blob: 0fb38e5933cd3fabe5248923734e4d8795528ca0 [file] [log] [blame]
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/code-generator.h"
#include "src/address-map.h"
#include "src/assembler-inl.h"
#include "src/base/adapters.h"
#include "src/compilation-info.h"
#include "src/compiler/code-generator-impl.h"
#include "src/compiler/linkage.h"
#include "src/compiler/pipeline.h"
#include "src/eh-frame.h"
#include "src/frames.h"
#include "src/macro-assembler-inl.h"
#include "src/trap-handler/trap-handler.h"
namespace v8 {
namespace internal {
namespace compiler {
class CodeGenerator::JumpTable final : public ZoneObject {
public:
JumpTable(JumpTable* next, Label** targets, size_t target_count)
: next_(next), targets_(targets), target_count_(target_count) {}
Label* label() { return &label_; }
JumpTable* next() const { return next_; }
Label** targets() const { return targets_; }
size_t target_count() const { return target_count_; }
private:
Label label_;
JumpTable* const next_;
Label** const targets_;
size_t const target_count_;
};
CodeGenerator::CodeGenerator(
Zone* codegen_zone, Frame* frame, Linkage* linkage,
InstructionSequence* code, CompilationInfo* info, Isolate* isolate,
base::Optional<OsrHelper> osr_helper, int start_source_position,
JumpOptimizationInfo* jump_opt,
std::vector<trap_handler::ProtectedInstructionData>* protected_instructions)
: zone_(codegen_zone),
isolate_(isolate),
frame_access_state_(nullptr),
linkage_(linkage),
code_(code),
unwinding_info_writer_(zone()),
info_(info),
labels_(zone()->NewArray<Label>(code->InstructionBlockCount())),
current_block_(RpoNumber::Invalid()),
start_source_position_(start_source_position),
current_source_position_(SourcePosition::Unknown()),
tasm_(isolate, nullptr, 0, CodeObjectRequired::kNo),
resolver_(this),
safepoints_(zone()),
handlers_(zone()),
deoptimization_exits_(zone()),
deoptimization_states_(zone()),
deoptimization_literals_(zone()),
inlined_function_count_(0),
translations_(zone()),
last_lazy_deopt_pc_(0),
caller_registers_saved_(false),
jump_tables_(nullptr),
ools_(nullptr),
osr_helper_(osr_helper),
osr_pc_offset_(-1),
optimized_out_literal_id_(-1),
source_position_table_builder_(info->SourcePositionRecordingMode()),
protected_instructions_(protected_instructions),
result_(kSuccess) {
for (int i = 0; i < code->InstructionBlockCount(); ++i) {
new (&labels_[i]) Label;
}
CreateFrameAccessState(frame);
CHECK_EQ(info->is_osr(), osr_helper_.has_value());
tasm_.set_jump_optimization_info(jump_opt);
Code::Kind code_kind = info_->code_kind();
if (code_kind == Code::JS_TO_WASM_FUNCTION ||
code_kind == Code::WASM_FUNCTION) {
tasm_.enable_serializer();
}
}
void CodeGenerator::AddProtectedInstructionLanding(uint32_t instr_offset,
uint32_t landing_offset) {
if (protected_instructions_ != nullptr) {
trap_handler::ProtectedInstructionData data = {instr_offset,
landing_offset};
protected_instructions_->emplace_back(data);
}
}
void CodeGenerator::CreateFrameAccessState(Frame* frame) {
FinishFrame(frame);
frame_access_state_ = new (zone()) FrameAccessState(frame);
}
CodeGenerator::CodeGenResult CodeGenerator::AssembleDeoptimizerCall(
int deoptimization_id, SourcePosition pos) {
DeoptimizeKind deopt_kind = GetDeoptimizationKind(deoptimization_id);
Deoptimizer::BailoutType bailout_type;
switch (deopt_kind) {
case DeoptimizeKind::kSoft: {
bailout_type = Deoptimizer::SOFT;
break;
}
case DeoptimizeKind::kEager: {
bailout_type = Deoptimizer::EAGER;
break;
}
case DeoptimizeKind::kLazy: {
bailout_type = Deoptimizer::LAZY;
break;
}
default: { UNREACHABLE(); }
}
DeoptimizeReason deoptimization_reason =
GetDeoptimizationReason(deoptimization_id);
Address deopt_entry = Deoptimizer::GetDeoptimizationEntry(
tasm()->isolate(), deoptimization_id, bailout_type);
if (deopt_entry == nullptr) return kTooManyDeoptimizationBailouts;
if (info()->is_source_positions_enabled()) {
tasm()->RecordDeoptReason(deoptimization_reason, pos, deoptimization_id);
}
tasm()->CallForDeoptimization(deopt_entry, RelocInfo::RUNTIME_ENTRY);
return kSuccess;
}
void CodeGenerator::AssembleCode() {
CompilationInfo* info = this->info();
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done in AssemblePrologue).
