| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/compiler/gap-resolver.h" |
| |
| #include <algorithm> |
| #include <set> |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| namespace { |
| |
| #define REP_BIT(rep) (1 << static_cast<int>(rep)) |
| |
| const int kFloat32Bit = REP_BIT(MachineRepresentation::kFloat32); |
| const int kFloat64Bit = REP_BIT(MachineRepresentation::kFloat64); |
| |
| // Splits a FP move between two location operands into the equivalent series of |
| // moves between smaller sub-operands, e.g. a double move to two single moves. |
| // This helps reduce the number of cycles that would normally occur under FP |
| // aliasing, and makes swaps much easier to implement. |
| MoveOperands* Split(MoveOperands* move, MachineRepresentation smaller_rep, |
| ParallelMove* moves) { |
| DCHECK(!kSimpleFPAliasing); |
| // Splitting is only possible when the slot size is the same as float size. |
| DCHECK_EQ(kPointerSize, kFloatSize); |
| const LocationOperand& src_loc = LocationOperand::cast(move->source()); |
| const LocationOperand& dst_loc = LocationOperand::cast(move->destination()); |
| MachineRepresentation dst_rep = dst_loc.representation(); |
| DCHECK_NE(smaller_rep, dst_rep); |
| auto src_kind = src_loc.location_kind(); |
| auto dst_kind = dst_loc.location_kind(); |
| |
| int aliases = |
| 1 << (ElementSizeLog2Of(dst_rep) - ElementSizeLog2Of(smaller_rep)); |
| int base = -1; |
| USE(base); |
| DCHECK_EQ(aliases, RegisterConfiguration::Default()->GetAliases( |
| dst_rep, 0, smaller_rep, &base)); |
| |
| int src_index = -1; |
| int slot_size = (1 << ElementSizeLog2Of(smaller_rep)) / kPointerSize; |
| int src_step = 1; |
| if (src_kind == LocationOperand::REGISTER) { |
| src_index = src_loc.register_code() * aliases; |
| } else { |
| src_index = src_loc.index(); |
| // For operands that occupy multiple slots, the index refers to the last |
| // slot. On little-endian architectures, we start at the high slot and use a |
| // negative step so that register-to-slot moves are in the correct order. |
| src_step = -slot_size; |
| } |
| int dst_index = -1; |
| int dst_step = 1; |
| if (dst_kind == LocationOperand::REGISTER) { |
| dst_index = dst_loc.register_code() * aliases; |
| } else { |
| dst_index = dst_loc.index(); |
| dst_step = -slot_size; |
| } |
| |
| // Reuse 'move' for the first fragment. It is not pending. |
| move->set_source(AllocatedOperand(src_kind, smaller_rep, src_index)); |
| move->set_destination(AllocatedOperand(dst_kind, smaller_rep, dst_index)); |
| // Add the remaining fragment moves. |
| for (int i = 1; i < aliases; ++i) { |
| src_index += src_step; |
| dst_index += dst_step; |
| moves->AddMove(AllocatedOperand(src_kind, smaller_rep, src_index), |
| AllocatedOperand(dst_kind, smaller_rep, dst_index)); |
| } |
| // Return the first fragment. |
| return move; |
| } |
| |
| } // namespace |
| |
| void GapResolver::Resolve(ParallelMove* moves) { |
| // Clear redundant moves, and collect FP move representations if aliasing |
| // is non-simple. |
| int reps = 0; |
| for (size_t i = 0; i < moves->size();) { |
| MoveOperands* move = (*moves)[i]; |
| if (move->IsRedundant()) { |
| (*moves)[i] = moves->back(); |
| moves->pop_back(); |
| continue; |
| } |
| i++; |
| if (!kSimpleFPAliasing && move->destination().IsFPRegister()) { |
| reps |= |
| REP_BIT(LocationOperand::cast(move->destination()).representation()); |
| } |
| } |
| |
| if (!kSimpleFPAliasing) { |
| if (reps && !base::bits::IsPowerOfTwo(reps)) { |
| // Start with the smallest FP moves, so we never encounter smaller moves |
| // in the middle of a cycle of larger moves. |
| if ((reps & kFloat32Bit) != 0) { |
| split_rep_ = MachineRepresentation::kFloat32; |
| for (size_t i = 0; i < moves->size(); ++i) { |
| auto move = (*moves)[i]; |
| if (!move->IsEliminated() && move->destination().IsFloatRegister()) |
| PerformMove(moves, move); |
| } |
| } |
| if ((reps & kFloat64Bit) != 0) { |
| split_rep_ = MachineRepresentation::kFloat64; |
| for (size_t i = 0; i < moves->size(); ++i) { |
| auto move = (*moves)[i]; |
| if (!move->IsEliminated() && move->destination().IsDoubleRegister()) |
| PerformMove(moves, move); |
| } |
| } |
| } |
| split_rep_ = MachineRepresentation::kSimd128; |
| } |
| |
| for (size_t i = 0; i < moves->size(); ++i) { |
| auto move = (*moves)[i]; |
| if (!move->IsEliminated()) PerformMove(moves, move); |
| } |
| } |
| |
| void GapResolver::PerformMove(ParallelMove* moves, MoveOperands* move) { |
| // Each call to this function performs a move and deletes it from the move |
| // graph. We first recursively perform any move blocking this one. We mark a |
| // move as "pending" on entry to PerformMove in order to detect cycles in the |
