blob: d8bf250ec6c4f26bfec65d09d69e83f318948318 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/adapters.h"
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties.h"
namespace v8 {
namespace internal {
namespace compiler {
// Adds IA32-specific methods for generating operands.
class IA32OperandGenerator final : public OperandGenerator {
public:
explicit IA32OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand UseByteRegister(Node* node) {
// TODO(titzer): encode byte register use constraints.
return UseFixed(node, edx);
}
InstructionOperand DefineAsByteRegister(Node* node) {
// TODO(titzer): encode byte register def constraints.
return DefineAsRegister(node);
}
bool CanBeMemoryOperand(InstructionCode opcode, Node* node, Node* input,
int effect_level) {
if (input->opcode() != IrOpcode::kLoad ||
!selector()->CanCover(node, input)) {
return false;
}
if (effect_level != selector()->GetEffectLevel(input)) {
return false;
}
MachineRepresentation rep =
LoadRepresentationOf(input->op()).representation();
switch (opcode) {
case kIA32And:
case kIA32Or:
case kIA32Xor:
case kIA32Add:
case kIA32Sub:
case kIA32Cmp:
case kIA32Test:
return rep == MachineRepresentation::kWord32 || IsAnyTagged(rep);
case kIA32Cmp16:
case kIA32Test16:
return rep == MachineRepresentation::kWord16;
case kIA32Cmp8:
case kIA32Test8:
return rep == MachineRepresentation::kWord8;
default:
break;
}
return false;
}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kNumberConstant:
case IrOpcode::kExternalConstant:
case IrOpcode::kRelocatableInt32Constant:
case IrOpcode::kRelocatableInt64Constant:
return true;
case IrOpcode::kHeapConstant: {
// TODO(bmeurer): We must not dereference handles concurrently. If we
// really have to this here, then we need to find a way to put this
// information on the HeapConstant node already.
#if 0
// Constants in new space cannot be used as immediates in V8 because
// the GC does not scan code objects when collecting the new generation.
Handle<HeapObject> value = OpParameter<Handle<HeapObject>>(node);
Isolate* isolate = value->GetIsolate();
return !isolate->heap()->InNewSpace(*value);
#endif
}
default:
return false;
}
}
AddressingMode GenerateMemoryOperandInputs(Node* index, int scale, Node* base,
Node* displacement_node,
DisplacementMode displacement_mode,
InstructionOperand inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
int32_t displacement = (displacement_node == nullptr)
? 0
: OpParameter<int32_t>(displacement_node);
if (displacement_mode == kNegativeDisplacement) {
displacement = -displacement;
}
if (base != nullptr) {
if (base->opcode() == IrOpcode::kInt32Constant) {
displacement += OpParameter<int32_t>(base);
base = nullptr;
}
}
if (base != nullptr) {
inputs[(*input_count)++] = UseRegister(base);
if (index != nullptr) {
DCHECK(scale >= 0 && scale <= 3);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale];
}
} else {
if (displacement == 0) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK(scale >= 0 && scale <= 3);
if (index != nullptr) {
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale];
} else {
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2,
kMode_M4, kMode_M8};
mode = kMn_modes[scale];
}
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
return kMode_MI;
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(Node* node,
InstructionOperand inputs[],
size_t* input_count) {
BaseWithIndexAndDisplacement32Matcher m(node, AddressOption::kAllowAll);
DCHECK(m.matches());
if ((m.displacement() == nullptr || CanBeImmediate(m.displacement()))) {
return GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(),
m.displacement_mode(), inputs, input_count);
} else {
inputs[(*input_count)++] = UseRegister(node->InputAt(0));
inputs[(*input_count)++] = UseRegister(node->InputAt(1));
return kMode_MR1;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
namespace {
void VisitRO(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void VisitRR(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void VisitRROFloat(InstructionSelector* selector, Node* node,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
IA32OperandGenerator g(selector);
InstructionOperand operand0 = g.UseRegister(node->InputAt(0));
InstructionOperand operand1 = g.Use(node->InputAt(1));
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), operand0, operand1);
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), operand0, operand1);
}
}
void VisitFloatUnop(InstructionSelector* selector, Node* node, Node* input,
ArchOpcode avx_opcode, ArchOpcode sse_opcode) {
IA32OperandGenerator g(selector);
if (selector->IsSupported(AVX)) {
selector->Emit(avx_opcode, g.DefineAsRegister(node), g.Use(input));
} else {
selector->Emit(sse_opcode, g.DefineSameAsFirst(node), g.UseRegister(input));
}
}
} // namespace
void InstructionSelector::VisitStackSlot(Node* node) {
StackSlotRepresentation rep = StackSlotRepresentationOf(node->op());
int slot = frame_->AllocateSpillSlot(rep.size());
OperandGenerator g(this);
Emit(kArchStackSlot, g.DefineAsRegister(node),
sequence()->AddImmediate(Constant(slot)), 0, nullptr);
}
void InstructionSelector::VisitDebugAbort(Node* node) {
IA32OperandGenerator g(this);
Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), edx));
}
void InstructionSelector::VisitSpeculationFence(Node* node) {
IA32OperandGenerator g(this);
Emit(kLFence, g.NoOutput());
}
void InstructionSelector::VisitLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (load_rep.representation()) {
case MachineRepresentation::kFloat32:
opcode = kIA32Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kIA32Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = load_rep.IsSigned() ? kIA32Movsxbl : kIA32Movzxbl;
break;
case MachineRepresentation::kWord16:
opcode = load_rep.IsSigned() ? kIA32Movsxwl : kIA32Movzxwl;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kIA32Movl;
break;
case MachineRepresentation::kSimd128:
opcode = kIA32Movdqu;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
IA32OperandGenerator g(this);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionOperand inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitProtectedLoad(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
void InstructionSelector::VisitStore(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = StoreRepresentationOf(node->op());
WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind();
MachineRepresentation rep = store_rep.representation();
if (write_barrier_kind != kNoWriteBarrier) {
DCHECK(CanBeTaggedPointer(rep));
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
inputs[input_count++] = g.UseUniqueRegister(value);
RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny;
switch (write_barrier_kind) {
case kNoWriteBarrier:
UNREACHABLE();
break;
case kMapWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsMap;
break;
case kPointerWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsPointer;
break;
case kFullWriteBarrier:
record_write_mode = RecordWriteMode::kValueIsAny;
break;
}
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
size_t const temp_count = arraysize(temps);
InstructionCode code = kArchStoreWithWriteBarrier;
code |= AddressingModeField::encode(addressing_mode);
code |= MiscField::encode(static_cast<int>(record_write_mode));
Emit(code, 0, nullptr, input_count, inputs, temp_count, temps);
} else {
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kFloat32:
opcode = kIA32Movss;
break;
case MachineRepresentation::kFloat64:
opcode = kIA32Movsd;
break;
case MachineRepresentation::kBit: // Fall through.
case MachineRepresentation::kWord8:
opcode = kIA32Movb;
break;
case MachineRepresentation::kWord16:
opcode = kIA32Movw;
break;
case MachineRepresentation::kTaggedSigned: // Fall through.
case MachineRepresentation::kTaggedPointer: // Fall through.
case MachineRepresentation::kTagged: // Fall through.
case MachineRepresentation::kWord32:
opcode = kIA32Movl;
break;
case MachineRepresentation::kSimd128:
opcode = kIA32Movdqu;
break;
case MachineRepresentation::kWord64: // Fall through.
case MachineRepresentation::kNone:
UNREACHABLE();
return;
}
InstructionOperand val;
if (g.CanBeImmediate(value)) {
val = g.UseImmediate(value);
} else if (rep == MachineRepresentation::kWord8 ||
rep == MachineRepresentation::kBit) {
val = g.UseByteRegister(value);
} else {
val = g.UseRegister(value);
}
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code =
opcode | AddressingModeField::encode(addressing_mode);
inputs[input_count++] = val;
Emit(code, 0, static_cast<InstructionOperand*>(nullptr), input_count,
inputs);
}
}
void InstructionSelector::VisitProtectedStore(Node* node) {
// TODO(eholk)
UNIMPLEMENTED();
}
// Architecture supports unaligned access, therefore VisitLoad is used instead
void InstructionSelector::VisitUnalignedLoad(Node* node) { UNREACHABLE(); }
// Architecture supports unaligned access, therefore VisitStore is used instead
void InstructionSelector::VisitUnalignedStore(Node* node) { UNREACHABLE(); }
namespace {
// Shared routine for multiple binary operations.
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand inputs[6];
size_t input_count = 0;
InstructionOperand outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov eax, [ebp-0x10]
// add eax, [ebp-0x10]
// jo label
InstructionOperand const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
int effect_level = selector->GetEffectLevel(node);
if (cont->IsBranch()) {
effect_level = selector->GetEffectLevel(
cont->true_block()->PredecessorAt(0)->control_input());
}
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right) &&
(!g.CanBeBetterLeftOperand(left) ||
!g.CanBeMemoryOperand(opcode, node, right, effect_level))) {
std::swap(left, right);
}
if (g.CanBeMemoryOperand(opcode, node, right, effect_level)) {
inputs[input_count++] = g.UseRegister(left);
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(right, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
} else {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
if (cont->IsSet()) {
outputs[output_count++] = g.DefineAsByteRegister(cont->result());
}
DCHECK_NE(0u, input_count);
DCHECK_NE(0u, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
opcode = cont->Encode(opcode);
if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs,
cont->kind(), cont->reason(), cont->feedback(),
cont->frame_state());
} else {
selector->Emit(opcode, output_count, outputs, input_count, inputs);
}
}
// Shared routine for multiple binary operations.
void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
} // namespace
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop(this, node, kIA32And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kIA32Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kIA32Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kIA32Xor);
}
}
// Shared routine for multiple shift operations.
static inline void VisitShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, ecx));
}
}
namespace {
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(eax)};
selector->Emit(
opcode, g.DefineAsFixed(node, edx), g.UseFixed(node->InputAt(0), eax),
g.UseUniqueRegister(node->InputAt(1)), arraysize(temps), temps);
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(edx)};
selector->Emit(opcode, g.DefineAsFixed(node, eax),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand temps[] = {g.TempRegister(eax)};
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
}
void EmitLea(InstructionSelector* selector, Node* result, Node* index,
int scale, Node* base, Node* displacement,
DisplacementMode displacement_mode) {
IA32OperandGenerator g(selector);
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode =
g.GenerateMemoryOperandInputs(index, scale, base, displacement,
displacement_mode, inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(result);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement);
return;
}
VisitShift(this, node, kIA32Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitShift(this, node, kIA32Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitShift(this, node, kIA32Sar);
}
void InstructionSelector::VisitInt32PairAdd(Node* node) {
IA32OperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the temp
// register.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {g.DefineSameAsFirst(node),
g.DefineAsRegister(projection1)};
InstructionOperand temps[] = {g.TempRegister()};
Emit(kIA32AddPair, 2, outputs, 4, inputs, 1, temps);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kIA32Add, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.Use(node->InputAt(2)));
}
}
void InstructionSelector::VisitInt32PairSub(Node* node) {
IA32OperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// We use UseUniqueRegister here to avoid register sharing with the temp
// register.
InstructionOperand inputs[] = {
g.UseRegister(node->InputAt(0)), g.UseUniqueRegister(node->InputAt(1)),
g.UseRegister(node->InputAt(2)), g.UseUniqueRegister(node->InputAt(3))};
InstructionOperand outputs[] = {g.DefineSameAsFirst(node),
g.DefineAsRegister(projection1)};
InstructionOperand temps[] = {g.TempRegister()};
Emit(kIA32SubPair, 2, outputs, 4, inputs, 1, temps);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kIA32Sub, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.Use(node->InputAt(2)));
}
}
void InstructionSelector::VisitInt32PairMul(Node* node) {
IA32OperandGenerator g(this);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
// InputAt(3) explicitly shares ecx with OutputRegister(1) to save one
// register and one mov instruction.
InstructionOperand inputs[] = {g.UseUnique(node->InputAt(0)),
g.UseUnique(node->InputAt(1)),
g.UseUniqueRegister(node->InputAt(2)),
g.UseFixed(node->InputAt(3), ecx)};
InstructionOperand outputs[] = {
g.DefineAsFixed(node, eax),
g.DefineAsFixed(NodeProperties::FindProjection(node, 1), ecx)};
InstructionOperand temps[] = {g.TempRegister(edx)};
Emit(kIA32MulPair, 2, outputs, 4, inputs, 1, temps);
} else {
// The high word of the result is not used, so we emit the standard 32 bit
// instruction.
Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.Use(node->InputAt(2)));
}
}
void VisitWord32PairShift(InstructionSelector* selector, InstructionCode opcode,
Node* node) {
IA32OperandGenerator g(selector);
Node* shift = node->InputAt(2);
InstructionOperand shift_operand;
if (g.CanBeImmediate(shift)) {
shift_operand = g.UseImmediate(shift);
} else {
shift_operand = g.UseFixed(shift, ecx);
}
InstructionOperand inputs[] = {g.UseFixed(node->InputAt(0), eax),
g.UseFixed(node->InputAt(1), edx),
shift_operand};
InstructionOperand outputs[2];
InstructionOperand temps[1];
int32_t output_count = 0;
int32_t temp_count = 0;
outputs[output_count++] = g.DefineAsFixed(node, eax);
Node* projection1 = NodeProperties::FindProjection(node, 1);
if (projection1) {
outputs[output_count++] = g.DefineAsFixed(projection1, edx);
} else {
temps[temp_count++] = g.TempRegister(edx);
}
selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps);
}
void InstructionSelector::VisitWord32PairShl(Node* node) {
VisitWord32PairShift(this, kIA32ShlPair, node);
}
void InstructionSelector::VisitWord32PairShr(Node* node) {
VisitWord32PairShift(this, kIA32ShrPair, node);
}
void InstructionSelector::VisitWord32PairSar(Node* node) {
VisitWord32PairShift(this, kIA32SarPair, node);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitShift(this, node, kIA32Ror);
}
#define RO_OP_LIST(V) \
V(Word32Clz, kIA32Lzcnt) \
V(Word32Ctz, kIA32Tzcnt) \
V(Word32Popcnt, kIA32Popcnt) \
V(ChangeFloat32ToFloat64, kSSEFloat32ToFloat64) \
V(RoundInt32ToFloat32, kSSEInt32ToFloat32) \
V(ChangeInt32ToFloat64, kSSEInt32ToFloat64) \
V(ChangeUint32ToFloat64, kSSEUint32ToFloat64) \
V(TruncateFloat32ToInt32, kSSEFloat32ToInt32) \
V(TruncateFloat32ToUint32, kSSEFloat32ToUint32) \
V(ChangeFloat64ToInt32, kSSEFloat64ToInt32) \
V(ChangeFloat64ToUint32, kSSEFloat64ToUint32) \
V(TruncateFloat64ToUint32, kSSEFloat64ToUint32) \
V(TruncateFloat64ToFloat32, kSSEFloat64ToFloat32) \
V(RoundFloat64ToInt32, kSSEFloat64ToInt32) \
V(BitcastFloat32ToInt32, kIA32BitcastFI) \
V(BitcastInt32ToFloat32, kIA32BitcastIF) \
V(Float32Sqrt, kSSEFloat32Sqrt) \
V(Float64Sqrt, kSSEFloat64Sqrt) \
V(Float64ExtractLowWord32, kSSEFloat64ExtractLowWord32) \
V(Float64ExtractHighWord32, kSSEFloat64ExtractHighWord32)
#define RR_OP_LIST(V) \
V(TruncateFloat64ToWord32, kArchTruncateDoubleToI) \
V(Float32RoundDown, kSSEFloat32Round | MiscField::encode(kRoundDown)) \
V(Float64RoundDown, kSSEFloat64Round | MiscField::encode(kRoundDown)) \
V(Float32RoundUp, kSSEFloat32Round | MiscField::encode(kRoundUp)) \
V(Float64RoundUp, kSSEFloat64Round | MiscField::encode(kRoundUp)) \
V(Float32RoundTruncate, kSSEFloat32Round | MiscField::encode(kRoundToZero)) \
V(Float64RoundTruncate, kSSEFloat64Round | MiscField::encode(kRoundToZero)) \
V(Float32RoundTiesEven, \
kSSEFloat32Round | MiscField::encode(kRoundToNearest)) \
V(Float64RoundTiesEven, kSSEFloat64Round | MiscField::encode(kRoundToNearest))
#define RRO_FLOAT_OP_LIST(V) \
V(Float32Add, kAVXFloat32Add, kSSEFloat32Add) \
V(Float64Add, kAVXFloat64Add, kSSEFloat64Add) \
V(Float32Sub, kAVXFloat32Sub, kSSEFloat32Sub) \
V(Float64Sub, kAVXFloat64Sub, kSSEFloat64Sub) \
V(Float32Mul, kAVXFloat32Mul, kSSEFloat32Mul) \
V(Float64Mul, kAVXFloat64Mul, kSSEFloat64Mul) \
V(Float32Div, kAVXFloat32Div, kSSEFloat32Div) \
V(Float64Div, kAVXFloat64Div, kSSEFloat64Div)
#define FLOAT_UNOP_LIST(V) \
V(Float32Abs, kAVXFloat32Abs, kSSEFloat32Abs) \
V(Float64Abs, kAVXFloat64Abs, kSSEFloat64Abs) \
V(Float32Neg, kAVXFloat32Neg, kSSEFloat32Neg) \
V(Float64Neg, kAVXFloat64Neg, kSSEFloat64Neg)
#define RO_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRO(this, node, opcode); \
}
RO_OP_LIST(RO_VISITOR)
#undef RO_VISITOR
#define RR_VISITOR(Name, opcode) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRR(this, node, opcode); \
}
RR_OP_LIST(RR_VISITOR)
#undef RR_VISITOR
#define RRO_FLOAT_VISITOR(Name, avx, sse) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitRROFloat(this, node, avx, sse); \
}
RRO_FLOAT_OP_LIST(RRO_FLOAT_VISITOR)
#undef RRO_FLOAT_VISITOR
#define FLOAT_UNOP_VISITOR(Name, avx, sse) \
void InstructionSelector::Visit##Name(Node* node) { \
VisitFloatUnop(this, node, node->InputAt(0), avx, sse); \
}
FLOAT_UNOP_LIST(FLOAT_UNOP_VISITOR)
#undef FLOAT_UNOP_VISITOR
void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitWord32ReverseBytes(Node* node) { UNREACHABLE(); }
void InstructionSelector::VisitInt32Add(Node* node) {
IA32OperandGenerator g(this);
// Try to match the Add to a lea pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == nullptr || g.CanBeImmediate(m.displacement()))) {
InstructionOperand inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(), m.displacement_mode(),
inputs, &input_count);
DCHECK_NE(0u, input_count);
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
Emit(opcode, 1, outputs, input_count, inputs);
return;
}
// No lea pattern match, use add
VisitBinop(this, node, kIA32Add);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
} else {
VisitBinop(this, node, kIA32Sub);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : nullptr;
EmitLea(this, node, index, m.scale(), base, nullptr, kPositiveDisplacement);
return;
}
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32ImulHigh);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32UmulHigh);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kIA32Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kIA32Udiv);
}
void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()};
Emit(kSSEUint32ToFloat32, g.DefineAsRegister(node), g.Use(node->InputAt(0)),
arraysize(temps), temps);
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister(eax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat32Max(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEFloat32Max, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)),
arraysize(temps), temps);
}
void InstructionSelector::VisitFloat64Max(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEFloat64Max, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)),
arraysize(temps), temps);
}
void InstructionSelector::VisitFloat32Min(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEFloat32Min, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)),
arraysize(temps), temps);
}
void InstructionSelector::VisitFloat64Min(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand temps[] = {g.TempRegister()};
Emit(kSSEFloat64Min, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)),
arraysize(temps), temps);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitFloat64Ieee754Binop(Node* node,
InstructionCode opcode) {
IA32OperandGenerator g(this);
Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)),
g.UseRegister(node->InputAt(1)))
->MarkAsCall();
}
void InstructionSelector::VisitFloat64Ieee754Unop(Node* node,
InstructionCode opcode) {
IA32OperandGenerator g(this);
Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)))
->MarkAsCall();
}
void InstructionSelector::EmitPrepareArguments(
ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor,
Node* node) {
IA32OperandGenerator g(this);
// Prepare for C function call.
if (descriptor->IsCFunctionCall()) {
InstructionOperand temps[] = {g.TempRegister()};
size_t const temp_count = arraysize(temps);
Emit(kArchPrepareCallCFunction |
MiscField::encode(static_cast<int>(descriptor->ParameterCount())),
0, nullptr, 0, nullptr, temp_count, temps);
// Poke any stack arguments.
for (size_t n = 0; n < arguments->size(); ++n) {
PushParameter input = (*arguments)[n];
if (input.node) {
int const slot = static_cast<int>(n);
InstructionOperand value = g.CanBeImmediate(node)
? g.UseImmediate(input.node)
: g.UseRegister(input.node);
Emit(kIA32Poke | MiscField::encode(slot), g.NoOutput(), value);
}
}
} else {
// Push any stack arguments.
int effect_level = GetEffectLevel(node);
for (PushParameter input : base::Reversed(*arguments)) {
// Skip any alignment holes in pushed nodes.
if (input.node == nullptr) continue;
if (g.CanBeMemoryOperand(kIA32Push, node, input.node, effect_level)) {
InstructionOperand outputs[1];
InstructionOperand inputs[4];
size_t input_count = 0;
InstructionCode opcode = kIA32Push;
AddressingMode mode = g.GetEffectiveAddressMemoryOperand(
input.node, inputs, &input_count);
opcode |= AddressingModeField::encode(mode);
Emit(opcode, 0, outputs, input_count, inputs);
} else {
InstructionOperand value =
g.CanBeImmediate(input.node)
? g.UseImmediate(input.node)
: IsSupported(ATOM) ||
sequence()->IsFP(GetVirtualRegister(input.node))
? g.UseRegister(input.node)
: g.Use(input.node);
if (input.location.GetType() == MachineType::Float32()) {
Emit(kIA32PushFloat32, g.NoOutput(), value);
} else if (input.location.GetType() == MachineType::Float64()) {
Emit(kIA32PushFloat64, g.NoOutput(), value);
} else if (input.location.GetType() == MachineType::Simd128()) {
Emit(kIA32PushSimd128, g.NoOutput(), value);
} else {
Emit(kIA32Push, g.NoOutput(), value);
}
}
}
}
}
void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results,
const CallDescriptor* descriptor,
Node* node) {
IA32OperandGenerator g(this);
int reverse_slot = 0;
for (PushParameter output : *results) {
if (!output.location.IsCallerFrameSlot()) continue;
// Skip any alignment holes in nodes.
if (output.node != nullptr) {
DCHECK(!descriptor->IsCFunctionCall());
if (output.location.GetType() == MachineType::Float32()) {
MarkAsFloat32(output.node);
} else if (output.location.GetType() == MachineType::Float64()) {
MarkAsFloat64(output.node);
}
Emit(kIA32Peek, g.DefineAsRegister(output.node),
g.UseImmediate(reverse_slot));
}
reverse_slot += output.location.GetSizeInPointers();
}
}
bool InstructionSelector::IsTailCallAddressImmediate() { return true; }
int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 0; }
namespace {
void VisitCompareWithMemoryOperand(InstructionSelector* selector,
InstructionCode opcode, Node* left,
InstructionOperand right,
FlagsContinuation* cont) {
DCHECK_EQ(IrOpcode::kLoad, left->opcode());
IA32OperandGenerator g(selector);
size_t input_count = 0;
InstructionOperand inputs[6];
AddressingMode addressing_mode =
g.GetEffectiveAddressMemoryOperand(left, inputs, &input_count);
opcode |= AddressingModeField::encode(addressing_mode);
opcode = cont->Encode(opcode);
inputs[input_count++] = right;
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
selector->Emit(opcode, 0, nullptr, input_count, inputs);
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, 0, nullptr, input_count, inputs,
cont->kind(), cont->reason(), cont->feedback(),
cont->frame_state());
} else if (cont->IsSet()) {
InstructionOperand output = g.DefineAsRegister(cont->result());
selector->Emit(opcode, 1, &output, input_count, inputs);
} else {
DCHECK(cont->IsTrap());
inputs[input_count++] = g.UseImmediate(cont->trap_id());
selector->Emit(opcode, 0, nullptr, input_count, inputs);
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand left, InstructionOperand right,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
opcode = cont->Encode(opcode);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), left, right,
g.Label(cont->true_block()), g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(),
cont->reason(), cont->feedback(),
cont->frame_state());
} else if (cont->IsSet()) {
selector->Emit(opcode, g.DefineAsByteRegister(cont->result()), left, right);
} else {
DCHECK(cont->IsTrap());
selector->Emit(opcode, g.NoOutput(), left, right,
g.UseImmediate(cont->trap_id()));
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
IA32OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
MachineType MachineTypeForNarrow(Node* node, Node* hint_node) {
if (hint_node->opcode() == IrOpcode::kLoad) {
MachineType hint = LoadRepresentationOf(hint_node->op());
if (node->opcode() == IrOpcode::kInt32Constant ||
node->opcode() == IrOpcode::kInt64Constant) {
int64_t constant = node->opcode() == IrOpcode::kInt32Constant
? OpParameter<int32_t>(node)
: OpParameter<int64_t>(node);
if (hint == MachineType::Int8()) {
if (constant >= std::numeric_limits<int8_t>::min() &&
constant <= std::numeric_limits<int8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint8()) {
if (constant >= std::numeric_limits<uint8_t>::min() &&
constant <= std::numeric_limits<uint8_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int16()) {
if (constant >= std::numeric_limits<int16_t>::min() &&
constant <= std::numeric_limits<int16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Uint16()) {
if (constant >= std::numeric_limits<uint16_t>::min() &&
constant <= std::numeric_limits<uint16_t>::max()) {
return hint;
}
} else if (hint == MachineType::Int32()) {
return hint;
} else if (hint == MachineType::Uint32()) {
if (constant >= 0) return hint;
}
}
}
return node->opcode() == IrOpcode::kLoad ? LoadRepresentationOf(node->op())
: MachineType::None();
}
// Tries to match the size of the given opcode to that of the operands, if
// possible.
InstructionCode TryNarrowOpcodeSize(InstructionCode opcode, Node* left,
Node* right, FlagsContinuation* cont) {
// TODO(epertoso): we can probably get some size information out of phi nodes.
// If the load representations don't match, both operands will be
// zero/sign-extended to 32bit.
MachineType left_type = MachineTypeForNarrow(left, right);
MachineType right_type = MachineTypeForNarrow(right, left);
if (left_type == right_type) {
switch (left_type.representation()) {
case MachineRepresentation::kBit:
case MachineRepresentation::kWord8: {
if (opcode == kIA32Test) return kIA32Test8;
if (opcode == kIA32Cmp) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kIA32Cmp8;
}
break;
}
case MachineRepresentation::kWord16:
if (opcode == kIA32Test) return kIA32Test16;
if (opcode == kIA32Cmp) {
if (left_type.semantic() == MachineSemantic::kUint32) {
cont->OverwriteUnsignedIfSigned();
} else {
CHECK_EQ(MachineSemantic::kInt32, left_type.semantic());
}
return kIA32Cmp16;
}
break;
default:
break;
}
}
return opcode;
}
// Shared routine for multiple float32 compare operations (inputs commuted).
void VisitFloat32Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
VisitCompare(selector, kSSEFloat32Cmp, right, left, cont, false);
}
// Shared routine for multiple float64 compare operations (inputs commuted).
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
VisitCompare(selector, kSSEFloat64Cmp, right, left, cont, false);
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
InstructionCode narrowed_opcode =
TryNarrowOpcodeSize(opcode, left, right, cont);
int effect_level = selector->GetEffectLevel(node);
if (cont->IsBranch()) {
effect_level = selector->GetEffectLevel(
cont->true_block()->PredecessorAt(0)->control_input());
}
// If one of the two inputs is an immediate, make sure it's on the right, or
// if one of the two inputs is a memory operand, make sure it's on the left.
if ((!g.CanBeImmediate(right) && g.CanBeImmediate(left)) ||
(g.CanBeMemoryOperand(narrowed_opcode, node, right, effect_level) &&
!g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level))) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
std::swap(left, right);
}
// Match immediates on right side of comparison.
if (g.CanBeImmediate(right)) {
if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) {
return VisitCompareWithMemoryOperand(selector, narrowed_opcode, left,
g.UseImmediate(right), cont);
}
return VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right),
cont);
}
// Match memory operands on left side of comparison.
if (g.CanBeMemoryOperand(narrowed_opcode, node, left, effect_level)) {
bool needs_byte_register =
narrowed_opcode == kIA32Test8 || narrowed_opcode == kIA32Cmp8;
return VisitCompareWithMemoryOperand(
selector, narrowed_opcode, left,
needs_byte_register ? g.UseByteRegister(right) : g.UseRegister(right),
cont);
}
return VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
void VisitWordCompare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
if (m.left().IsLoad() && m.right().IsLoadStackPointer()) {
LoadMatcher<ExternalReferenceMatcher> mleft(m.left().node());
ExternalReference js_stack_limit =
ExternalReference::address_of_stack_limit(selector->isolate());
if (mleft.object().Is(js_stack_limit) && mleft.index().Is(0)) {
// Compare(Load(js_stack_limit), LoadStackPointer)
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
InstructionCode opcode = cont->Encode(kIA32StackCheck);
if (cont->IsBranch()) {
selector->Emit(opcode, g.NoOutput(), g.Label(cont->true_block()),
g.Label(cont->false_block()));
} else if (cont->IsDeoptimize()) {
selector->EmitDeoptimize(opcode, 0, nullptr, 0, nullptr, cont->kind(),
cont->reason(), cont->feedback(),
cont->frame_state());
} else {
DCHECK(cont->IsSet());
selector->Emit(opcode, g.DefineAsRegister(cont->result()));
}
return;
}
}
VisitWordCompare(selector, node, kIA32Cmp, cont);
}
// Shared routine for word comparison with zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
// Try to combine with comparisons against 0 by simply inverting the branch.
while (value->opcode() == IrOpcode::kWord32Equal &&
selector->CanCover(user, value)) {
Int32BinopMatcher m(value);
if (!m.right().Is(0)) break;
user = value;
value = m.left().node();
cont->Negate();
}
if (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal:
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kFloat32Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat32Compare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedGreaterThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (ProjectionIndexOf(value->op()) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either nullptr, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* const node = value->InputAt(0);
Node* const result = NodeProperties::FindProjection(node, 0);
if (result == nullptr || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Add, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Sub, cont);
case IrOpcode::kInt32MulWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Imul, cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWordCompare(selector, value, cont);
case IrOpcode::kWord32And:
return VisitWordCompare(selector, value, kIA32Test, cont);
default:
break;
}
}
// Continuation could not be combined with a compare, emit compare against 0.
IA32OperandGenerator g(selector);
VisitCompare(selector, kIA32Cmp, g.Use(value), g.TempImmediate(0), cont);
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeIf(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitDeoptimizeUnless(Node* node) {
DeoptimizeParameters p = DeoptimizeParametersOf(node->op());
FlagsContinuation cont = FlagsContinuation::ForDeoptimize(
kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitTrapUnless(Node* node,
Runtime::FunctionId func_id) {
FlagsContinuation cont =
FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1));
VisitWordCompareZero(this, node, node->InputAt(0), &cont);
}
void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) {
IA32OperandGenerator g(this);
InstructionOperand value_operand = g.UseRegister(node->InputAt(0));
// Emit either ArchTableSwitch or ArchLookupSwitch.
static const size_t kMaxTableSwitchValueRange = 2 << 16;
size_t table_space_cost = 4 + sw.value_range;
size_t table_time_cost = 3;
size_t lookup_space_cost = 3 + 2 * sw.case_count;
size_t lookup_time_cost = sw.case_count;
if (sw.case_count > 4 &&
table_space_cost + 3 * table_time_cost <=
lookup_space_cost + 3 * lookup_time_cost &&
sw.min_value > std::numeric_limits<int32_t>::min() &&
sw.value_range <= kMaxTableSwitchValueRange) {
InstructionOperand index_operand = value_operand;
if (sw.min_value) {
index_operand = g.TempRegister();
Emit(kIA32Lea | AddressingModeField::encode(kMode_MRI), index_operand,
value_operand, g.TempImmediate(-sw.min_value));
}
// Generate a table lookup.
return EmitTableSwitch(sw, index_operand);
}
// Generate a sequence of conditional jumps.
return EmitLookupSwitch(sw, value_operand);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kIA32Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Add, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kIA32Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Sub, &cont);
}
void InstructionSelector::VisitInt32MulWithOverflow(Node* node) {
if (Node* ovf = NodeProperties::FindProjection(node, 1)) {
FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf);
return VisitBinop(this, node, kIA32Imul, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Imul, &cont);
}
void InstructionSelector::VisitFloat32Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThan(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat32Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont = FlagsContinuation::ForSet(kUnorderedEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont =
FlagsContinuation::ForSet(kUnsignedGreaterThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Float64Matcher mleft(left);
if (mleft.HasValue() && (bit_cast<uint64_t>(mleft.Value()) >> 32) == 0u) {
Emit(kSSEFloat64LoadLowWord32, g.DefineAsRegister(node), g.Use(right));
return;
}
Emit(kSSEFloat64InsertLowWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) {
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
Emit(kSSEFloat64InsertHighWord32, g.DefineSameAsFirst(node),
g.UseRegister(left), g.Use(right));
}
void InstructionSelector::VisitFloat64SilenceNaN(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64SilenceNaN, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitAtomicLoad(Node* node) {
LoadRepresentation load_rep = LoadRepresentationOf(node->op());
DCHECK(load_rep.representation() == MachineRepresentation::kWord8 ||
load_rep.representation() == MachineRepresentation::kWord16 ||
load_rep.representation() == MachineRepresentation::kWord32);
USE(load_rep);
VisitLoad(node);
}
void InstructionSelector::VisitAtomicStore(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
MachineRepresentation rep = AtomicStoreRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
switch (rep) {
case MachineRepresentation::kWord8:
opcode = kAtomicExchangeInt8;
break;
case MachineRepresentation::kWord16:
opcode = kAtomicExchangeInt16;
break;
case MachineRepresentation::kWord32:
opcode = kAtomicExchangeWord32;
break;
default:
UNREACHABLE();
break;
}
AddressingMode addressing_mode;
InstructionOperand inputs[4];
size_t input_count = 0;
if (rep == MachineRepresentation::kWord8) {
inputs[input_count++] = g.UseByteRegister(value);
} else {
inputs[input_count++] = g.UseUniqueRegister(value);
}
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 0, nullptr, input_count, inputs);
}
void InstructionSelector::VisitAtomicExchange(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
MachineType type = AtomicOpRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Int8()) {
opcode = kAtomicExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicExchangeWord32;
} else {
UNREACHABLE();
return;
}
InstructionOperand outputs[1];
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
if (type == MachineType::Int8() || type == MachineType::Uint8()) {
inputs[input_count++] = g.UseFixed(value, edx);
} else {
inputs[input_count++] = g.UseUniqueRegister(value);
}
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
if (type == MachineType::Int8() || type == MachineType::Uint8()) {
// Using DefineSameAsFirst requires the register to be unallocated.