FrameScope frame_scope(tasm(), StackFrame::MANUAL);
if (info->is_source_positions_enabled()) {
AssembleSourcePosition(start_source_position());
}
// Place function entry hook if requested to do so.
if (linkage()->GetIncomingDescriptor()->IsJSFunctionCall()) {
ProfileEntryHookStub::MaybeCallEntryHookDelayed(tasm(), zone());
}
// TODO(jupvfranco): This should be the first thing in the code,
// or otherwise MaybeCallEntryHookDelayed may happen twice (for
// optimized and deoptimized code).
// We want to bailout only from JS functions, which are the only ones
// that are optimized.
if (info->IsOptimizing()) {
DCHECK(linkage()->GetIncomingDescriptor()->IsJSFunctionCall());
BailoutIfDeoptimized();
}
// Define deoptimization literals for all inlined functions.
DCHECK_EQ(0u, deoptimization_literals_.size());
for (CompilationInfo::InlinedFunctionHolder& inlined :
info->inlined_functions()) {
if (!inlined.shared_info.equals(info->shared_info())) {
int index = DefineDeoptimizationLiteral(
DeoptimizationLiteral(inlined.shared_info));
inlined.RegisterInlinedFunctionId(index);
}
}
inlined_function_count_ = deoptimization_literals_.size();
unwinding_info_writer_.SetNumberOfInstructionBlocks(
code()->InstructionBlockCount());
// Assemble all non-deferred blocks, followed by deferred ones.
for (int deferred = 0; deferred < 2; ++deferred) {
for (const InstructionBlock* block : code()->instruction_blocks()) {
if (block->IsDeferred() == (deferred == 0)) {
continue;
}
// Align loop headers on 16-byte boundaries.
if (block->IsLoopHeader() && !tasm()->jump_optimization_info()) {
tasm()->Align(16);
}
// Bind a label for a block.
current_block_ = block->rpo_number();
unwinding_info_writer_.BeginInstructionBlock(tasm()->pc_offset(), block);
if (FLAG_code_comments) {
// TODO(titzer): these code comments are a giant memory leak.
Vector<char> buffer = Vector<char>::New(200);
char* buffer_start = buffer.start();
int next = SNPrintF(
buffer, "-- B%d start%s%s%s%s", block->rpo_number().ToInt(),
block->IsDeferred() ? " (deferred)" : "",
block->needs_frame() ? "" : " (no frame)",
block->must_construct_frame() ? " (construct frame)" : "",
block->must_deconstruct_frame() ? " (deconstruct frame)" : "");
buffer = buffer.SubVector(next, buffer.length());
if (block->IsLoopHeader()) {
next =
SNPrintF(buffer, " (loop up to %d)", block->loop_end().ToInt());
buffer = buffer.SubVector(next, buffer.length());
}
if (block->loop_header().IsValid()) {
next =
SNPrintF(buffer, " (in loop %d)", block->loop_header().ToInt());
buffer = buffer.SubVector(next, buffer.length());
}
SNPrintF(buffer, " --");
tasm()->RecordComment(buffer_start);
}
frame_access_state()->MarkHasFrame(block->needs_frame());
tasm()->bind(GetLabel(current_block_));
if (block->must_construct_frame()) {
AssembleConstructFrame();
// We need to setup the root register after we assemble the prologue, to
// avoid clobbering callee saved registers in case of C linkage and
// using the roots.
// TODO(mtrofin): investigate how we can avoid doing this repeatedly.
if (linkage()->GetIncomingDescriptor()->InitializeRootRegister()) {
tasm()->InitializeRootRegister();
}
}
if (FLAG_enable_embedded_constant_pool && !block->needs_frame()) {
ConstantPoolUnavailableScope constant_pool_unavailable(tasm());
result_ = AssembleBlock(block);
} else {
result_ = AssembleBlock(block);
}
if (result_ != kSuccess) return;
unwinding_info_writer_.EndInstructionBlock(block);
}
}
// Assemble all out-of-line code.
if (ools_) {
tasm()->RecordComment("-- Out of line code --");
for (OutOfLineCode* ool = ools_; ool; ool = ool->next()) {
tasm()->bind(ool->entry());
ool->Generate();
if (ool->exit()->is_bound()) tasm()->jmp(ool->exit());
}
}
// This nop operation is needed to ensure that the trampoline is not
// confused with the pc of the call before deoptimization.
// The test regress/regress-259 is an example of where we need it.
tasm()->nop();
// Assemble deoptimization exits.
int last_updated = 0;
for (DeoptimizationExit* exit : deoptimization_exits_) {
tasm()->bind(exit->label());
int trampoline_pc = tasm()->pc_offset();
int deoptimization_id = exit->deoptimization_id();
DeoptimizationState* ds = deoptimization_states_[deoptimization_id];
if (ds->kind() == DeoptimizeKind::kLazy) {
last_updated = safepoints()->UpdateDeoptimizationInfo(
ds->pc_offset(), trampoline_pc, last_updated);
}
AssembleDeoptimizerCall(deoptimization_id, exit->pos());
}
FinishCode();
// Emit the jump tables.
if (jump_tables_) {
tasm()->Align(kPointerSize);
for (JumpTable* table = jump_tables_; table; table = table->next()) {
tasm()->bind(table->label());
AssembleJumpTable(table->targets(), table->target_count());
}
}
// The PerfJitLogger logs code up until here, excluding the safepoint
// table. Resolve the unwinding info now so it is aware of the same code size
// as reported by perf.
unwinding_info_writer_.Finish(tasm()->pc_offset());
safepoints()->Emit(tasm(), frame()->GetTotalFrameSlotCount());
result_ = kSuccess;
}
Handle<ByteArray> CodeGenerator::GetSourcePositionTable() {
return source_position_table_builder_.ToSourcePositionTable(isolate());
}
MaybeHandle<HandlerTable> CodeGenerator::GetHandlerTable() const {
if (!handlers_.empty()) {
Handle<HandlerTable> table =
Handle<HandlerTable>::cast(isolate()->factory()->NewFixedArray(
HandlerTable::LengthForReturn(static_cast<int>(handlers_.size())),
TENURED));
for (size_t i = 0; i < handlers_.size(); ++i) {
table->SetReturnOffset(static_cast<int>(i), handlers_[i].pc_offset);
table->SetReturnHandler(static_cast<int>(i), handlers_[i].handler->pos());
}
return table;
}
return {};
}
Handle<Code> CodeGenerator::FinalizeCode() {
if (result_ != kSuccess) {
tasm()->AbortedCodeGeneration();
return Handle<Code>();
}
// Allocate exception handler table.
Handle<HandlerTable> table = HandlerTable::Empty(isolate());
if (!handlers_.empty()) {
table = Handle<HandlerTable>::cast(isolate()->factory()->NewFixedArray(
HandlerTable::LengthForReturn(static_cast<int>(handlers_.size())),
TENURED));
for (size_t i = 0; i < handlers_.size(); ++i) {
table->SetReturnOffset(static_cast<int>(i), handlers_[i].pc_offset);
table->SetReturnHandler(static_cast<int>(i), handlers_[i].handler->pos());
}
}
// Allocate the source position table.
Handle<ByteArray> source_positions =
source_position_table_builder_.ToSourcePositionTable(isolate());
// Allocate deoptimization data.
Handle<DeoptimizationData> deopt_data = GenerateDeoptimizationData();
// Allocate and install the code.
CodeDesc desc;
tasm()->GetCode(isolate(), &desc);
if (unwinding_info_writer_.eh_frame_writer()) {
unwinding_info_writer_.eh_frame_writer()->GetEhFrame(&desc);
}
Handle<Code> result = isolate()->factory()->NewCode(
desc, info()->code_kind(), Handle<Object>(), info()->builtin_index(),
table, source_positions, deopt_data, kMovable, info()->stub_key(), true,
frame()->GetTotalFrameSlotCount(), safepoints()->GetCodeOffset());
isolate()->counters()->total_compiled_code_size()->Increment(
result->instruction_size());
LOG_CODE_EVENT(isolate(),
CodeLinePosInfoRecordEvent(result->instruction_start(),
*source_positions));
return result;
}
bool CodeGenerator::IsNextInAssemblyOrder(RpoNumber block) const {
return code()
->InstructionBlockAt(current_block_)
->ao_number()
.IsNext(code()->InstructionBlockAt(block)->ao_number());
}
void CodeGenerator::RecordSafepoint(ReferenceMap* references,
Safepoint::Kind kind, int arguments,
Safepoint::DeoptMode deopt_mode) {
Safepoint safepoint =
safepoints()->DefineSafepoint(tasm(), kind, arguments, deopt_mode);
int stackSlotToSpillSlotDelta =
frame()->GetTotalFrameSlotCount() - frame()->GetSpillSlotCount();
for (const InstructionOperand& operand : references->reference_operands()) {
if (operand.IsStackSlot()) {
int index = LocationOperand::cast(operand).index();
DCHECK_LE(0, index);
// We might index values in the fixed part of the frame (i.e. the
// closure pointer or the context pointer); these are not spill slots
// and therefore don't work with the SafepointTable currently, but
// we also don't need to worry about them, since the GC has special
// knowledge about those fields anyway.
if (index < stackSlotToSpillSlotDelta) continue;
safepoint.DefinePointerSlot(index, zone());
} else if (operand.IsRegister() && (kind & Safepoint::kWithRegisters)) {
Register reg = LocationOperand::cast(operand).GetRegister();
safepoint.DefinePointerRegister(reg, zone());
}
}
}
bool CodeGenerator::IsMaterializableFromRoot(
Handle<HeapObject> object, Heap::RootListIndex* index_return) {
const CallDescriptor* incoming_descriptor =
linkage()->GetIncomingDescriptor();
if (incoming_descriptor->flags() & CallDescriptor::kCanUseRoots) {
Heap* heap = isolate()->heap();
return heap->IsRootHandle(object, index_return) &&
!heap->RootCanBeWrittenAfterInitialization(*index_return);
}
return false;
}
CodeGenerator::CodeGenResult CodeGenerator::AssembleBlock(
const InstructionBlock* block) {
for (int i = block->code_start(); i < block->code_end(); ++i) {
Instruction* instr = code()->InstructionAt(i);
CodeGenResult result = AssembleInstruction(instr, block);
if (result != kSuccess) return result;
}
return kSuccess;
}
bool CodeGenerator::IsValidPush(InstructionOperand source,
CodeGenerator::PushTypeFlags push_type) {
if (source.IsImmediate() &&
((push_type & CodeGenerator::kImmediatePush) != 0)) {
return true;
}
if (source.IsRegister() &&
((push_type & CodeGenerator::kRegisterPush) != 0)) {
return true;
}
if (source.IsStackSlot() &&
((push_type & CodeGenerator::kStackSlotPush) != 0)) {
return true;
}
return false;
}
void CodeGenerator::GetPushCompatibleMoves(Instruction* instr,
PushTypeFlags push_type,
ZoneVector<MoveOperands*>* pushes) {
pushes->clear();
for (int i = Instruction::FIRST_GAP_POSITION;
i <= Instruction::LAST_GAP_POSITION; ++i) {
Instruction::GapPosition inner_pos =
static_cast<Instruction::GapPosition>(i);
ParallelMove* parallel_move = instr->GetParallelMove(inner_pos);
if (parallel_move != nullptr) {
for (auto move : *parallel_move) {
InstructionOperand source = move->source();
InstructionOperand destination = move->destination();
int first_push_compatible_index =
V8_TARGET_ARCH_STORES_RETURN_ADDRESS_ON_STACK ? 1 : 0;
// If there are any moves from slots that will be overridden by pushes,
// then the full gap resolver must be used since optimization with
// pushes don't participate in the parallel move and might clobber
// values needed for the gap resolve.