| // move graph. We use operand swaps to resolve cycles, which means that a |
| // call to PerformMove could change any source operand in the move graph. |
| DCHECK(!move->IsPending()); |
| DCHECK(!move->IsRedundant()); |
| |
| // Clear this move's destination to indicate a pending move. The actual |
| // destination is saved on the side. |
| InstructionOperand source = move->source(); |
| DCHECK(!source.IsInvalid()); // Or else it will look eliminated. |
| InstructionOperand destination = move->destination(); |
| move->SetPending(); |
| |
| // We may need to split moves between FP locations differently. |
| const bool is_fp_loc_move = |
| !kSimpleFPAliasing && destination.IsFPLocationOperand(); |
| |
| // Perform a depth-first traversal of the move graph to resolve dependencies. |
| // Any unperformed, unpending move with a source the same as this one's |
| // destination blocks this one so recursively perform all such moves. |
| for (size_t i = 0; i < moves->size(); ++i) { |
| auto other = (*moves)[i]; |
| if (other->IsEliminated()) continue; |
| if (other->IsPending()) continue; |
| if (other->source().InterferesWith(destination)) { |
| if (is_fp_loc_move && |
| LocationOperand::cast(other->source()).representation() > |
| split_rep_) { |
| // 'other' must also be an FP location move. Break it into fragments |
| // of the same size as 'move'. 'other' is set to one of the fragments, |
| // and the rest are appended to 'moves'. |
| other = Split(other, split_rep_, moves); |
| // 'other' may not block destination now. |
| if (!other->source().InterferesWith(destination)) continue; |
| } |
| // Though PerformMove can change any source operand in the move graph, |
| // this call cannot create a blocking move via a swap (this loop does not |
| // miss any). Assume there is a non-blocking move with source A and this |
| // move is blocked on source B and there is a swap of A and B. Then A and |
| // B must be involved in the same cycle (or they would not be swapped). |
| // Since this move's destination is B and there is only a single incoming |
| // edge to an operand, this move must also be involved in the same cycle. |
| // In that case, the blocking move will be created but will be "pending" |
| // when we return from PerformMove. |
| PerformMove(moves, other); |
| } |
| } |
| |
| // This move's source may have changed due to swaps to resolve cycles and so |
| // it may now be the last move in the cycle. If so remove it. |
| source = move->source(); |
| if (source.EqualsCanonicalized(destination)) { |
| move->Eliminate(); |
| return; |
| } |
| |
| // We are about to resolve this move and don't need it marked as pending, so |
| // restore its destination. |
| move->set_destination(destination); |
| |
| // The move may be blocked on a (at most one) pending move, in which case we |
| // have a cycle. Search for such a blocking move and perform a swap to |
| // resolve it. |
| auto blocker = |
| std::find_if(moves->begin(), moves->end(), [&](MoveOperands* move) { |
| return !move->IsEliminated() && |
| move->source().InterferesWith(destination); |
| }); |
| if (blocker == moves->end()) { |
| // The easy case: This move is not blocked. |
| assembler_->AssembleMove(&source, &destination); |
| move->Eliminate(); |
| return; |
| } |
| |
| // Ensure source is a register or both are stack slots, to limit swap cases. |
| if (source.IsStackSlot() || source.IsFPStackSlot()) { |
| std::swap(source, destination); |
| } |
| assembler_->AssembleSwap(&source, &destination); |
| move->Eliminate(); |
| |
| // Update outstanding moves whose source may now have been moved. |
| if (is_fp_loc_move) { |
| // We may have to split larger moves. |
| for (size_t i = 0; i < moves->size(); ++i) { |
| auto other = (*moves)[i]; |
| if (other->IsEliminated()) continue; |
| if (source.InterferesWith(other->source())) { |
| if (LocationOperand::cast(other->source()).representation() > |
| split_rep_) { |
| other = Split(other, split_rep_, moves); |
| if (!source.InterferesWith(other->source())) continue; |
| } |
| other->set_source(destination); |
| } else if (destination.InterferesWith(other->source())) { |
| if (LocationOperand::cast(other->source()).representation() > |
| split_rep_) { |
| other = Split(other, split_rep_, moves); |
| if (!destination.InterferesWith(other->source())) continue; |
| } |
| other->set_source(source); |
| } |
| } |
| } else { |
| for (auto other : *moves) { |
| if (other->IsEliminated()) continue; |
| if (source.EqualsCanonicalized(other->source())) { |
| other->set_source(destination); |
| } else if (destination.EqualsCanonicalized(other->source())) { |
| other->set_source(source); |
| } |
| } |
| } |
| } |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |