 64-bit value and shifting by 32, we should |
| // just load and sign-extend the interesting 4 bytes instead. |
| // This happens, for example, when we're loading and untagging SMIs. |
| DCHECK(m.IsWord64Sar()); |
| if (m.left().IsLoad() && m.right().Is(32) && |
| selector_->CanCover(m.node(), m.left().node())) { |
| Arm64OperandGenerator g(selector_); |
| Node* load = m.left().node(); |
| Node* offset = load->InputAt(1); |
| base_ = load->InputAt(0); |
| opcode_ = kArm64Ldrsw; |
| if (g.IsIntegerConstant(offset)) { |
| immediate_ = g.GetIntegerConstantValue(offset) + 4; |
| matches_ = g.CanBeImmediate(immediate_, kLoadStoreImm32); |
| } |
| } |
| } |
| }; |
| |
| bool TryMatchExtendingLoad(InstructionSelector* selector, Node* node) { |
| ExtendingLoadMatcher m(node, selector); |
| return m.Matches(); |
| } |
| |
| bool TryEmitExtendingLoad(InstructionSelector* selector, Node* node) { |
| ExtendingLoadMatcher m(node, selector); |
| Arm64OperandGenerator g(selector); |
| if (m.Matches()) { |
| InstructionOperand inputs[2]; |
| inputs[0] = g.UseRegister(m.base()); |
| InstructionCode opcode = |
| m.opcode() | AddressingModeField::encode(kMode_MRI); |
| DCHECK(is_int32(m.immediate())); |
| inputs[1] = g.TempImmediate(static_cast<int32_t>(m.immediate())); |
| InstructionOperand outputs[] = {g.DefineAsRegister(node)}; |
| selector->Emit(opcode, arraysize(outputs), outputs, arraysize(inputs), |
| inputs); |
| return true; |
| } |
| return false; |
| } |
| |
| bool TryMatchAnyShift(InstructionSelector* selector, Node* node, |
| Node* input_node, InstructionCode* opcode, bool try_ror) { |
| Arm64OperandGenerator g(selector); |
| |
| if (!selector->CanCover(node, input_node)) return false; |
| if (input_node->InputCount() != 2) return false; |
| if (!g.IsIntegerConstant(input_node->InputAt(1))) return false; |
| |
| switch (input_node->opcode()) { |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord64Shl: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| return true; |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord64Shr: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_LSR_I); |
| return true; |
| case IrOpcode::kWord32Sar: |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I); |
| return true; |
| case IrOpcode::kWord64Sar: |
| if (TryMatchExtendingLoad(selector, input_node)) return false; |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ASR_I); |
| return true; |
| case IrOpcode::kWord32Ror: |
| case IrOpcode::kWord64Ror: |
| if (try_ror) { |
| *opcode |= AddressingModeField::encode(kMode_Operand2_R_ROR_I); |
| return true; |
| } |
| return false; |
| default: |
| return false; |
| } |
| } |
| |
| |
| bool TryMatchAnyExtend(Arm64OperandGenerator* g, InstructionSelector* selector, |
| Node* node, Node* left_node, Node* right_node, |
| InstructionOperand* left_op, |
| InstructionOperand* right_op, InstructionCode* opcode) { |
| if (!selector->CanCover(node, right_node)) return false; |
| |
| NodeMatcher nm(right_node); |
| |
| if (nm.IsWord32And()) { |
| Int32BinopMatcher mright(right_node); |
| if (mright.right().Is(0xFF) || mright.right().Is(0xFFFF)) { |
| int32_t mask = mright.right().Value(); |
| *left_op = g->UseRegister(left_node); |
| *right_op = g->UseRegister(mright.left().node()); |
| *opcode |= AddressingModeField::encode( |
| (mask == 0xFF) ? kMode_Operand2_R_UXTB : kMode_Operand2_R_UXTH); |
| return true; |
| } |
| } else if (nm.IsWord32Sar()) { |
| Int32BinopMatcher mright(right_node); |
| if (selector->CanCover(mright.node(), mright.left().node()) && |
| mright.left().IsWord32Shl()) { |
| Int32BinopMatcher mleft_of_right(mright.left().node()); |
| if ((mright.right().Is(16) && mleft_of_right.right().Is(16)) || |
| (mright.right().Is(24) && mleft_of_right.right().Is(24))) { |
| int32_t shift = mright.right().Value(); |
| *left_op = g->UseRegister(left_node); |
| *right_op = g->UseRegister(mleft_of_right.left().node()); |
| *opcode |= AddressingModeField::encode( |
| (shift == 24) ? kMode_Operand2_R_SXTB : kMode_Operand2_R_SXTH); |
| return true; |
| } |
| } |
| } |
| return false; |
| } |
| |
| bool TryMatchLoadStoreShift(Arm64OperandGenerator* g, |
| InstructionSelector* selector, |
| MachineRepresentation rep, Node* node, Node* index, |
| InstructionOperand* index_op, |
| InstructionOperand* shift_immediate_op) { |
| if (!selector->CanCover(node, index)) return false; |
| if (index->InputCount() != 2) return false; |
| Node* left = index->InputAt(0); |
| Node* right = index->InputAt(1); |
| switch (index->opcode()) { |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord64Shl: |
| if (!g->CanBeLoadStoreShiftImmediate(right, rep)) { |
| return false; |
| } |
| *index_op = g->UseRegister(left); |
| *shift_immediate_op = g->UseImmediate(right); |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Bitfields describing binary operator properties: |
| // CanCommuteField is true if we can switch the two operands, potentially |
| // requiring commuting the flags continuation condition. |
| typedef BitField8<bool, 1, 1> CanCommuteField; |
| // MustCommuteCondField is true when we need to commute the flags continuation |
| // condition in order to switch the operands. |
| typedef BitField8<bool, 2, 1> MustCommuteCondField; |
| // IsComparisonField is true when the operation is a comparison and has no other |
| // result other than the condition. |
| typedef BitField8<bool, 3, 1> IsComparisonField; |
| // IsAddSubField is true when an instruction is encoded as ADD or SUB. |
| typedef BitField8<bool, 4, 1> IsAddSubField; |
| |
| // Get properties of a binary operator. |
| uint8_t GetBinopProperties(InstructionCode opcode) { |
| uint8_t result = 0; |
| switch (opcode) { |
| case kArm64Cmp32: |
| case kArm64Cmp: |
| // We can commute CMP by switching the inputs and commuting |
| // the flags continuation. |
| result = CanCommuteField::update(result, true); |
| result = MustCommuteCondField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| // The CMP and CMN instructions are encoded as SUB or ADD |
| // with zero output register, and therefore support the same |
| // operand modes. |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Cmn32: |
| case kArm64Cmn: |
| result = CanCommuteField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Add32: |
| case kArm64Add: |
| result = CanCommuteField::update(result, true); |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Sub32: |
| case kArm64Sub: |
| result = IsAddSubField::update(result, true); |
| break; |
| case kArm64Tst32: |
| case kArm64Tst: |
| result = CanCommuteField::update(result, true); |
| result = IsComparisonField::update(result, true); |
| break; |
| case kArm64And32: |
| case kArm64And: |
| case kArm64Or32: |
| case kArm64Or: |
| case kArm64Eor32: |
| case kArm64Eor: |
| result = CanCommuteField::update(result, true); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| DCHECK_IMPLIES(MustCommuteCondField::decode(result), |
| CanCommuteField::decode(result)); |
| return result; |
| } |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, ImmediateMode operand_mode, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| InstructionOperand inputs[5]; |
| size_t input_count = 0; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| |
| Node* left_node = node->InputAt(0); |
| Node* right_node = node->InputAt(1); |
| |
| uint8_t properties = GetBinopProperties(opcode); |
| bool can_commute = CanCommuteField::decode(properties); |
| bool must_commute_cond = MustCommuteCondField::decode(properties); |
| bool is_add_sub = IsAddSubField::decode(properties); |
| |
| if (g.CanBeImmediate(right_node, operand_mode)) { |
| inputs[input_count++] = g.UseRegister(left_node); |
| inputs[input_count++] = g.UseImmediate(right_node); |
| } else if (can_commute && g.CanBeImmediate(left_node, operand_mode)) { |
| if (must_commute_cond) cont->Commute(); |
| inputs[input_count++] = g.UseRegister(right_node); |
| inputs[input_count++] = g.UseImmediate(left_node); |
| } else if (is_add_sub && |
| TryMatchAnyExtend(&g, selector, node, left_node, right_node, |
| &inputs[0], &inputs[1], &opcode)) { |
| input_count += 2; |
| } else if (is_add_sub && can_commute && |
| TryMatchAnyExtend(&g, selector, node, right_node, left_node, |
| &inputs[0], &inputs[1], &opcode)) { |
| if (must_commute_cond) cont->Commute(); |
| input_count += 2; |
| } else if (TryMatchAnyShift(selector, node, right_node, &opcode, |
| !is_add_sub)) { |
| Matcher m_shift(right_node); |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(left_node); |
| inputs[input_count++] = g.UseRegister(m_shift.left().node()); |
| // We only need at most the last 6 bits of the shift. |
| inputs[input_count++] = |
| g.UseImmediate(static_cast<int>(m_shift.right().Value() & 0x3F)); |
| } else if (can_commute && TryMatchAnyShift(selector, node, left_node, &opcode, |
| !is_add_sub)) { |
| if (must_commute_cond) cont->Commute(); |
| Matcher m_shift(left_node); |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(right_node); |
| inputs[input_count++] = g.UseRegister(m_shift.left().node()); |
| // We only need at most the last 6 bits of the shift. |
| inputs[input_count++] = |
| g.UseImmediate(static_cast<int>(m_shift.right().Value() & 0x3F)); |
| } else { |
| inputs[input_count++] = g.UseRegisterOrImmediateZero(left_node); |
| inputs[input_count++] = g.UseRegister(right_node); |
| } |
| |
| if (cont->IsBranch()) { |
| inputs[input_count++] = g.Label(cont->true_block()); |
| inputs[input_count++] = g.Label(cont->false_block()); |
| } |
| |
| if (!IsComparisonField::decode(properties)) { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| |
| if (cont->IsSet()) { |
| outputs[output_count++] = g.DefineAsRegister(cont->result()); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK((output_count != 0) || IsComparisonField::decode(properties)); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| opcode = cont->Encode(opcode); |
| if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, |
| cont->kind(), cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else if (cont->IsTrap()) { |
| inputs[input_count++] = g.UseImmediate(cont->trap_id()); |
| selector->Emit(opcode, output_count, outputs, input_count, inputs); |
| } else { |
| selector->Emit(opcode, output_count, outputs, input_count, inputs); |
| } |
| } |
| |
| |
| // Shared routine for multiple binary operations. |
| template <typename Matcher> |
| void VisitBinop(InstructionSelector* selector, Node* node, ArchOpcode opcode, |
| ImmediateMode operand_mode) { |
| FlagsContinuation cont; |
| VisitBinop<Matcher>(selector, node, opcode, operand_mode, &cont); |
| } |
| |
| |
| template <typename Matcher> |
| void VisitAddSub(InstructionSelector* selector, Node* node, ArchOpcode opcode, |
| ArchOpcode negate_opcode) { |
| Arm64OperandGenerator g(selector); |
| Matcher m(node); |
| if (m.right().HasValue() && (m.right().Value() < 0) && |
| g.CanBeImmediate(-m.right().Value(), kArithmeticImm)) { |
| selector->Emit(negate_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(static_cast<int32_t>(-m.right().Value()))); |
| } else { |
| VisitBinop<Matcher>(selector, node, opcode, kArithmeticImm); |
| } |
| } |
| |
| |
| // For multiplications by immediate of the form x * (2^k + 1), where k > 0, |
| // return the value of k, otherwise return zero. This is used to reduce the |
| // multiplication to addition with left shift: x + (x << k). |
| template <typename Matcher> |
| int32_t LeftShiftForReducedMultiply(Matcher* m) { |
| DCHECK(m->IsInt32Mul() || m->IsInt64Mul()); |
| if (m->right().HasValue() && m->right().Value() >= 3) { |
| uint64_t value_minus_one = m->right().Value() - 1; |
| if (base::bits::IsPowerOfTwo(value_minus_one)) { |
| return WhichPowerOf2(value_minus_one); |
| } |
| } |
| return 0; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int slot = frame_->AllocateSpillSlot(rep.size()); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitDebugAbort(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), x1)); |
| } |
| |
| void EmitLoad(InstructionSelector* selector, Node* node, InstructionCode opcode, |
| ImmediateMode immediate_mode, MachineRepresentation rep, |
| Node* output = nullptr) { |
| Arm64OperandGenerator g(selector); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| InstructionOperand outputs[1]; |
| |
| // If output is not nullptr, use that as the output register. This |
| // is used when we merge a conversion into the load. |
| outputs[0] = g.DefineAsRegister(output == nullptr ? node : output); |
| inputs[0] = g.UseRegister(base); |
| |
| if (g.CanBeImmediate(index, immediate_mode)) { |
| input_count = 2; |
| inputs[1] = g.UseImmediate(index); |
| opcode |= AddressingModeField::encode(kMode_MRI); |
| } else if (TryMatchLoadStoreShift(&g, selector, rep, node, index, &inputs[1], |
| &inputs[2])) { |
| input_count = 3; |
| opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| } else { |
| input_count = 2; |
| inputs[1] = g.UseRegister(index); |
| opcode |= AddressingModeField::encode(kMode_MRR); |
| } |
| |
| selector->Emit(opcode, arraysize(outputs), outputs, input_count, inputs); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kArm64LdrS; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kArm64LdrD; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsb : kArm64Ldrb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsh : kArm64Ldrh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64LdrW; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Ldr; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kArm64LdrQ; |
| immediate_mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| EmitLoad(this, node, opcode, immediate_mode, rep); |
| } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| // TODO(arm64): I guess this could be done in a better way. |
| if (write_barrier_kind != kNoWriteBarrier) { |
| DCHECK(CanBeTaggedPointer(rep)); |
| AddressingMode addressing_mode; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| // OutOfLineRecordWrite uses the index in an arithmetic instruction, so we |
| // must check kArithmeticImm as well as kLoadStoreImm64. |
| if (g.CanBeImmediate(index, kArithmeticImm) && |
| g.CanBeImmediate(index, kLoadStoreImm64)) { |
| inputs[input_count++] = g.UseImmediate(index); |
| addressing_mode = kMode_MRI; |
| } else { |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| addressing_mode = kMode_MRR; |
| } |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; |
| switch (write_barrier_kind) { |
| case kNoWriteBarrier: |
| UNREACHABLE(); |
| break; |
| case kMapWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsMap; |
| break; |
| case kPointerWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsPointer; |
| break; |
| case kFullWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsAny; |
| break; |
| } |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= AddressingModeField::encode(addressing_mode); |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); |
| } else { |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kArm64StrS; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kArm64StrD; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kArm64Strb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kArm64Strh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64StrW; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord64: |
| opcode = kArm64Str; |
| immediate_mode = kLoadStoreImm64; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kArm64StrQ; |
| immediate_mode = kNoImmediate; |
| break; |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| inputs[0] = g.UseRegisterOrImmediateZero(value); |
| inputs[1] = g.UseRegister(base); |
| |
| if (g.CanBeImmediate(index, immediate_mode)) { |
| input_count = 3; |
| inputs[2] = g.UseImmediate(index); |
| opcode |= AddressingModeField::encode(kMode_MRI); |
| } else if (TryMatchLoadStoreShift(&g, this, rep, node, index, &inputs[2], |
| &inputs[3])) { |
| input_count = 4; |
| opcode |= AddressingModeField::encode(kMode_Operand2_R_LSL_I); |
| } else { |
| input_count = 3; |
| inputs[2] = g.UseRegister(index); |
| opcode |= AddressingModeField::encode(kMode_MRR); |
| } |
| |
| Emit(opcode, 0, nullptr, input_count, inputs); |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| // Architecture supports unaligned access, therefore VisitLoad is used instead |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); } |
| |
| // Architecture supports unaligned access, therefore VisitStore is used instead |
| void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); } |
| |
| template <typename Matcher> |
| static void VisitLogical(InstructionSelector* selector, Node* node, Matcher* m, |
| ArchOpcode opcode, bool left_can_cover, |
| bool right_can_cover, ImmediateMode imm_mode) { |
| Arm64OperandGenerator g(selector); |
| |
| // Map instruction to equivalent operation with inverted right input. |
| ArchOpcode inv_opcode = opcode; |
| switch (opcode) { |
| case kArm64And32: |
| inv_opcode = kArm64Bic32; |
| break; |
| case kArm64And: |
| inv_opcode = kArm64Bic; |
| break; |
| case kArm64Or32: |
| inv_opcode = kArm64Orn32; |
| break; |
| case kArm64Or: |
| inv_opcode = kArm64Orn; |
| break; |
| case kArm64Eor32: |
| inv_opcode = kArm64Eon32; |
| break; |
| case kArm64Eor: |
| inv_opcode = kArm64Eon; |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Select Logical(y, ~x) for Logical(Xor(x, -1), y). |
| if ((m->left().IsWord32Xor() || m->left().IsWord64Xor()) && left_can_cover) { |
| Matcher mleft(m->left().node()); |
| if (mleft.right().Is(-1)) { |
| // TODO(all): support shifted operand on right. |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->right().node()), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } |
| } |
| |
| // Select Logical(x, ~y) for Logical(x, Xor(y, -1)). |
| if ((m->right().IsWord32Xor() || m->right().IsWord64Xor()) && |
| right_can_cover) { |
| Matcher mright(m->right().node()); |
| if (mright.right().Is(-1)) { |
| // TODO(all): support shifted operand on right. |
| selector->Emit(inv_opcode, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node()), |
| g.UseRegister(mright.left().node())); |
| return; |
| } |
| } |
| |
| if (m->IsWord32Xor() && m->right().Is(-1)) { |
| selector->Emit(kArm64Not32, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node())); |
| } else if (m->IsWord64Xor() && m->right().Is(-1)) { |
| selector->Emit(kArm64Not, g.DefineAsRegister(node), |
| g.UseRegister(m->left().node())); |
| } else { |
| VisitBinop<Matcher>(selector, node, opcode, imm_mode); |
| } |
| } |
| |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && |
| m.right().HasValue()) { |
| uint32_t mask = m.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_width != 32) && |
| (mask_msb + mask_width == 32)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| |
| // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| // Any shift value can match; int32 shifts use `value % 32`. |
| uint32_t lsb = mleft.right().Value() & 0x1F; |
| |
| // Ubfx cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use ubfx with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 32) mask_width = 32 - lsb; |
| |
| Emit(kArm64Ubfx32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(mleft.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64And32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64And(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64Shr() && CanCover(node, m.left().node()) && |
| m.right().HasValue()) { |
| uint64_t mask = m.right().Value(); |
| uint64_t mask_width = base::bits::CountPopulation(mask); |
| uint64_t mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_width != 0) && (mask_width != 64) && |
| (mask_msb + mask_width == 64)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros64(mask)); |
| |
| // Select Ubfx for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| // Any shift value can match; int64 shifts use `value % 64`. |
| uint32_t lsb = static_cast<uint32_t>(mleft.right().Value() & 0x3F); |
| |
| // Ubfx cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use ubfx with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 64) mask_width = 64 - lsb; |
| |
| Emit(kArm64Ubfx, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(mleft.right().node(), lsb), |
| g.TempImmediate(static_cast<int32_t>(mask_width))); |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64And, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| Int32BinopMatcher m(node); |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64Or32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Or(Node* node) { |
| Int64BinopMatcher m(node); |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64Or, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| Int32BinopMatcher m(node); |
| VisitLogical<Int32BinopMatcher>( |
| this, node, &m, kArm64Eor32, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Xor(Node* node) { |
| Int64BinopMatcher m(node); |
| VisitLogical<Int64BinopMatcher>( |
| this, node, &m, kArm64Eor, CanCover(node, m.left().node()), |
| CanCover(node, m.right().node()), kLogical64Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && CanCover(node, m.left().node()) && |
| m.right().IsInRange(1, 31)) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| uint32_t mask = mleft.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| uint32_t shift = m.right().Value(); |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| DCHECK_NE(0u, shift); |
| |
| if ((shift + mask_width) >= 32) { |
| // If the mask is contiguous and reaches or extends beyond the top |
| // bit, only the shift is needed. |
| Emit(kArm64Lsl32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } else { |
| // Select Ubfiz for Shl(And(x, mask), imm) where the mask is |
| // contiguous, and the shift immediate non-zero. |
| Emit(kArm64Ubfiz32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node()), g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kArm64Lsl32, node, kShift32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Shl(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| if ((m.left().IsChangeInt32ToInt64() || m.left().IsChangeUint32ToUint64()) && |
| m.right().IsInRange(32, 63) && CanCover(node, m.left().node())) { |
| // There's no need to sign/zero-extend to 64-bit if we shift out the upper |
| // 32 bits anyway. |
| Emit(kArm64Lsl, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()->InputAt(0)), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| VisitRRO(this, kArm64Lsl, node, kShift64Imm); |
| } |
| |
| |
| namespace { |
| |
| bool TryEmitBitfieldExtract32(InstructionSelector* selector, Node* node) { |
| Arm64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| if (selector->CanCover(node, m.left().node()) && m.left().IsWord32Shl()) { |
| // Select Ubfx or Sbfx for (x << (K & 0x1F)) OP (K & 0x1F), where |
| // OP is >>> or >> and (K & 0x1F) != 0. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && m.right().HasValue() && |
| (mleft.right().Value() & 0x1F) != 0 && |
| (mleft.right().Value() & 0x1F) == (m.right().Value() & 0x1F)) { |
| DCHECK(m.IsWord32Shr() || m.IsWord32Sar()); |
| ArchOpcode opcode = m.IsWord32Sar() ? kArm64Sbfx32 : kArm64Ubfx32; |
| |
| int right_val = m.right().Value() & 0x1F; |
| DCHECK_NE(right_val, 0); |
| |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(0), |
| g.TempImmediate(32 - right_val)); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().HasValue()) { |
| uint32_t lsb = m.right().Value() & 0x1F; |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && mleft.right().Value() != 0) { |
| // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint32_t mask = (mleft.right().Value() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_msb + mask_width + lsb) == 32) { |
| Arm64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); |
| Emit(kArm64Ubfx32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(m.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } else if (TryEmitBitfieldExtract32(this, node)) { |
| return; |
| } |
| |
| if (m.left().IsUint32MulHigh() && m.right().HasValue() && |
| CanCover(node, node->InputAt(0))) { |
| // Combine this shift with the multiply and shift that would be generated |
| // by Uint32MulHigh. |
| Arm64OperandGenerator g(this); |
| Node* left = m.left().node(); |
| int shift = m.right().Value() & 0x1F; |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Umull, smull_operand, g.UseRegister(left->InputAt(0)), |
| g.UseRegister(left->InputAt(1))); |
| Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand, |
| g.TempImmediate(32 + shift)); |
| return; |
| } |
| |
| VisitRRO(this, kArm64Lsr32, node, kShift32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Shr(Node* node) { |
| Int64BinopMatcher m(node); |
| if (m.left().IsWord64And() && m.right().HasValue()) { |
| uint32_t lsb = m.right().Value() & 0x3F; |
| Int64BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && mleft.right().Value() != 0) { |
| // Select Ubfx for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint64_t mask = (mleft.right().Value() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros64(mask); |