if (source.IsStackSlot() &&
LocationOperand::cast(source).index() >=
first_push_compatible_index) {
pushes->clear();
return;
}
// TODO(danno): Right now, only consider moves from the FIRST gap for
// pushes. Theoretically, we could extract pushes for both gaps (there
// are cases where this happens), but the logic for that would also have
// to check to make sure that non-memory inputs to the pushes from the
// LAST gap don't get clobbered in the FIRST gap.
if (i == Instruction::FIRST_GAP_POSITION) {
if (destination.IsStackSlot() &&
LocationOperand::cast(destination).index() >=
first_push_compatible_index) {
int index = LocationOperand::cast(destination).index();
if (IsValidPush(source, push_type)) {
if (index >= static_cast<int>(pushes->size())) {
pushes->resize(index + 1);
}
(*pushes)[index] = move;
}
}
}
}
}
}
// For now, only support a set of continuous pushes at the end of the list.
size_t push_count_upper_bound = pushes->size();
size_t push_begin = push_count_upper_bound;
for (auto move : base::Reversed(*pushes)) {
if (move == nullptr) break;
push_begin--;
}
size_t push_count = pushes->size() - push_begin;
std::copy(pushes->begin() + push_begin,
pushes->begin() + push_begin + push_count, pushes->begin());
pushes->resize(push_count);
}
CodeGenerator::CodeGenResult CodeGenerator::AssembleInstruction(
Instruction* instr, const InstructionBlock* block) {
int first_unused_stack_slot;
FlagsMode mode = FlagsModeField::decode(instr->opcode());
if (mode != kFlags_trap) {
AssembleSourcePosition(instr);
}
bool adjust_stack =
GetSlotAboveSPBeforeTailCall(instr, &first_unused_stack_slot);
if (adjust_stack) AssembleTailCallBeforeGap(instr, first_unused_stack_slot);
AssembleGaps(instr);
if (adjust_stack) AssembleTailCallAfterGap(instr, first_unused_stack_slot);
DCHECK_IMPLIES(
block->must_deconstruct_frame(),
instr != code()->InstructionAt(block->last_instruction_index()) ||
instr->IsRet() || instr->IsJump());
if (instr->IsJump() && block->must_deconstruct_frame()) {
AssembleDeconstructFrame();
}
// Assemble architecture-specific code for the instruction.
CodeGenResult result = AssembleArchInstruction(instr);
if (result != kSuccess) return result;
FlagsCondition condition = FlagsConditionField::decode(instr->opcode());
switch (mode) {
case kFlags_branch: {
// Assemble a branch after this instruction.
InstructionOperandConverter i(this, instr);
RpoNumber true_rpo = i.InputRpo(instr->InputCount() - 2);
RpoNumber false_rpo = i.InputRpo(instr->InputCount() - 1);
if (true_rpo == false_rpo) {
// redundant branch.
if (!IsNextInAssemblyOrder(true_rpo)) {
AssembleArchJump(true_rpo);
}
return kSuccess;
}
if (IsNextInAssemblyOrder(true_rpo)) {
// true block is next, can fall through if condition negated.
std::swap(true_rpo, false_rpo);
condition = NegateFlagsCondition(condition);
}
BranchInfo branch;
branch.condition = condition;
branch.true_label = GetLabel(true_rpo);
branch.false_label = GetLabel(false_rpo);
branch.fallthru = IsNextInAssemblyOrder(false_rpo);
// Assemble architecture-specific branch.
AssembleArchBranch(instr, &branch);
break;
}
case kFlags_deoptimize: {
// Assemble a conditional eager deoptimization after this instruction.
InstructionOperandConverter i(this, instr);
size_t frame_state_offset = MiscField::decode(instr->opcode());
DeoptimizationExit* const exit =
AddDeoptimizationExit(instr, frame_state_offset);
Label continue_label;
BranchInfo branch;
branch.condition = condition;
branch.true_label = exit->label();
branch.false_label = &continue_label;
branch.fallthru = true;
// Assemble architecture-specific branch.
