| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/base/adapters.h" |
| #include "src/base/bits.h" |
| #include "src/compiler/instruction-selector-impl.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| #define TRACE_UNIMPL() \ |
| PrintF("UNIMPLEMENTED instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) |
| |
| #define TRACE() PrintF("instr_sel: %s at line %d\n", __FUNCTION__, __LINE__) |
| |
| |
| // Adds Mips-specific methods for generating InstructionOperands. |
| class MipsOperandGenerator final : public OperandGenerator { |
| public: |
| explicit MipsOperandGenerator(InstructionSelector* selector) |
| : OperandGenerator(selector) {} |
| |
| InstructionOperand UseOperand(Node* node, InstructionCode opcode) { |
| if (CanBeImmediate(node, opcode)) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| // Use the zero register if the node has the immediate value zero, otherwise |
| // assign a register. |
| InstructionOperand UseRegisterOrImmediateZero(Node* node) { |
| if ((IsIntegerConstant(node) && (GetIntegerConstantValue(node) == 0)) || |
| (IsFloatConstant(node) && |
| (bit_cast<int64_t>(GetFloatConstantValue(node)) == 0))) { |
| return UseImmediate(node); |
| } |
| return UseRegister(node); |
| } |
| |
| bool IsIntegerConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kInt32Constant); |
| } |
| |
| int64_t GetIntegerConstantValue(Node* node) { |
| DCHECK_EQ(IrOpcode::kInt32Constant, node->opcode()); |
| return OpParameter<int32_t>(node); |
| } |
| |
| bool IsFloatConstant(Node* node) { |
| return (node->opcode() == IrOpcode::kFloat32Constant) || |
| (node->opcode() == IrOpcode::kFloat64Constant); |
| } |
| |
| double GetFloatConstantValue(Node* node) { |
| if (node->opcode() == IrOpcode::kFloat32Constant) { |
| return OpParameter<float>(node); |
| } |
| DCHECK_EQ(IrOpcode::kFloat64Constant, node->opcode()); |
| return OpParameter<double>(node); |
| } |
| |
| bool CanBeImmediate(Node* node, InstructionCode opcode) { |
| Int32Matcher m(node); |
| if (!m.HasValue()) return false; |
| int32_t value = m.Value(); |
| switch (ArchOpcodeField::decode(opcode)) { |
| case kMipsShl: |
| case kMipsSar: |
| case kMipsShr: |
| return is_uint5(value); |
| case kMipsAdd: |
| case kMipsAnd: |
| case kMipsOr: |
| case kMipsTst: |
| case kMipsSub: |
| case kMipsXor: |
| return is_uint16(value); |
| case kMipsLb: |
| case kMipsLbu: |
| case kMipsSb: |
| case kMipsLh: |
| case kMipsLhu: |
| case kMipsSh: |
| case kMipsLw: |
| case kMipsSw: |
| case kMipsLwc1: |
| case kMipsSwc1: |
| case kMipsLdc1: |
| case kMipsSdc1: |
| // true even for 32b values, offsets > 16b |
| // are handled in assembler-mips.cc |
| return is_int32(value); |
| default: |
| return is_int16(value); |
| } |
| } |
| |
| private: |
| bool ImmediateFitsAddrMode1Instruction(int32_t imm) const { |
| TRACE_UNIMPL(); |
| return false; |
| } |
| }; |
| |
| |
| static void VisitRRR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| MipsOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| void VisitRRRR(InstructionSelector* selector, ArchOpcode opcode, Node* node) { |
| MipsOperandGenerator g(selector); |
| selector->Emit( |
| opcode, g.DefineSameAsFirst(node), g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(2))); |
| } |
| |
| static void VisitRR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| MipsOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| static void VisitRRI(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| MipsOperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm)); |
| } |
| |
| static void VisitRRIR(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| MipsOperandGenerator g(selector); |
| int32_t imm = OpParameter<int32_t>(node); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseImmediate(imm), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| static void VisitRRO(InstructionSelector* selector, ArchOpcode opcode, |
| Node* node) { |
| MipsOperandGenerator g(selector); |
| selector->Emit(opcode, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseOperand(node->InputAt(1), opcode)); |
| } |
| |
| bool TryMatchImmediate(InstructionSelector* selector, |
| InstructionCode* opcode_return, Node* node, |
| size_t* input_count_return, InstructionOperand* inputs) { |
| MipsOperandGenerator g(selector); |
| if (g.CanBeImmediate(node, *opcode_return)) { |
| *opcode_return |= AddressingModeField::encode(kMode_MRI); |
| inputs[0] = g.UseImmediate(node); |
| *input_count_return = 1; |
| return true; |
| } |
| return false; |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, bool has_reverse_opcode, |
| InstructionCode reverse_opcode, |
| FlagsContinuation* cont) { |
| MipsOperandGenerator g(selector); |
| Int32BinopMatcher m(node); |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| InstructionOperand outputs[2]; |
| size_t output_count = 0; |
| |
| if (TryMatchImmediate(selector, &opcode, m.right().node(), &input_count, |
| &inputs[1])) { |
| inputs[0] = g.UseRegister(m.left().node()); |
| input_count++; |
| } else if (has_reverse_opcode && |
| TryMatchImmediate(selector, &reverse_opcode, m.left().node(), |
| &input_count, &inputs[1])) { |
| inputs[0] = g.UseRegister(m.right().node()); |
| opcode = reverse_opcode; |
| input_count++; |
| } else { |
| inputs[input_count++] = g.UseRegister(m.left().node()); |
| inputs[input_count++] = g.UseOperand(m.right().node(), opcode); |
| } |
| |
| if (cont->IsBranch()) { |
| inputs[input_count++] = g.Label(cont->true_block()); |
| inputs[input_count++] = g.Label(cont->false_block()); |
| } else if (cont->IsTrap()) { |
| inputs[input_count++] = g.TempImmediate(cont->trap_id()); |
| } |
| |
| if (cont->IsDeoptimize()) { |
| // If we can deoptimize as a result of the binop, we need to make sure that |
| // the deopt inputs are not overwritten by the binop result. One way |
| // to achieve that is to declare the output register as same-as-first. |
| outputs[output_count++] = g.DefineSameAsFirst(node); |
| } else { |
| outputs[output_count++] = g.DefineAsRegister(node); |
| } |
| if (cont->IsSet()) { |
| outputs[output_count++] = g.DefineAsRegister(cont->result()); |
| } |
| |
| DCHECK_NE(0u, input_count); |
| DCHECK_NE(0u, output_count); |
| DCHECK_GE(arraysize(inputs), input_count); |
| DCHECK_GE(arraysize(outputs), output_count); |
| |
| opcode = cont->Encode(opcode); |
| if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(opcode, output_count, outputs, input_count, inputs, |
| cont->kind(), cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else { |
| selector->Emit(opcode, output_count, outputs, input_count, inputs); |
| } |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, bool has_reverse_opcode, |
| InstructionCode reverse_opcode) { |
| FlagsContinuation cont; |
| VisitBinop(selector, node, opcode, has_reverse_opcode, reverse_opcode, &cont); |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont) { |
| VisitBinop(selector, node, opcode, false, kArchNop, cont); |
| } |
| |
| static void VisitBinop(InstructionSelector* selector, Node* node, |
| InstructionCode opcode) { |
| VisitBinop(selector, node, opcode, false, kArchNop); |
| } |
| |
| void InstructionSelector::VisitStackSlot(Node* node) { |
| StackSlotRepresentation rep = StackSlotRepresentationOf(node->op()); |
| int alignment = rep.alignment(); |
| int slot = frame_->AllocateSpillSlot(rep.size(), alignment); |
| OperandGenerator g(this); |
| |
| Emit(kArchStackSlot, g.DefineAsRegister(node), |
| sequence()->AddImmediate(Constant(slot)), |
| sequence()->AddImmediate(Constant(alignment)), 0, nullptr); |
| } |
| |
| void InstructionSelector::VisitDebugAbort(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kArchDebugAbort, g.NoOutput(), g.UseFixed(node->InputAt(0), a0)); |
| } |
| |
| void InstructionSelector::VisitLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMipsLwc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMipsLdc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsUnsigned() ? kMipsLbu : kMipsLb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsUnsigned() ? kMipsLhu : kMipsLh; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kMipsLw; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMipsMsaLd; |
| break; |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedLoad(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitStore(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| StoreRepresentation store_rep = StoreRepresentationOf(node->op()); |
| WriteBarrierKind write_barrier_kind = store_rep.write_barrier_kind(); |
| MachineRepresentation rep = store_rep.representation(); |
| |
| // TODO(mips): I guess this could be done in a better way. |
| if (write_barrier_kind != kNoWriteBarrier) { |
| DCHECK(CanBeTaggedPointer(rep)); |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| RecordWriteMode record_write_mode = RecordWriteMode::kValueIsAny; |
| switch (write_barrier_kind) { |
| case kNoWriteBarrier: |
| UNREACHABLE(); |
| break; |
| case kMapWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsMap; |
| break; |
| case kPointerWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsPointer; |
| break; |
| case kFullWriteBarrier: |
| record_write_mode = RecordWriteMode::kValueIsAny; |
| break; |
| } |
| InstructionOperand temps[] = {g.TempRegister(), g.TempRegister()}; |
| size_t const temp_count = arraysize(temps); |
| InstructionCode code = kArchStoreWithWriteBarrier; |
| code |= MiscField::encode(static_cast<int>(record_write_mode)); |
| Emit(code, 0, nullptr, input_count, inputs, temp_count, temps); |
| } else { |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMipsSwc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMipsSdc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| opcode = kMipsSb; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kMipsSh; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kMipsSw; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMipsMsaSt; |
| break; |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| } |
| |
| void InstructionSelector::VisitProtectedStore(Node* node) { |
| // TODO(eholk) |
| UNIMPLEMENTED(); |
| } |
| |
| void InstructionSelector::VisitWord32And(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shr() && CanCover(node, m.left().node()) && |
| m.right().HasValue()) { |
| uint32_t mask = m.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| // The mask must be contiguous, and occupy the least-significant bits. |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| |
| // Select Ext for And(Shr(x, imm), mask) where the mask is in the least |
| // significant bits. |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue()) { |
| // Any shift value can match; int32 shifts use `value % 32`. |
| uint32_t lsb = mleft.right().Value() & 0x1F; |
| |
| // Ext cannot extract bits past the register size, however since |
| // shifting the original value would have introduced some zeros we can |
| // still use Ext with a smaller mask and the remaining bits will be |
| // zeros. |
| if (lsb + mask_width > 32) mask_width = 32 - lsb; |
| |
| if (lsb == 0 && mask_width == 32) { |
| Emit(kArchNop, g.DefineSameAsFirst(node), g.Use(mleft.left().node())); |
| } else { |
| Emit(kMipsExt, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(mask_width)); |
| } |
| return; |
| } |
| // Other cases fall through to the normal And operation. |
| } |
| } |
| if (m.right().HasValue()) { |
| uint32_t mask = m.right().Value(); |
| uint32_t shift = base::bits::CountPopulation(~mask); |
| uint32_t msb = base::bits::CountLeadingZeros32(~mask); |
| if (shift != 0 && shift != 32 && msb + shift == 32) { |
| // Insert zeros for (x >> K) << K => x & ~(2^K - 1) expression reduction |
| // and remove constant loading of invereted mask. |
| Emit(kMipsIns, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(0), g.TempImmediate(shift)); |
| return; |
| } |
| } |
| VisitBinop(this, node, kMipsAnd, true, kMipsAnd); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Or(Node* node) { |
| VisitBinop(this, node, kMipsOr, true, kMipsOr); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Xor(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Or() && CanCover(node, m.left().node()) && |
| m.right().Is(-1)) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (!mleft.right().HasValue()) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsNor, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| } |
| if (m.right().Is(-1)) { |
| // Use Nor for bit negation and eliminate constant loading for xori. |
| MipsOperandGenerator g(this); |
| Emit(kMipsNor, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(0)); |
| return; |
| } |
| VisitBinop(this, node, kMipsXor, true, kMipsXor); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Shl(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && CanCover(node, m.left().node()) && |
| m.right().IsInRange(1, 31)) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher mleft(m.left().node()); |
| // Match Word32Shl(Word32And(x, mask), imm) to Shl where the mask is |
| // contiguous, and the shift immediate non-zero. |
| if (mleft.right().HasValue()) { |
| uint32_t mask = mleft.right().Value(); |
| uint32_t mask_width = base::bits::CountPopulation(mask); |
| uint32_t mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_width != 0) && (mask_msb + mask_width == 32)) { |
| uint32_t shift = m.right().Value(); |
| DCHECK_EQ(0u, base::bits::CountTrailingZeros32(mask)); |
| DCHECK_NE(0u, shift); |
| if ((shift + mask_width) >= 32) { |
| // If the mask is contiguous and reaches or extends beyond the top |
| // bit, only the shift is needed. |
| Emit(kMipsShl, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), |
| g.UseImmediate(m.right().node())); |
| return; |
| } |
| } |
| } |
| } |
| VisitRRO(this, kMipsShl, node); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Shr(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32And() && m.right().HasValue()) { |
| uint32_t lsb = m.right().Value() & 0x1F; |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && mleft.right().Value() != 0) { |
| // Select Ext for Shr(And(x, mask), imm) where the result of the mask is |
| // shifted into the least-significant bits. |
| uint32_t mask = (mleft.right().Value() >> lsb) << lsb; |
| unsigned mask_width = base::bits::CountPopulation(mask); |
| unsigned mask_msb = base::bits::CountLeadingZeros32(mask); |
| if ((mask_msb + mask_width + lsb) == 32) { |