| if ((mask_msb + mask_width + lsb) == 64) { |
| Arm64OperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros64(mask)); |
| Emit(kArm64Ubfx, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediateOrTemp(m.right().node(), lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kArm64Lsr, node, kShift64Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| if (TryEmitBitfieldExtract32(this, node)) { |
| return; |
| } |
| |
| Int32BinopMatcher m(node); |
| if (m.left().IsInt32MulHigh() && m.right().HasValue() && |
| CanCover(node, node->InputAt(0))) { |
| // Combine this shift with the multiply and shift that would be generated |
| // by Int32MulHigh. |
| Arm64OperandGenerator g(this); |
| Node* left = m.left().node(); |
| int shift = m.right().Value() & 0x1F; |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(left->InputAt(0)), |
| g.UseRegister(left->InputAt(1))); |
| Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand, |
| g.TempImmediate(32 + shift)); |
| return; |
| } |
| |
| if (m.left().IsInt32Add() && m.right().HasValue() && |
| CanCover(node, node->InputAt(0))) { |
| Node* add_node = m.left().node(); |
| Int32BinopMatcher madd_node(add_node); |
| if (madd_node.left().IsInt32MulHigh() && |
| CanCover(add_node, madd_node.left().node())) { |
| // Combine the shift that would be generated by Int32MulHigh with the add |
| // on the left of this Sar operation. We do it here, as the result of the |
| // add potentially has 33 bits, so we have to ensure the result is |
| // truncated by being the input to this 32-bit Sar operation. |
| Arm64OperandGenerator g(this); |
| Node* mul_node = madd_node.left().node(); |
| |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(mul_node->InputAt(0)), |
| g.UseRegister(mul_node->InputAt(1))); |
| |
| InstructionOperand const add_operand = g.TempRegister(); |
| Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_ASR_I), |
| add_operand, g.UseRegister(add_node->InputAt(1)), smull_operand, |
| g.TempImmediate(32)); |
| |
| Emit(kArm64Asr32, g.DefineAsRegister(node), add_operand, |
| g.UseImmediate(node->InputAt(1))); |
| return; |
| } |
| } |
| |
| VisitRRO(this, kArm64Asr32, node, kShift32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Sar(Node* node) { |
| if (TryEmitExtendingLoad(this, node)) return; |
| VisitRRO(this, kArm64Asr, node, kShift64Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitRRO(this, kArm64Ror32, node, kShift32Imm); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Ror(Node* node) { |
| VisitRRO(this, kArm64Ror, node, kShift64Imm); |
| } |
| |
| #define RR_OP_LIST(V) \ |
| V(Word64Clz, kArm64Clz) \ |
| V(Word32Clz, kArm64Clz32) \ |
| V(Word32ReverseBits, kArm64Rbit32) \ |
| V(Word64ReverseBits, kArm64Rbit) \ |
| V(ChangeFloat32ToFloat64, kArm64Float32ToFloat64) \ |
| V(RoundInt32ToFloat32, kArm64Int32ToFloat32) \ |
| V(RoundUint32ToFloat32, kArm64Uint32ToFloat32) \ |
| V(ChangeInt32ToFloat64, kArm64Int32ToFloat64) \ |
| V(ChangeUint32ToFloat64, kArm64Uint32ToFloat64) \ |
| V(TruncateFloat32ToInt32, kArm64Float32ToInt32) \ |
| V(ChangeFloat64ToInt32, kArm64Float64ToInt32) \ |
| V(TruncateFloat32ToUint32, kArm64Float32ToUint32) \ |
| V(ChangeFloat64ToUint32, kArm64Float64ToUint32) \ |
| V(ChangeFloat64ToUint64, kArm64Float64ToUint64) \ |
| V(TruncateFloat64ToUint32, kArm64Float64ToUint32) \ |
| V(TruncateFloat64ToFloat32, kArm64Float64ToFloat32) \ |
| V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \ |
| V(RoundFloat64ToInt32, kArm64Float64ToInt32) \ |
| V(RoundInt64ToFloat32, kArm64Int64ToFloat32) \ |
| V(RoundInt64ToFloat64, kArm64Int64ToFloat64) \ |
| V(RoundUint64ToFloat32, kArm64Uint64ToFloat32) \ |
| V(RoundUint64ToFloat64, kArm64Uint64ToFloat64) \ |
| V(BitcastFloat32ToInt32, kArm64Float64ExtractLowWord32) \ |
| V(BitcastFloat64ToInt64, kArm64U64MoveFloat64) \ |
| V(BitcastInt32ToFloat32, kArm64Float64MoveU64) \ |
| V(BitcastInt64ToFloat64, kArm64Float64MoveU64) \ |
| V(Float32Abs, kArm64Float32Abs) \ |
| V(Float64Abs, kArm64Float64Abs) \ |
| V(Float32Sqrt, kArm64Float32Sqrt) \ |
| V(Float64Sqrt, kArm64Float64Sqrt) \ |
| V(Float32RoundDown, kArm64Float32RoundDown) \ |
| V(Float64RoundDown, kArm64Float64RoundDown) \ |
| V(Float32RoundUp, kArm64Float32RoundUp) \ |
| V(Float64RoundUp, kArm64Float64RoundUp) \ |
| V(Float32RoundTruncate, kArm64Float32RoundTruncate) \ |
| V(Float64RoundTruncate, kArm64Float64RoundTruncate) \ |
| V(Float64RoundTiesAway, kArm64Float64RoundTiesAway) \ |
| V(Float32RoundTiesEven, kArm64Float32RoundTiesEven) \ |
| V(Float64RoundTiesEven, kArm64Float64RoundTiesEven) \ |
| V(Float32Neg, kArm64Float32Neg) \ |
| V(Float64Neg, kArm64Float64Neg) \ |
| V(Float64ExtractLowWord32, kArm64Float64ExtractLowWord32) \ |
| V(Float64ExtractHighWord32, kArm64Float64ExtractHighWord32) \ |
| V(Float64SilenceNaN, kArm64Float64SilenceNaN) |
| |
| #define RRR_OP_LIST(V) \ |
| V(Int32Div, kArm64Idiv32) \ |
| V(Int64Div, kArm64Idiv) \ |
| V(Uint32Div, kArm64Udiv32) \ |
| V(Uint64Div, kArm64Udiv) \ |
| V(Int32Mod, kArm64Imod32) \ |
| V(Int64Mod, kArm64Imod) \ |
| V(Uint32Mod, kArm64Umod32) \ |
| V(Uint64Mod, kArm64Umod) \ |
| V(Float32Add, kArm64Float32Add) \ |
| V(Float64Add, kArm64Float64Add) \ |
| V(Float32Sub, kArm64Float32Sub) \ |
| V(Float64Sub, kArm64Float64Sub) \ |
| V(Float32Mul, kArm64Float32Mul) \ |
| V(Float64Mul, kArm64Float64Mul) \ |
| V(Float32Div, kArm64Float32Div) \ |
| V(Float64Div, kArm64Float64Div) \ |
| V(Float32Max, kArm64Float32Max) \ |
| V(Float64Max, kArm64Float64Max) \ |
| V(Float32Min, kArm64Float32Min) \ |
| V(Float64Min, kArm64Float64Min) |
| |
| #define RR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, opcode, node); \ |
| } |
| RR_OP_LIST(RR_VISITOR) |
| #undef RR_VISITOR |
| |
| #define RRR_VISITOR(Name, opcode) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRRR(this, opcode, node); \ |
| } |
| RRR_OP_LIST(RRR_VISITOR) |
| #undef RRR_VISITOR |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Ctz(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32Popcnt(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64Popcnt(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| // Select Madd(x, y, z) for Add(Mul(x, y), z). |
| if (m.left().IsInt32Mul() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mleft) == 0) { |
| Emit(kArm64Madd32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| // Select Madd(x, y, z) for Add(z, Mul(x, y)). |
| if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Madd32, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| VisitAddSub<Int32BinopMatcher>(this, node, kArm64Add32, kArm64Sub32); |
| } |
| |
| |
| void InstructionSelector::VisitInt64Add(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| // Select Madd(x, y, z) for Add(Mul(x, y), z). |
| if (m.left().IsInt64Mul() && CanCover(node, m.left().node())) { |
| Int64BinopMatcher mleft(m.left().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mleft) == 0) { |
| Emit(kArm64Madd, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| // Select Madd(x, y, z) for Add(z, Mul(x, y)). |
| if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Madd, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| VisitAddSub<Int64BinopMatcher>(this, node, kArm64Add, kArm64Sub); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| // Select Msub(x, y, a) for Sub(a, Mul(x, y)). |
| if (m.right().IsInt32Mul() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Msub32, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| |
| VisitAddSub<Int32BinopMatcher>(this, node, kArm64Sub32, kArm64Add32); |
| } |
| |
| |
| void InstructionSelector::VisitInt64Sub(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| |
| // Select Msub(x, y, a) for Sub(a, Mul(x, y)). |
| if (m.right().IsInt64Mul() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| // Check multiply can't be later reduced to addition with shift. |
| if (LeftShiftForReducedMultiply(&mright) == 0) { |
| Emit(kArm64Msub, g.DefineAsRegister(node), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node()), |
| g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| |
| VisitAddSub<Int64BinopMatcher>(this, node, kArm64Sub, kArm64Add); |
| } |
| |
| namespace { |
| |
| void EmitInt32MulWithOverflow(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| InstructionOperand result = g.DefineAsRegister(node); |
| InstructionOperand left = g.UseRegister(m.left().node()); |
| InstructionOperand right = g.UseRegister(m.right().node()); |
| selector->Emit(kArm64Smull, result, left, right); |
| |
| InstructionCode opcode = cont->Encode(kArm64Cmp) | |
| AddressingModeField::encode(kMode_Operand2_R_SXTW); |
| if (cont->IsBranch()) { |
| selector->Emit(opcode, g.NoOutput(), result, result, |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| } else if (cont->IsDeoptimize()) { |
| InstructionOperand in[] = {result, result}; |
| selector->EmitDeoptimize(opcode, 0, nullptr, 2, in, cont->kind(), |
| cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else if (cont->IsSet()) { |
| selector->Emit(opcode, g.DefineAsRegister(cont->result()), result, result); |
| } else { |
| DCHECK(cont->IsTrap()); |
| selector->Emit(opcode, g.NoOutput(), result, result, |
| g.UseImmediate(cont->trap_id())); |
| } |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| // First, try to reduce the multiplication to addition with left shift. |
| // x * (2^k + 1) -> x + (x << k) |
| int32_t shift = LeftShiftForReducedMultiply(&m); |
| if (shift > 0) { |
| Emit(kArm64Add32 | AddressingModeField::encode(kMode_Operand2_R_LSL_I), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), g.TempImmediate(shift)); |
| return; |
| } |
| |
| if (m.left().IsInt32Sub() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| |
| // Select Mneg(x, y) for Mul(Sub(0, x), y). |
| if (mleft.left().Is(0)) { |
| Emit(kArm64Mneg32, g.DefineAsRegister(node), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| |
| if (m.right().IsInt32Sub() && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| |
| // Select Mneg(x, y) for Mul(x, Sub(0, y)). |
| if (mright.left().Is(0)) { |
| Emit(kArm64Mneg32, g.DefineAsRegister(node), |
| g.UseRegister(m.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| |
| VisitRRR(this, kArm64Mul32, node); |
| } |
| |
| |
| void InstructionSelector::VisitInt64Mul(Node* node) { |
| Arm64OperandGenerator g(this); |
| Int64BinopMatcher m(node); |
| |
| // First, try to reduce the multiplication to addition with left shift. |
| // x * (2^k + 1) -> x + (x << k) |
| int32_t shift = LeftShiftForReducedMultiply(&m); |
| if (shift > 0) { |
| Emit(kArm64Add | AddressingModeField::encode(kMode_Operand2_R_LSL_I), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), g.TempImmediate(shift)); |
| return; |
| } |
| |
| if (m.left().IsInt64Sub() && CanCover(node, m.left().node())) { |
| Int64BinopMatcher mleft(m.left().node()); |
| |
| // Select Mneg(x, y) for Mul(Sub(0, x), y). |
| if (mleft.left().Is(0)) { |
| Emit(kArm64Mneg, g.DefineAsRegister(node), |
| g.UseRegister(mleft.right().node()), |
| g.UseRegister(m.right().node())); |
| return; |
| } |
| } |
| |
| if (m.right().IsInt64Sub() && CanCover(node, m.right().node())) { |
| Int64BinopMatcher mright(m.right().node()); |
| |
| // Select Mneg(x, y) for Mul(x, Sub(0, y)). |
| if (mright.left().Is(0)) { |
| Emit(kArm64Mneg, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| |
| VisitRRR(this, kArm64Mul, node); |
| } |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Smull, smull_operand, g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| Emit(kArm64Asr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32)); |
| } |
| |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand const smull_operand = g.TempRegister(); |
| Emit(kArm64Umull, smull_operand, g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| Emit(kArm64Lsr, g.DefineAsRegister(node), smull_operand, g.TempImmediate(32)); |
| } |
| |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToInt64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float32ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToInt64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float64ToInt64, output_count, outputs, 1, inputs); |
| } |
| |
| |
| void InstructionSelector::VisitTryTruncateFloat32ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float32ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| |
| void InstructionSelector::VisitTryTruncateFloat64ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| InstructionOperand inputs[] = {g.UseRegister(node->InputAt(0))}; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| outputs[output_count++] = g.DefineAsRegister(node); |
| |
| Node* success_output = NodeProperties::FindProjection(node, 1); |
| if (success_output) { |
| outputs[output_count++] = g.DefineAsRegister(success_output); |
| } |
| |
| Emit(kArm64Float64ToUint64, output_count, outputs, 1, inputs); |
| } |
| |
| |
| void InstructionSelector::VisitChangeInt32ToInt64(Node* node) { |
| Node* value = node->InputAt(0); |
| if (value->opcode() == IrOpcode::kLoad && CanCover(node, value)) { |
| // Generate sign-extending load. |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| MachineRepresentation rep = load_rep.representation(); |
| InstructionCode opcode = kArchNop; |
| ImmediateMode immediate_mode = kNoImmediate; |
| switch (rep) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsb : kArm64Ldrb; |
| immediate_mode = kLoadStoreImm8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kArm64Ldrsh : kArm64Ldrh; |
| immediate_mode = kLoadStoreImm16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kArm64Ldrsw; |
| immediate_mode = kLoadStoreImm32; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| EmitLoad(this, value, opcode, immediate_mode, rep, node); |
| } else { |
| VisitRR(this, kArm64Sxtw, node); |
| } |
| } |
| |
| |
| void InstructionSelector::VisitChangeUint32ToUint64(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| switch (value->opcode()) { |
| case IrOpcode::kWord32And: |
| case IrOpcode::kWord32Or: |
| case IrOpcode::kWord32Xor: |
| case IrOpcode::kWord32Shl: |
| case IrOpcode::kWord32Shr: |
| case IrOpcode::kWord32Sar: |
| case IrOpcode::kWord32Ror: |
| case IrOpcode::kWord32Equal: |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kInt32AddWithOverflow: |
| case IrOpcode::kInt32Sub: |
| case IrOpcode::kInt32SubWithOverflow: |
| case IrOpcode::kInt32Mul: |
| case IrOpcode::kInt32MulHigh: |
| case IrOpcode::kInt32Div: |
| case IrOpcode::kInt32Mod: |
| case IrOpcode::kInt32LessThan: |
| case IrOpcode::kInt32LessThanOrEqual: |
| case IrOpcode::kUint32Div: |
| case IrOpcode::kUint32LessThan: |
| case IrOpcode::kUint32LessThanOrEqual: |
| case IrOpcode::kUint32Mod: |
| case IrOpcode::kUint32MulHigh: { |
| // 32-bit operations will write their result in a W register (implicitly |
| // clearing the top 32-bit of the corresponding X register) so the |
| // zero-extension is a no-op. |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); |
| return; |
| } |
| case IrOpcode::kLoad: { |
| // As for the operations above, a 32-bit load will implicitly clear the |
| // top 32 bits of the destination register. |
| LoadRepresentation load_rep = LoadRepresentationOf(value->op()); |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(value)); |
| return; |
| default: |
| break; |
| } |
| } |
| default: |
| break; |
| } |
| Emit(kArm64Mov32, g.DefineAsRegister(node), g.UseRegister(value)); |
| } |
| |
| void InstructionSelector::VisitTruncateInt64ToInt32(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| // The top 32 bits in the 64-bit register will be undefined, and |
| // must not be used by a dependent node. |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.UseRegister(value)); |
| } |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| Arm64OperandGenerator g(this); |
| Emit(kArm64Float64Mod, g.DefineAsFixed(node, d0), |
| g.UseFixed(node->InputAt(0), d0), |
| g.UseFixed(node->InputAt(1), d1))->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| Arm64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0), |
| g.UseFixed(node->InputAt(1), d1)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| Arm64OperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, d0), g.UseFixed(node->InputAt(0), d0)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor, |
| Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| // `arguments` includes alignment "holes". This means that slots bigger than |
| // kPointerSize, e.g. Simd128, will span across multiple arguments. |
| int claim_count = static_cast<int>(arguments->size()); |
| int slot = claim_count - 1; |
| claim_count = RoundUp(claim_count, 2); |
| // Bump the stack pointer(s). |
| if (claim_count > 0) { |
| // TODO(titzer): claim and poke probably take small immediates. |
| // TODO(titzer): it would be better to bump the csp here only |
| // and emit paired stores with increment for non c frames. |
| Emit(kArm64Claim, g.NoOutput(), g.TempImmediate(claim_count)); |
| } |
| |
| if (claim_count > 0) { |
| // Store padding, which might be overwritten. |
| Emit(kArm64Poke, g.NoOutput(), g.UseImmediate(0), |
| g.TempImmediate(claim_count - 1)); |
| } |
| |
| // Poke the arguments into the stack. |
| while (slot >= 0) { |
| Node* input_node = (*arguments)[slot].node; |
| // Skip any alignment holes in pushed nodes. |
| if (input_node != nullptr) { |
| Emit(kArm64Poke, g.NoOutput(), g.UseRegister(input_node), |
| g.TempImmediate(slot)); |
| } |
| slot--; |
| // TODO(ahaas): Poke arguments in pairs if two subsequent arguments have the |
| // same type. |
| // Emit(kArm64PokePair, g.NoOutput(), g.UseRegister((*arguments)[slot]), |
| // g.UseRegister((*arguments)[slot - 1]), g.TempImmediate(slot)); |
| // slot -= 2; |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results, |
| const CallDescriptor* descriptor, |
| Node* node) { |
| Arm64OperandGenerator g(this); |
| |
| int reverse_slot = 0; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| reverse_slot += output.location.GetSizeInPointers(); |
| // Skip any alignment holes in nodes. |
| if (output.node == nullptr) continue; |
| DCHECK(!descriptor->IsCFunctionCall()); |
| |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } |
| |
| Emit(kArm64Peek, g.DefineAsRegister(output.node), |
| g.UseImmediate(reverse_slot)); |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| namespace { |
| |
| // Shared routine for multiple compare operations. |
| void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| opcode = cont->Encode(opcode); |
| if (cont->IsBranch()) { |
| selector->Emit(opcode, g.NoOutput(), left, right, |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| } else if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(), |
| cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else if (cont->IsSet()) { |
| selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right); |
| } else { |
| DCHECK(cont->IsTrap()); |
| selector->Emit(opcode, g.NoOutput(), left, right, |
| g.UseImmediate(cont->trap_id())); |
| } |
| } |
| |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| bool commutative, ImmediateMode immediate_mode) { |
| Arm64OperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // Match immediates on left or right side of comparison. |
| if (g.CanBeImmediate(right, immediate_mode)) { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), |
| cont); |
| } else if (g.CanBeImmediate(left, immediate_mode)) { |
| if (!commutative) cont->Commute(); |
| VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), |
| cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), |
| cont); |
| } |
| } |
| |
| // This function checks whether we can convert: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>. |
| // We only generate conditions <cond'> that are a combination of the N |
| // and Z flags. This avoids the need to make this function dependent on |
| // the flag-setting operation. |
| bool CanUseFlagSettingBinop(FlagsCondition cond) { |
| switch (cond) { |
| case kEqual: |
| case kNotEqual: |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 |
| case kUnsignedGreaterThan: // x > 0 -> x != 0 |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| // Map <cond> to <cond'> so that the following transformation is possible: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>. |
| FlagsCondition MapForFlagSettingBinop(FlagsCondition cond) { |
| DCHECK(CanUseFlagSettingBinop(cond)); |
| switch (cond) { |
| case kEqual: |
| case kNotEqual: |
| return cond; |
| case kSignedLessThan: |
| return kNegative; |
| case kSignedGreaterThanOrEqual: |
| return kPositiveOrZero; |
| case kUnsignedLessThanOrEqual: // x <= 0 -> x == 0 |
| return kEqual; |
| case kUnsignedGreaterThan: // x > 0 -> x != 0 |
| return kNotEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // This function checks if we can perform the transformation: |
| // ((a <op> b) cmp 0), b.<cond> |
| // to: |
| // (a <ops> b), b.<cond'> |
| // where <ops> is the flag setting version of <op>, and if so, |
| // updates {node}, {opcode} and {cont} accordingly. |
| void MaybeReplaceCmpZeroWithFlagSettingBinop(InstructionSelector* selector, |
| Node** node, Node* binop, |
| ArchOpcode* opcode, |
| FlagsCondition cond, |
| FlagsContinuation* cont, |
| ImmediateMode* immediate_mode) { |
| ArchOpcode binop_opcode; |
| ArchOpcode no_output_opcode; |
| ImmediateMode binop_immediate_mode; |
| switch (binop->opcode()) { |
| case IrOpcode::kInt32Add: |
| binop_opcode = kArm64Add32; |
| no_output_opcode = kArm64Cmn32; |
| binop_immediate_mode = kArithmeticImm; |
| break; |
| case IrOpcode::kWord32And: |
| binop_opcode = kArm64And32; |
| no_output_opcode = kArm64Tst32; |
| binop_immediate_mode = kLogical32Imm; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| if (selector->CanCover(*node, binop)) { |
| // The comparison is the only user of the add or and, so we can generate |
| // a cmn or tst instead. |
| cont->Overwrite(MapForFlagSettingBinop(cond)); |
| *opcode = no_output_opcode; |
| *node = binop; |
| *immediate_mode = binop_immediate_mode; |
| } else if (selector->IsOnlyUserOfNodeInSameBlock(*node, binop)) { |
| // We can also handle the case where the add and the compare are in the |
| // same basic block, and the compare is the only use of add in this basic |
| // block (the add has users in other basic blocks). |
| cont->Overwrite(MapForFlagSettingBinop(cond)); |
| *opcode = binop_opcode; |
| *node = binop; |
| *immediate_mode = binop_immediate_mode; |
| } |
| } |
| |
| // Map {cond} to kEqual or kNotEqual, so that we can select |
| // either TBZ or TBNZ when generating code for: |
| // (x cmp 0), b.{cond} |
| FlagsCondition MapForTbz(FlagsCondition cond) { |
| switch (cond) { |
| case kSignedLessThan: // generate TBNZ |
| return kNotEqual; |
| case kSignedGreaterThanOrEqual: // generate TBZ |
| return kEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| // Map {cond} to kEqual or kNotEqual, so that we can select |
| // either CBZ or CBNZ when generating code for: |
| // (x cmp 0), b.{cond} |
| FlagsCondition MapForCbz(FlagsCondition cond) { |
| switch (cond) { |
| case kEqual: // generate CBZ |
| case kNotEqual: // generate CBNZ |
| return cond; |
| case kUnsignedLessThanOrEqual: // generate CBZ |
| return kEqual; |
| case kUnsignedGreaterThan: // generate CBNZ |
| return kNotEqual; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| void EmitBranchOrDeoptimize(InstructionSelector* selector, |
| InstructionCode opcode, InstructionOperand value, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| if (cont->IsBranch()) { |
| selector->Emit(cont->Encode(opcode), g.NoOutput(), value, |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| } else { |
| DCHECK(cont->IsDeoptimize()); |
| selector->EmitDeoptimize(cont->Encode(opcode), g.NoOutput(), value, |
| cont->kind(), cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } |
| } |
| |
| // Try to emit TBZ, TBNZ, CBZ or CBNZ for certain comparisons of {node} |
| // against {value}, depending on the condition. |
| bool TryEmitCbzOrTbz(InstructionSelector* selector, Node* node, uint32_t value, |
| Node* user, FlagsCondition cond, FlagsContinuation* cont) { |
| // Only handle branches and deoptimisations. |
| if (!cont->IsBranch() && !cont->IsDeoptimize()) return false; |
| |
| switch (cond) { |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: { |
| // Here we handle sign tests, aka. comparisons with zero. |
| if (value != 0) return false; |
| // We don't generate TBZ/TBNZ for deoptimisations, as they have a |
| // shorter range than conditional branches and generating them for |
| // deoptimisations results in more veneers. |
| if (cont->IsDeoptimize()) return false; |
| Arm64OperandGenerator g(selector); |
| cont->Overwrite(MapForTbz(cond)); |
| Int32Matcher m(node); |
| if (m.IsFloat64ExtractHighWord32() && selector->CanCover(user, node)) { |
| // SignedLessThan(Float64ExtractHighWord32(x), 0) and |
| // SignedGreaterThanOrEqual(Float64ExtractHighWord32(x), 0) essentially |
| // check the sign bit of a 64-bit floating point value. |
| InstructionOperand temp = g.TempRegister(); |
| selector->Emit(kArm64U64MoveFloat64, temp, |
| g.UseRegister(node->InputAt(0))); |
| selector->Emit(cont->Encode(kArm64TestAndBranch), g.NoOutput(), temp, |
| g.TempImmediate(63), g.Label(cont->true_block()), |
| g.Label(cont->false_block())); |
| return true; |
| } |
| selector->Emit(cont->Encode(kArm64TestAndBranch32), g.NoOutput(), |
| g.UseRegister(node), g.TempImmediate(31), |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| return true; |
| } |
| case kEqual: |
| case kNotEqual: { |
| if (node->opcode() == IrOpcode::kWord32And) { |
| // Emit a tbz/tbnz if we are comparing with a single-bit mask: |
| // Branch(Word32Equal(Word32And(x, 1 << N), 1 << N), true, false) |
| Int32BinopMatcher m_and(node); |
| if (cont->IsBranch() && base::bits::IsPowerOfTwo(value) && |
| m_and.right().Is(value) && selector->CanCover(user, node)) { |
| Arm64OperandGenerator g(selector); |
| // In the code generator, Equal refers to a bit being cleared. We want |
| // the opposite here so negate the condition. |
| cont->Negate(); |
| selector->Emit(cont->Encode(kArm64TestAndBranch32), g.NoOutput(), |
| g.UseRegister(m_and.left().node()), |
| g.TempImmediate(base::bits::CountTrailingZeros(value)), |
| g.Label(cont->true_block()), |
| g.Label(cont->false_block())); |
| return true; |
| } |
| } |
| } // Fall through. |
| case kUnsignedLessThanOrEqual: |
| case kUnsignedGreaterThan: { |
| if (value != 0) return false; |
| Arm64OperandGenerator g(selector); |
| cont->Overwrite(MapForCbz(cond)); |
| EmitBranchOrDeoptimize(selector, kArm64CompareAndBranch32, |
| g.UseRegister(node), cont); |
| return true; |
| } |
| default: |
| return false; |
| } |
| } |
| |
| void VisitWord32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Int32BinopMatcher m(node); |
| FlagsCondition cond = cont->condition(); |
| if (m.right().HasValue()) { |
| if (TryEmitCbzOrTbz(selector, m.left().node(), m.right().Value(), node, |
| cond, cont)) { |
| return; |
| } |
| } else if (m.left().HasValue()) { |
| FlagsCondition commuted_cond = CommuteFlagsCondition(cond); |
| if (TryEmitCbzOrTbz(selector, m.right().node(), m.left().Value(), node, |
| commuted_cond, cont)) { |
| return; |
| } |
| } |
| ArchOpcode opcode = kArm64Cmp32; |
| ImmediateMode immediate_mode = kArithmeticImm; |
| if (m.right().Is(0) && (m.left().IsInt32Add() || m.left().IsWord32And())) { |
| // Emit flag setting add/and instructions for comparisons against zero. |
| if (CanUseFlagSettingBinop(cond)) { |
| Node* binop = m.left().node(); |
| MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, |
| cond, cont, &immediate_mode); |
| } |
| } else if (m.left().Is(0) && |
| (m.right().IsInt32Add() || m.right().IsWord32And())) { |
| // Same as above, but we need to commute the condition before we |
| // continue with the rest of the checks. |
| FlagsCondition commuted_cond = CommuteFlagsCondition(cond); |
| if (CanUseFlagSettingBinop(commuted_cond)) { |
| Node* binop = m.right().node(); |
| MaybeReplaceCmpZeroWithFlagSettingBinop(selector, &node, binop, &opcode, |
| commuted_cond, cont, |
| &immediate_mode); |
| } |
| } else if (m.right().IsInt32Sub() && (cond == kEqual || cond == kNotEqual)) { |
| // Select negated compare for comparisons with negated right input. |
| // Only do this for kEqual and kNotEqual, which do not depend on the |
| // C and V flags, as those flags will be different with CMN when the |
| // right-hand side of the original subtraction is INT_MIN. |
| Node* sub = m.right().node(); |
| Int32BinopMatcher msub(sub); |
| if (msub.left().Is(0)) { |
| bool can_cover = selector->CanCover(node, sub); |
| node->ReplaceInput(1, msub.right().node()); |
| // Even if the comparison node covers the subtraction, after the input |
| // replacement above, the node still won't cover the input to the |
| // subtraction; the subtraction still uses it. |
| // In order to get shifted operations to work, we must remove the rhs |
| // input to the subtraction, as TryMatchAnyShift requires this node to |
| // cover the input shift. We do this by setting it to the lhs input, |
| // as we know it's zero, and the result of the subtraction isn't used by |
| // any other node. |
| if (can_cover) sub->ReplaceInput(1, msub.left().node()); |
| opcode = kArm64Cmn32; |
| } |
| } |
| VisitBinop<Int32BinopMatcher>(selector, node, opcode, immediate_mode, cont); |
| } |
| |
| |
| void VisitWordTest(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| VisitCompare(selector, opcode, g.UseRegister(node), g.UseRegister(node), |
| cont); |
| } |
| |
| |
| void VisitWord32Test(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordTest(selector, node, kArm64Tst32, cont); |
| } |
| |
| |
| void VisitWord64Test(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordTest(selector, node, kArm64Tst, cont); |
| } |
| |
| template <typename Matcher, ArchOpcode kOpcode> |
| bool TryEmitTestAndBranch(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Matcher m(node); |
| if (cont->IsBranch() && m.right().HasValue() && |
| base::bits::IsPowerOfTwo(m.right().Value())) { |
| // If the mask has only one bit set, we can use tbz/tbnz. |
| DCHECK((cont->condition() == kEqual) || (cont->condition() == kNotEqual)); |
| selector->Emit( |
| cont->Encode(kOpcode), g.NoOutput(), g.UseRegister(m.left().node()), |
| g.TempImmediate(base::bits::CountTrailingZeros(m.right().Value())), |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| return true; |
| } |
| return false; |
| } |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Float32BinopMatcher m(node); |
| if (m.right().Is(0.0f)) { |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()), |
| g.UseImmediate(m.right().node()), cont); |
| } else if (m.left().Is(0.0f)) { |
| cont->Commute(); |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.right().node()), |
| g.UseImmediate(m.left().node()), cont); |
| } else { |
| VisitCompare(selector, kArm64Float32Cmp, g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node()), cont); |
| } |
| } |
| |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| Float64BinopMatcher m(node); |
| if (m.right().Is(0.0)) { |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()), |
| g.UseImmediate(m.right().node()), cont); |
| } else if (m.left().Is(0.0)) { |
| cont->Commute(); |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.right().node()), |
| g.UseImmediate(m.left().node()), cont); |
| } else { |
| VisitCompare(selector, kArm64Float64Cmp, g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node()), cont); |
| } |
| } |
| |
| void VisitWordCompareZero(InstructionSelector* selector, Node* user, |
| Node* value, FlagsContinuation* cont) { |
| Arm64OperandGenerator g(selector); |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && |
| selector->CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| if (selector->CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kWord64Equal: { |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| Int64BinopMatcher m(value); |
| if (m.right().Is(0)) { |
| Node* const left = m.left().node(); |
| if (selector->CanCover(value, left) && |
| left->opcode() == IrOpcode::kWord64And) { |
| // Attempt to merge the Word64Equal(Word64And(x, y), 0) comparison |
| // into a tbz/tbnz instruction. |
| if (TryEmitTestAndBranch<Uint64BinopMatcher, kArm64TestAndBranch>( |
| selector, left, cont)) { |
| return; |
| } |
| return VisitWordCompare(selector, left, kArm64Tst, cont, true, |
| kLogical64Imm); |
| } |
| // Merge the Word64Equal(x, 0) comparison into a cbz instruction. |
| if (cont->IsBranch() || cont->IsDeoptimize()) { |
| EmitBranchOrDeoptimize(selector, |
| cont->Encode(kArm64CompareAndBranch), |
| g.UseRegister(left), cont); |
| return; |
| } |
| } |
| return VisitWordCompare(selector, value, kArm64Cmp, cont, false, |
| kArithmeticImm); |
| } |
| case IrOpcode::kInt64LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWordCompare(selector, value, kArm64Cmp, cont, false, |
| kArithmeticImm); |
| case IrOpcode::kInt64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWordCompare(selector, value, kArm64Cmp, cont, false, |
| kArithmeticImm); |
| case IrOpcode::kUint64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWordCompare(selector, value, kArm64Cmp, cont, false, |
| kArithmeticImm); |
| case IrOpcode::kUint64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWordCompare(selector, value, kArm64Cmp, cont, false, |