AssembleArchDeoptBranch(instr, &branch);
tasm()->bind(&continue_label);
break;
}
case kFlags_set: {
// Assemble a boolean materialization after this instruction.
AssembleArchBoolean(instr, condition);
break;
}
case kFlags_trap: {
AssembleArchTrap(instr, condition);
break;
}
case kFlags_none: {
break;
}
}
return kSuccess;
}
void CodeGenerator::AssembleSourcePosition(Instruction* instr) {
SourcePosition source_position = SourcePosition::Unknown();
if (instr->IsNop() && instr->AreMovesRedundant()) return;
if (!code()->GetSourcePosition(instr, &source_position)) return;
AssembleSourcePosition(source_position);
}
void CodeGenerator::AssembleSourcePosition(SourcePosition source_position) {
if (source_position == current_source_position_) return;
current_source_position_ = source_position;
if (!source_position.IsKnown()) return;
source_position_table_builder_.AddPosition(tasm()->pc_offset(),
source_position, false);
if (FLAG_code_comments) {
CompilationInfo* info = this->info();
if (info->IsStub()) return;
std::ostringstream buffer;
buffer << "-- ";
if (FLAG_trace_turbo || FLAG_trace_turbo_graph ||
tasm()->isolate()->concurrent_recompilation_enabled()) {
buffer << source_position;
} else {
AllowHeapAllocation allocation;
AllowHandleAllocation handles;
AllowHandleDereference deref;
buffer << source_position.InliningStack(info);
}
buffer << " --";
tasm()->RecordComment(StrDup(buffer.str().c_str()));
}
}
bool CodeGenerator::GetSlotAboveSPBeforeTailCall(Instruction* instr,
int* slot) {
if (instr->IsTailCall()) {
InstructionOperandConverter g(this, instr);
*slot = g.InputInt32(instr->InputCount() - 1);
return true;
} else {
return false;
}
}
void CodeGenerator::AssembleGaps(Instruction* instr) {
for (int i = Instruction::FIRST_GAP_POSITION;
i <= Instruction::LAST_GAP_POSITION; i++) {
Instruction::GapPosition inner_pos =
static_cast<Instruction::GapPosition>(i);
ParallelMove* move = instr->GetParallelMove(inner_pos);
if (move != nullptr) resolver()->Resolve(move);
}
}
namespace {
Handle<PodArray<InliningPosition>> CreateInliningPositions(
CompilationInfo* info, Isolate* isolate) {
const CompilationInfo::InlinedFunctionList& inlined_functions =
info->inlined_functions();
if (inlined_functions.size() == 0) {
return Handle<PodArray<InliningPosition>>::cast(
isolate->factory()->empty_byte_array());
}
Handle<PodArray<InliningPosition>> inl_positions =
PodArray<InliningPosition>::New(
isolate, static_cast<int>(inlined_functions.size()), TENURED);
for (size_t i = 0; i < inlined_functions.size(); ++i) {
inl_positions->set(static_cast<int>(i), inlined_functions[i].position);
}
return inl_positions;
}
} // namespace
Handle<DeoptimizationData> CodeGenerator::GenerateDeoptimizationData() {
CompilationInfo* info = this->info();
int deopt_count = static_cast<int>(deoptimization_states_.size());
if (deopt_count == 0 && !info->is_osr()) {
return DeoptimizationData::Empty(isolate());
}
Handle<DeoptimizationData> data =
DeoptimizationData::New(isolate(), deopt_count, TENURED);
Handle<ByteArray> translation_array =
translations_.CreateByteArray(isolate()->factory());
data->SetTranslationByteArray(*translation_array);
data->SetInlinedFunctionCount(
Smi::FromInt(static_cast<int>(inlined_function_count_)));
data->SetOptimizationId(Smi::FromInt(info->optimization_id()));
if (info->has_shared_info()) {
data->SetSharedFunctionInfo(*info->shared_info());
} else {
data->SetSharedFunctionInfo(Smi::kZero);
}
Handle<FixedArray> literals = isolate()->factory()->NewFixedArray(
static_cast<int>(deoptimization_literals_.size()), TENURED);
for (unsigned i = 0; i < deoptimization_literals_.size(); i++) {
Handle<Object> object = deoptimization_literals_[i].Reify(isolate());
literals->set(i, *object);
}
data->SetLiteralArray(*literals);
Handle<PodArray<InliningPosition>> inl_pos =
CreateInliningPositions(info, isolate());
data->SetInliningPositions(*inl_pos);
if (info->is_osr()) {
DCHECK_LE(0, osr_pc_offset_);
data->SetOsrBytecodeOffset(Smi::FromInt(info_->osr_offset().ToInt()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
} else {
BailoutId osr_offset = BailoutId::None();
data->SetOsrBytecodeOffset(Smi::FromInt(osr_offset.ToInt()));
data->SetOsrPcOffset(Smi::FromInt(-1));
}
// Populate deoptimization entries.
for (int i = 0; i < deopt_count; i++) {
DeoptimizationState* deoptimization_state = deoptimization_states_[i];
data->SetBytecodeOffset(i, deoptimization_state->bailout_id());
CHECK(deoptimization_state);
data->SetTranslationIndex(
i, Smi::FromInt(deoptimization_state->translation_id()));
data->SetPc(i, Smi::FromInt(deoptimization_state->pc_offset()));
}
return data;
}
Label* CodeGenerator::AddJumpTable(Label** targets, size_t target_count) {
jump_tables_ = new (zone()) JumpTable(jump_tables_, targets, target_count);
return jump_tables_->label();
}
void CodeGenerator::RecordCallPosition(Instruction* instr) {
CallDescriptor::Flags flags(MiscField::decode(instr->opcode()));
bool needs_frame_state = (flags & CallDescriptor::kNeedsFrameState);
RecordSafepoint(
instr->reference_map(), Safepoint::kSimple, 0,
needs_frame_state ? Safepoint::kLazyDeopt : Safepoint::kNoLazyDeopt);
if (flags & CallDescriptor::kHasExceptionHandler) {
InstructionOperandConverter i(this, instr);
RpoNumber handler_rpo = i.InputRpo(instr->InputCount() - 1);
handlers_.push_back({GetLabel(handler_rpo), tasm()->pc_offset()});
}
if (needs_frame_state) {
MarkLazyDeoptSite();
// If the frame state is present, it starts at argument 1 (just after the
// code address).
size_t frame_state_offset = 1;
FrameStateDescriptor* descriptor =
GetDeoptimizationEntry(instr, frame_state_offset).descriptor();
int pc_offset = tasm()->pc_offset();
int deopt_state_id = BuildTranslation(instr, pc_offset, frame_state_offset,
descriptor->state_combine());
DeoptimizationExit* const exit = new (zone())
DeoptimizationExit(deopt_state_id, current_source_position_);
deoptimization_exits_.push_back(exit);
safepoints()->RecordLazyDeoptimizationIndex(deopt_state_id);
}
}
int CodeGenerator::DefineDeoptimizationLiteral(DeoptimizationLiteral literal) {
int result = static_cast<int>(deoptimization_literals_.size());
for (unsigned i = 0; i < deoptimization_literals_.size(); ++i) {
if (deoptimization_literals_[i] == literal) return i;
}
deoptimization_literals_.push_back(literal);
return result;
}
DeoptimizationEntry const& CodeGenerator::GetDeoptimizationEntry(
Instruction* instr, size_t frame_state_offset) {
InstructionOperandConverter i(this, instr);
int const state_id = i.InputInt32(frame_state_offset);
return code()->GetDeoptimizationEntry(state_id);
}
DeoptimizeKind CodeGenerator::GetDeoptimizationKind(
int deoptimization_id) const {
size_t const index = static_cast<size_t>(deoptimization_id);
DCHECK_LT(index, deoptimization_states_.size());
return deoptimization_states_[index]->kind();
}
DeoptimizeReason CodeGenerator::GetDeoptimizationReason(
int deoptimization_id) const {
size_t const index = static_cast<size_t>(deoptimization_id);
DCHECK_LT(index, deoptimization_states_.size());
return deoptimization_states_[index]->reason();
}
void CodeGenerator::TranslateStateValueDescriptor(
StateValueDescriptor* desc, StateValueList* nested,
Translation* translation, InstructionOperandIterator* iter) {
// Note:
// If translation is null, we just skip the relevant instruction operands.
if (desc->IsNested()) {
if (translation != nullptr) {
translation->BeginCapturedObject(static_cast<int>(nested->size()));
}
for (auto field : *nested) {
TranslateStateValueDescriptor(field.desc, field.nested, translation,
iter);
}
} else if (desc->IsArgumentsElements()) {
if (translation != nullptr) {
translation->ArgumentsElements(desc->arguments_type());
}
} else if (desc->IsArgumentsLength()) {
if (translation != nullptr) {
translation->ArgumentsLength(desc->arguments_type());
}
} else if (desc->IsDuplicate()) {
if (translation != nullptr) {
translation->DuplicateObject(static_cast<int>(desc->id()));
}
} else if (desc->IsPlain()) {
InstructionOperand* op = iter->Advance();
if (translation != nullptr) {
AddTranslationForOperand(translation, iter->instruction(), op,
desc->type());
}
} else {
DCHECK(desc->IsOptimizedOut());
if (translation != nullptr) {
if (optimized_out_literal_id_ == -1) {
optimized_out_literal_id_ = DefineDeoptimizationLiteral(
DeoptimizationLiteral(isolate()->factory()->optimized_out()));
}
translation->StoreLiteral(optimized_out_literal_id_);
}
}
}
void CodeGenerator::TranslateFrameStateDescriptorOperands(
FrameStateDescriptor* desc, InstructionOperandIterator* iter,
OutputFrameStateCombine combine, Translation* translation) {
size_t index = 0;
StateValueList* values = desc->GetStateValueDescriptors();
for (StateValueList::iterator it = values->begin(); it != values->end();
++it, ++index) {
StateValueDescriptor* value_desc = (*it).desc;
if (!combine.IsOutputIgnored()) {
// The result of the call should be placed at position
// [index_from_top] in the stack (overwriting whatever was
// previously there).
size_t index_from_top = desc->GetSize() - 1 - combine.GetOffsetToPokeAt();
if (index >= index_from_top &&
index < index_from_top + iter->instruction()->OutputCount()) {
DCHECK_NOT_NULL(translation);
AddTranslationForOperand(
translation, iter->instruction(),
iter->instruction()->OutputAt(index - index_from_top),
MachineType::AnyTagged());
// Skip the instruction operands.