outputs[0] = g.DefineAsFixed(node, edx);
} else {
outputs[0] = g.DefineSameAsFirst(node);
}
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitAtomicCompareExchange(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* old_value = node->InputAt(2);
Node* new_value = node->InputAt(3);
MachineType type = AtomicOpRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Int8()) {
opcode = kAtomicCompareExchangeInt8;
} else if (type == MachineType::Uint8()) {
opcode = kAtomicCompareExchangeUint8;
} else if (type == MachineType::Int16()) {
opcode = kAtomicCompareExchangeInt16;
} else if (type == MachineType::Uint16()) {
opcode = kAtomicCompareExchangeUint16;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = kAtomicCompareExchangeWord32;
} else {
UNREACHABLE();
return;
}
InstructionOperand outputs[1];
AddressingMode addressing_mode;
InstructionOperand inputs[4];
size_t input_count = 0;
inputs[input_count++] = g.UseFixed(old_value, eax);
if (type == MachineType::Int8() || type == MachineType::Uint8()) {
inputs[input_count++] = g.UseByteRegister(new_value);
} else {
inputs[input_count++] = g.UseUniqueRegister(new_value);
}
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
outputs[0] = g.DefineAsFixed(node, eax);
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitAtomicBinaryOperation(
Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op,
ArchOpcode uint16_op, ArchOpcode word32_op) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
MachineType type = AtomicOpRepresentationOf(node->op());
ArchOpcode opcode = kArchNop;
if (type == MachineType::Int8()) {
opcode = int8_op;
} else if (type == MachineType::Uint8()) {
opcode = uint8_op;
} else if (type == MachineType::Int16()) {
opcode = int16_op;
} else if (type == MachineType::Uint16()) {
opcode = uint16_op;
} else if (type == MachineType::Int32() || type == MachineType::Uint32()) {
opcode = word32_op;
} else {
UNREACHABLE();
return;
}
InstructionOperand outputs[1];
AddressingMode addressing_mode;
InstructionOperand inputs[3];
size_t input_count = 0;
inputs[input_count++] = g.UseUniqueRegister(value);
inputs[input_count++] = g.UseUniqueRegister(base);
if (g.CanBeImmediate(index)) {
inputs[input_count++] = g.UseImmediate(index);
addressing_mode = kMode_MRI;
} else {
inputs[input_count++] = g.UseUniqueRegister(index);
addressing_mode = kMode_MR1;
}
outputs[0] = g.DefineAsFixed(node, eax);
InstructionOperand temp[1];
if (type == MachineType::Int8() || type == MachineType::Uint8()) {
temp[0] = g.UseByteRegister(node);
} else {
temp[0] = g.TempRegister();
}
InstructionCode code = opcode | AddressingModeField::encode(addressing_mode);
Emit(code, 1, outputs, input_count, inputs, 1, temp);
}
#define VISIT_ATOMIC_BINOP(op) \
void InstructionSelector::VisitAtomic##op(Node* node) { \
VisitAtomicBinaryOperation(node, kAtomic##op##Int8, kAtomic##op##Uint8, \
kAtomic##op##Int16, kAtomic##op##Uint16, \
kAtomic##op##Word32); \
}
VISIT_ATOMIC_BINOP(Add)
VISIT_ATOMIC_BINOP(Sub)
VISIT_ATOMIC_BINOP(And)
VISIT_ATOMIC_BINOP(Or)
VISIT_ATOMIC_BINOP(Xor)
#undef VISIT_ATOMIC_BINOP
#define SIMD_INT_TYPES(V) \
V(I32x4) \
V(I16x8) \
V(I8x16)
#define SIMD_BINOP_LIST(V) \
V(F32x4Add) \
V(F32x4Sub) \
V(F32x4Mul) \
V(F32x4Min) \
V(F32x4Max) \
V(F32x4Eq) \
V(F32x4Ne) \
V(F32x4Lt) \
V(F32x4Le) \
V(I32x4Add) \
V(I32x4Sub) \
V(I32x4Mul) \
V(I32x4MinS) \
V(I32x4MaxS) \
V(I32x4Eq) \
V(I32x4Ne) \
V(I32x4GtS) \
V(I32x4GeS) \
V(I32x4MinU) \
V(I32x4MaxU) \
V(I32x4GtU) \
V(I32x4GeU) \
V(I16x8Add) \
V(I16x8AddSaturateS) \
V(I16x8Sub) \
V(I16x8SubSaturateS) \
V(I16x8Mul) \
V(I16x8MinS) \
V(I16x8MaxS) \
V(I16x8Eq) \
V(I16x8Ne) \
V(I16x8GtS) \
V(I16x8GeS) \
V(I16x8AddSaturateU) \
V(I16x8SubSaturateU) \
V(I16x8MinU) \
V(I16x8MaxU) \
V(I16x8GtU) \
V(I16x8GeU) \
V(I8x16Add) \
V(I8x16AddSaturateS) \
V(I8x16Sub) \
V(I8x16SubSaturateS) \
V(I8x16MinS) \
V(I8x16MaxS) \
V(I8x16Eq) \
V(I8x16Ne) \
V(I8x16GtS) \
V(I8x16GeS) \
V(I8x16AddSaturateU) \
V(I8x16SubSaturateU) \
V(I8x16MinU) \
V(I8x16MaxU) \
V(I8x16GtU) \
V(I8x16GeU) \
V(S128And) \
V(S128Or) \
V(S128Xor)
#define SIMD_INT_UNOP_LIST(V) \
V(I32x4Neg) \
V(I16x8Neg) \
V(I8x16Neg)
#define SIMD_OTHER_UNOP_LIST(V) \
V(F32x4Abs) \
V(F32x4Neg) \
V(S128Not)
#define SIMD_SHIFT_OPCODES(V) \
V(I32x4Shl) \
V(I32x4ShrS) \
V(I32x4ShrU) \
V(I16x8Shl) \
V(I16x8ShrS) \
V(I16x8ShrU)