| kArithmeticImm); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThan); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThan); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kFloatLessThanOrEqual); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (result == nullptr || selector->IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>( |
| selector, node, kArm64Add32, kArithmeticImm, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int32BinopMatcher>( |
| selector, node, kArm64Sub32, kArithmeticImm, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| // ARM64 doesn't set the overflow flag for multiplication, so we |
| // need to test on kNotEqual. Here is the code sequence used: |
| // smull result, left, right |
| // cmp result.X(), Operand(result, SXTW) |
| cont->OverwriteAndNegateIfEqual(kNotEqual); |
| return EmitInt32MulWithOverflow(selector, node, cont); |
| case IrOpcode::kInt64AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(selector, node, kArm64Add, |
| kArithmeticImm, cont); |
| case IrOpcode::kInt64SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop<Int64BinopMatcher>(selector, node, kArm64Sub, |
| kArithmeticImm, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kInt32Add: |
| return VisitWordCompare(selector, value, kArm64Cmn32, cont, true, |
| kArithmeticImm); |
| case IrOpcode::kInt32Sub: |
| return VisitWord32Compare(selector, value, cont); |
| case IrOpcode::kWord32And: |
| if (TryEmitTestAndBranch<Uint32BinopMatcher, kArm64TestAndBranch32>( |
| selector, value, cont)) { |
| return; |
| } |
| return VisitWordCompare(selector, value, kArm64Tst32, cont, true, |
| kLogical32Imm); |
| case IrOpcode::kWord64And: |
| if (TryEmitTestAndBranch<Uint64BinopMatcher, kArm64TestAndBranch>( |
| selector, value, cont)) { |
| return; |
| } |
| return VisitWordCompare(selector, value, kArm64Tst, cont, true, |
| kLogical64Imm); |
| default: |
| break; |
| } |
| } |
| |
| // Branch could not be combined with a compare, compare against 0 and branch. |
| if (cont->IsBranch()) { |
| selector->Emit(cont->Encode(kArm64CompareAndBranch32), g.NoOutput(), |
| g.UseRegister(value), g.Label(cont->true_block()), |
| g.Label(cont->false_block())); |
| } else if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(cont->Encode(kArm64Tst32), g.NoOutput(), |
| g.UseRegister(value), g.UseRegister(value), |
| cont->kind(), cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else { |
| DCHECK(cont->IsTrap()); |
| selector->Emit(cont->Encode(kArm64Tst32), g.NoOutput(), |
| g.UseRegister(value), g.UseRegister(value), |
| g.UseImmediate(cont->trap_id())); |
| } |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch, |
| BasicBlock* fbranch) { |
| FlagsContinuation cont(kNotEqual, tbranch, fbranch); |
| VisitWordCompareZero(this, branch, branch->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitDeoptimizeIf(Node* node) { |
| DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); |
| FlagsContinuation cont = FlagsContinuation::ForDeoptimize( |
| kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitDeoptimizeUnless(Node* node) { |
| DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); |
| FlagsContinuation cont = FlagsContinuation::ForDeoptimize( |
| kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitTrapUnless(Node* node, |
| Runtime::FunctionId func_id) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| Arm64OperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchLookupSwitch. |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 4 + sw.value_range; |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 3 + 2 * sw.case_count; |
| size_t lookup_time_cost = sw.case_count; |
| if (sw.case_count > 0 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value > std::numeric_limits<int32_t>::min() && |
| sw.value_range <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value) { |
| index_operand = g.TempRegister(); |
| Emit(kArm64Sub32, index_operand, value_operand, |
| g.TempImmediate(sw.min_value)); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| |
| // Generate a sequence of conditional jumps. |
| return EmitLookupSwitch(sw, value_operand); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| Node* const user = node; |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(user); |
| if (m.right().Is(0)) { |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kInt32Add: |
| case IrOpcode::kWord32And: |
| return VisitWord32Compare(this, node, &cont); |
| case IrOpcode::kInt32Sub: |
| return VisitWordCompare(this, value, kArm64Cmp32, &cont, false, |
| kArithmeticImm); |
| case IrOpcode::kWord32Equal: { |
| // Word32Equal(Word32Equal(x, y), 0) => Word32Compare(x, y, ne). |
| Int32BinopMatcher mequal(value); |
| node->ReplaceInput(0, mequal.left().node()); |
| node->ReplaceInput(1, mequal.right().node()); |
| cont.Negate(); |
| // {node} still does not cover its new operands, because {mequal} is |
| // still using them. |
| // Since we won't generate any more code for {mequal}, set its |
| // operands to zero to make sure {node} can cover them. |
| // This improves pattern matching in VisitWord32Compare. |
| mequal.node()->ReplaceInput(0, m.right().node()); |
| mequal.node()->ReplaceInput(1, m.right().node()); |
| return VisitWord32Compare(this, node, &cont); |
| } |
| default: |
| break; |
| } |
| return VisitWord32Test(this, value, &cont); |
| } |
| } |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWord32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitWord64Equal(Node* const node) { |
| Node* const user = node; |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int64BinopMatcher m(user); |
| if (m.right().Is(0)) { |
| Node* const value = m.left().node(); |
| if (CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord64And: |
| return VisitWordCompare(this, value, kArm64Tst, &cont, true, |
| kLogical64Imm); |
| default: |
| break; |
| } |
| return VisitWord64Test(this, value, &cont); |
| } |
| } |
| VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm); |
| } |
| |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, |
| kArithmeticImm, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kArm64Add32, kArithmeticImm, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, |
| kArithmeticImm, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int32BinopMatcher>(this, node, kArm64Sub32, kArithmeticImm, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| // ARM64 doesn't set the overflow flag for multiplication, so we need to |
| // test on kNotEqual. Here is the code sequence used: |
| // smull result, left, right |
| // cmp result.X(), Operand(result, SXTW) |
| FlagsContinuation cont = FlagsContinuation::ForSet(kNotEqual, ovf); |
| return EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| FlagsContinuation cont; |
| EmitInt32MulWithOverflow(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitInt64AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, kArithmeticImm, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kArm64Add, kArithmeticImm, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt64SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, kArithmeticImm, |
| &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop<Int64BinopMatcher>(this, node, kArm64Sub, kArithmeticImm, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm); |
| } |
| |
| |
| void InstructionSelector::VisitInt64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm); |
| } |
| |
| |
| void InstructionSelector::VisitUint64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm); |
| } |
| |
| |
| void InstructionSelector::VisitUint64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, kArm64Cmp, &cont, false, kArithmeticImm); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kFloatLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kFloatLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| Arm64OperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| if (left->opcode() == IrOpcode::kFloat64InsertHighWord32 && |
| CanCover(node, left)) { |
| Node* right_of_left = left->InputAt(1); |
| Emit(kArm64Bfi, g.DefineSameAsFirst(right), g.UseRegister(right), |
| g.UseRegister(right_of_left), g.TempImmediate(32), |
| g.TempImmediate(32)); |
| Emit(kArm64Float64MoveU64, g.DefineAsRegister(node), g.UseRegister(right)); |
| return; |
| } |
| Emit(kArm64Float64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node)
|