TranslateStateValueDescriptor(value_desc, (*it).nested, nullptr, iter);
continue;
}
}
TranslateStateValueDescriptor(value_desc, (*it).nested, translation, iter);
}
DCHECK_EQ(desc->GetSize(), index);
}
void CodeGenerator::BuildTranslationForFrameStateDescriptor(
FrameStateDescriptor* descriptor, InstructionOperandIterator* iter,
Translation* translation, OutputFrameStateCombine state_combine) {
// Outer-most state must be added to translation first.
if (descriptor->outer_state() != nullptr) {
BuildTranslationForFrameStateDescriptor(descriptor->outer_state(), iter,
translation,
OutputFrameStateCombine::Ignore());
}
Handle<SharedFunctionInfo> shared_info;
if (!descriptor->shared_info().ToHandle(&shared_info)) {
if (!info()->has_shared_info()) {
return; // Stub with no SharedFunctionInfo.
}
shared_info = info()->shared_info();
}
int shared_info_id =
DefineDeoptimizationLiteral(DeoptimizationLiteral(shared_info));
switch (descriptor->type()) {
case FrameStateType::kInterpretedFunction:
translation->BeginInterpretedFrame(
descriptor->bailout_id(), shared_info_id,
static_cast<unsigned int>(descriptor->locals_count() + 1));
break;
case FrameStateType::kArgumentsAdaptor:
translation->BeginArgumentsAdaptorFrame(
shared_info_id,
static_cast<unsigned int>(descriptor->parameters_count()));
break;
case FrameStateType::kConstructStub:
DCHECK(descriptor->bailout_id().IsValidForConstructStub());
translation->BeginConstructStubFrame(
descriptor->bailout_id(), shared_info_id,
static_cast<unsigned int>(descriptor->parameters_count()));
break;
case FrameStateType::kBuiltinContinuation: {
BailoutId bailout_id = descriptor->bailout_id();
int parameter_count =
static_cast<unsigned int>(descriptor->parameters_count());
translation->BeginBuiltinContinuationFrame(bailout_id, shared_info_id,
parameter_count);
break;
}
case FrameStateType::kJavaScriptBuiltinContinuation: {
BailoutId bailout_id = descriptor->bailout_id();
int parameter_count =
static_cast<unsigned int>(descriptor->parameters_count());
translation->BeginJavaScriptBuiltinContinuationFrame(
bailout_id, shared_info_id, parameter_count);
break;
}
}
TranslateFrameStateDescriptorOperands(descriptor, iter, state_combine,
translation);
}
int CodeGenerator::BuildTranslation(Instruction* instr, int pc_offset,
size_t frame_state_offset,
OutputFrameStateCombine state_combine) {
DeoptimizationEntry const& entry =
GetDeoptimizationEntry(instr, frame_state_offset);
FrameStateDescriptor* const descriptor = entry.descriptor();
frame_state_offset++;
int update_feedback_count = entry.feedback().IsValid() ? 1 : 0;
Translation translation(&translations_,
static_cast<int>(descriptor->GetFrameCount()),
static_cast<int>(descriptor->GetJSFrameCount()),
update_feedback_count, zone());
if (entry.feedback().IsValid()) {
DeoptimizationLiteral literal =
DeoptimizationLiteral(entry.feedback().vector());
int literal_id = DefineDeoptimizationLiteral(literal);
translation.AddUpdateFeedback(literal_id, entry.feedback().slot().ToInt());
}
InstructionOperandIterator iter(instr, frame_state_offset);
BuildTranslationForFrameStateDescriptor(descriptor, &iter, &translation,
state_combine);
int deoptimization_id = static_cast<int>(deoptimization_states_.size());
deoptimization_states_.push_back(new (zone()) DeoptimizationState(
descriptor->bailout_id(), translation.index(), pc_offset, entry.kind(),
entry.reason()));
return deoptimization_id;
}
void CodeGenerator::AddTranslationForOperand(Translation* translation,
Instruction* instr,
InstructionOperand* op,
MachineType type) {
if (op->IsStackSlot()) {
if (type.representation() == MachineRepresentation::kBit) {
translation->StoreBoolStackSlot(LocationOperand::cast(op)->index());
} else if (type == MachineType::Int8() || type == MachineType::Int16() ||
type == MachineType::Int32()) {
translation->StoreInt32StackSlot(LocationOperand::cast(op)->index());
} else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
type == MachineType::Uint32()) {
translation->StoreUint32StackSlot(LocationOperand::cast(op)->index());
} else {
CHECK_EQ(MachineRepresentation::kTagged, type.representation());
translation->StoreStackSlot(LocationOperand::cast(op)->index());
}
} else if (op->IsFPStackSlot()) {
if (type.representation() == MachineRepresentation::kFloat64) {
translation->StoreDoubleStackSlot(LocationOperand::cast(op)->index());
} else {
CHECK_EQ(MachineRepresentation::kFloat32, type.representation());