void InstructionSelector::VisitF32x4Splat(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand operand0 = g.UseRegister(node->InputAt(0));
if (IsSupported(AVX)) {
Emit(kAVXF32x4Splat, g.DefineAsRegister(node), operand0);
} else {
Emit(kSSEF32x4Splat, g.DefineSameAsFirst(node), operand0);
}
}
void InstructionSelector::VisitF32x4ExtractLane(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand operand0 = g.UseRegister(node->InputAt(0));
InstructionOperand operand1 = g.UseImmediate(OpParameter<int32_t>(node));
if (IsSupported(AVX)) {
Emit(kAVXF32x4ExtractLane, g.DefineAsRegister(node), operand0, operand1);
} else {
Emit(kSSEF32x4ExtractLane, g.DefineSameAsFirst(node), operand0, operand1);
}
}
void InstructionSelector::VisitS128Zero(Node* node) {
IA32OperandGenerator g(this);
Emit(kIA32S128Zero, g.DefineAsRegister(node));
}
#define VISIT_SIMD_SPLAT(Type) \
void InstructionSelector::Visit##Type##Splat(Node* node) { \
VisitRO(this, node, kIA32##Type##Splat); \
}
SIMD_INT_TYPES(VISIT_SIMD_SPLAT)
#undef VISIT_SIMD_SPLAT
#define VISIT_SIMD_EXTRACT_LANE(Type) \
void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \
IA32OperandGenerator g(this); \
int32_t lane = OpParameter<int32_t>(node); \
Emit(kIA32##Type##ExtractLane, g.DefineAsRegister(node), \
g.UseRegister(node->InputAt(0)), g.UseImmediate(lane)); \
}
SIMD_INT_TYPES(VISIT_SIMD_EXTRACT_LANE)
#undef VISIT_SIMD_EXTRACT_LANE
#define VISIT_SIMD_REPLACE_LANE(Type) \
void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \
IA32OperandGenerator g(this); \
InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); \
InstructionOperand operand1 = g.UseImmediate(OpParameter<int32_t>(node)); \
InstructionOperand operand2 = g.Use(node->InputAt(1)); \
if (IsSupported(AVX)) { \
Emit(kAVX##Type##ReplaceLane, g.DefineAsRegister(node), operand0, \
operand1, operand2); \
} else { \
Emit(kSSE##Type##ReplaceLane, g.DefineSameAsFirst(node), operand0, \
operand1, operand2); \
} \
}
SIMD_INT_TYPES(VISIT_SIMD_REPLACE_LANE)
VISIT_SIMD_REPLACE_LANE(F32x4)
#undef VISIT_SIMD_REPLACE_LANE
#define VISIT_SIMD_SHIFT(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
IA32OperandGenerator g(this); \
InstructionOperand operand0 = g.UseRegister(node->InputAt(0)); \
InstructionOperand operand1 = g.UseImmediate(OpParameter<int32_t>(node)); \
if (IsSupported(AVX)) { \
Emit(kAVX##Opcode, g.DefineAsRegister(node), operand0, operand1); \
} else { \
Emit(kSSE##Opcode, g.DefineSameAsFirst(node), operand0, operand1); \
} \
}
SIMD_SHIFT_OPCODES(VISIT_SIMD_SHIFT)
#undef VISIT_SIMD_SHIFT
#define VISIT_SIMD_INT_UNOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
IA32OperandGenerator g(this); \
Emit(kIA32##Opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); \
}
SIMD_INT_UNOP_LIST(VISIT_SIMD_INT_UNOP)
#undef VISIT_SIMD_INT_UNOP
#define VISIT_SIMD_OTHER_UNOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
IA32OperandGenerator g(this); \
InstructionCode opcode = IsSupported(AVX) ? kAVX##Opcode : kSSE##Opcode; \
Emit(opcode, g.DefineAsRegister(node), g.Use(node->InputAt(0))); \
}
SIMD_OTHER_UNOP_LIST(VISIT_SIMD_OTHER_UNOP)
#undef VISIT_SIMD_OTHER_UNOP
#define VISIT_SIMD_BINOP(Opcode) \
void InstructionSelector::Visit##Opcode(Node* node) { \
VisitRROFloat(this, node, kAVX##Opcode, kSSE##Opcode); \
}
SIMD_BINOP_LIST(VISIT_SIMD_BINOP)
#undef VISIT_SIMD_BINOP
void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) {
UNREACHABLE();
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
MachineOperatorBuilder::Flags flags =
MachineOperatorBuilder::kWord32ShiftIsSafe |
MachineOperatorBuilder::kWord32Ctz |
MachineOperatorBuilder::kSpeculationFence;
if (CpuFeatures::IsSupported(POPCNT)) {
flags |= MachineOperatorBuilder::kWord32Popcnt;
}
if (CpuFeatures::IsSupported(SSE4_1)) {
flags |= MachineOperatorBuilder::kFloat32RoundDown |
MachineOperatorBuilder::kFloat64RoundDown |
MachineOperatorBuilder::kFloat32RoundUp |
MachineOperatorBuilder::kFloat64RoundUp |
MachineOperatorBuilder::kFloat32RoundTruncate |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kFloat32RoundTiesEven |
MachineOperatorBuilder::kFloat64RoundTiesEven;
}
return flags;
}
// static
MachineOperatorBuilder::AlignmentRequirements
InstructionSelector::AlignmentRequirements() {
return MachineOperatorBuilder::AlignmentRequirements::
FullUnalignedAccessSupport();
}
} // namespace compiler
} // namespace internal
} // namespace v8