translation->StoreFloatStackSlot(LocationOperand::cast(op)->index());
}
} else if (op->IsRegister()) {
InstructionOperandConverter converter(this, instr);
if (type.representation() == MachineRepresentation::kBit) {
translation->StoreBoolRegister(converter.ToRegister(op));
} else if (type == MachineType::Int8() || type == MachineType::Int16() ||
type == MachineType::Int32()) {
translation->StoreInt32Register(converter.ToRegister(op));
} else if (type == MachineType::Uint8() || type == MachineType::Uint16() ||
type == MachineType::Uint32()) {
translation->StoreUint32Register(converter.ToRegister(op));
} else {
CHECK_EQ(MachineRepresentation::kTagged, type.representation());
translation->StoreRegister(converter.ToRegister(op));
}
} else if (op->IsFPRegister()) {
InstructionOperandConverter converter(this, instr);
if (type.representation() == MachineRepresentation::kFloat64) {
translation->StoreDoubleRegister(converter.ToDoubleRegister(op));
} else {
CHECK_EQ(MachineRepresentation::kFloat32, type.representation());
translation->StoreFloatRegister(converter.ToFloatRegister(op));
}
} else {
CHECK(op->IsImmediate());
InstructionOperandConverter converter(this, instr);
Constant constant = converter.ToConstant(op);
DeoptimizationLiteral literal;
switch (constant.type()) {
case Constant::kInt32:
if (type.representation() == MachineRepresentation::kTagged) {
// When pointers are 4 bytes, we can use int32 constants to represent
// Smis.
DCHECK_EQ(4, kPointerSize);
Smi* smi = reinterpret_cast<Smi*>(constant.ToInt32());
DCHECK(smi->IsSmi());
literal = DeoptimizationLiteral(smi->value());
} else if (type.representation() == MachineRepresentation::kBit) {
if (constant.ToInt32() == 0) {
literal =
DeoptimizationLiteral(isolate()->factory()->false_value());
} else {
DCHECK_EQ(1, constant.ToInt32());
literal = DeoptimizationLiteral(isolate()->factory()->true_value());
}
} else {
DCHECK(type == MachineType::Int32() ||
type == MachineType::Uint32() ||
type.representation() == MachineRepresentation::kWord32 ||
type.representation() == MachineRepresentation::kNone);
DCHECK(type.representation() != MachineRepresentation::kNone ||
constant.ToInt32() == FrameStateDescriptor::kImpossibleValue);
if (type == MachineType::Uint32()) {
literal = DeoptimizationLiteral(
static_cast<uint32_t>(constant.ToInt32()));
} else {
literal = DeoptimizationLiteral(constant.ToInt32());
}
}
break;
case Constant::kInt64:
// When pointers are 8 bytes, we can use int64 constants to represent
// Smis.
DCHECK(type.representation() == MachineRepresentation::kWord64 ||
type.representation() == MachineRepresentation::kTagged);
DCHECK_EQ(8, kPointerSize);
{
Smi* smi = reinterpret_cast<Smi*>(constant.ToInt64());
DCHECK(smi->IsSmi());
literal = DeoptimizationLiteral(smi->value());
}
break;
case Constant::kFloat32:
DCHECK(type.representation() == MachineRepresentation::kFloat32 ||
type.representation() == MachineRepresentation::kTagged);
literal = DeoptimizationLiteral(constant.ToFloat32());
break;
case Constant::kFloat64:
DCHECK(type.representation() == MachineRepresentation::kFloat64 ||
type.representation() == MachineRepresentation::kTagged);
literal = DeoptimizationLiteral(constant.ToFloat64().value());
break;
case Constant::kHeapObject:
DCHECK_EQ(MachineRepresentation::kTagged, type.representation());
literal = DeoptimizationLiteral(constant.ToHeapObject());
break;
default:
UNREACHABLE();
}
if (literal.object().equals(info()->closure())) {
translation->StoreJSFrameFunction();
} else {
int literal_id = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(literal_id);
}
}
}
void CodeGenerator::MarkLazyDeoptSite() {
last_lazy_deopt_pc_ = tasm()->pc_offset();
}
DeoptimizationExit* CodeGenerator::AddDeoptimizationExit(
Instruction* instr, size_t frame_state_offset) {
int const deoptimization_id = BuildTranslation(
instr, -1, frame_state_offset, OutputFrameStateCombine::Ignore());
DeoptimizationExit* const exit = new (zone())
DeoptimizationExit(deoptimization_id, current_source_position_);
deoptimization_exits_.push_back(exit);
return exit;
}
OutOfLineCode::OutOfLineCode(CodeGenerator* gen)
: frame_(gen->frame()), tasm_(gen->tasm()), next_(gen->ools_) {
gen->ools_ = this;
}
OutOfLineCode::~OutOfLineCode() {}
Handle<Object> DeoptimizationLiteral::Reify(Isolate* isolate) const {
return object_.is_null() ? isolate->factory()->NewNumber(number_) : object_;
}
} // namespace compiler
} // namespace internal
} // namespace v8