| MipsOperandGenerator g(this); |
| DCHECK_EQ(lsb, base::bits::CountTrailingZeros32(mask)); |
| Emit(kMipsExt, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(lsb), |
| g.TempImmediate(mask_width)); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kMipsShr, node); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Sar(Node* node) { |
| Int32BinopMatcher m(node); |
| if (m.left().IsWord32Shl() && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (m.right().HasValue() && mleft.right().HasValue()) { |
| MipsOperandGenerator g(this); |
| uint32_t sar = m.right().Value(); |
| uint32_t shl = mleft.right().Value(); |
| if ((sar == shl) && (sar == 16)) { |
| Emit(kMipsSeh, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } else if ((sar == shl) && (sar == 24)) { |
| Emit(kMipsSeb, g.DefineAsRegister(node), |
| g.UseRegister(mleft.left().node())); |
| return; |
| } |
| } |
| } |
| VisitRRO(this, kMipsSar, node); |
| } |
| |
| static void VisitInt32PairBinop(InstructionSelector* selector, |
| InstructionCode pair_opcode, |
| InstructionCode single_opcode, Node* node) { |
| MipsOperandGenerator g(selector); |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| |
| if (projection1) { |
| // We use UseUniqueRegister here to avoid register sharing with the output |
| // register. |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| g.UseUniqueRegister(node->InputAt(2)), |
| g.UseUniqueRegister(node->InputAt(3))}; |
| |
| InstructionOperand outputs[] = { |
| g.DefineAsRegister(node), |
| g.DefineAsRegister(NodeProperties::FindProjection(node, 1))}; |
| selector->Emit(pair_opcode, 2, outputs, 4, inputs); |
| } else { |
| // The high word of the result is not used, so we emit the standard 32 bit |
| // instruction. |
| selector->Emit(single_opcode, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(2))); |
| } |
| } |
| |
| void InstructionSelector::VisitInt32PairAdd(Node* node) { |
| VisitInt32PairBinop(this, kMipsAddPair, kMipsAdd, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairSub(Node* node) { |
| VisitInt32PairBinop(this, kMipsSubPair, kMipsSub, node); |
| } |
| |
| void InstructionSelector::VisitInt32PairMul(Node* node) { |
| VisitInt32PairBinop(this, kMipsMulPair, kMipsMul, node); |
| } |
| |
| // Shared routine for multiple shift operations. |
| static void VisitWord32PairShift(InstructionSelector* selector, |
| InstructionCode opcode, Node* node) { |
| MipsOperandGenerator g(selector); |
| Int32Matcher m(node->InputAt(2)); |
| InstructionOperand shift_operand; |
| if (m.HasValue()) { |
| shift_operand = g.UseImmediate(m.node()); |
| } else { |
| shift_operand = g.UseUniqueRegister(m.node()); |
| } |
| |
| // We use UseUniqueRegister here to avoid register sharing with the output |
| // register. |
| InstructionOperand inputs[] = {g.UseUniqueRegister(node->InputAt(0)), |
| g.UseUniqueRegister(node->InputAt(1)), |
| shift_operand}; |
| |
| Node* projection1 = NodeProperties::FindProjection(node, 1); |
| |
| InstructionOperand outputs[2]; |
| InstructionOperand temps[1]; |
| int32_t output_count = 0; |
| int32_t temp_count = 0; |
| |
| outputs[output_count++] = g.DefineAsRegister(node); |
| if (projection1) { |
| outputs[output_count++] = g.DefineAsRegister(projection1); |
| } else { |
| temps[temp_count++] = g.TempRegister(); |
| } |
| |
| selector->Emit(opcode, output_count, outputs, 3, inputs, temp_count, temps); |
| } |
| |
| void InstructionSelector::VisitWord32PairShl(Node* node) { |
| VisitWord32PairShift(this, kMipsShlPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairShr(Node* node) { |
| VisitWord32PairShift(this, kMipsShrPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32PairSar(Node* node) { |
| VisitWord32PairShift(this, kMipsSarPair, node); |
| } |
| |
| void InstructionSelector::VisitWord32Ror(Node* node) { |
| VisitRRO(this, kMipsRor, node); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Clz(Node* node) { |
| VisitRR(this, kMipsClz, node); |
| } |
| |
| |
| void InstructionSelector::VisitWord32ReverseBits(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord64ReverseBytes(Node* node) { UNREACHABLE(); } |
| |
| void InstructionSelector::VisitWord32ReverseBytes(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsByteSwap32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| void InstructionSelector::VisitWord32Ctz(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsCtz, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Popcnt(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsPopcnt, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Add(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| |
| // Select Lsa for (left + (left_of_right << imm)). |
| if (m.right().opcode() == IrOpcode::kWord32Shl && |
| CanCover(node, m.left().node()) && CanCover(node, m.right().node())) { |
| Int32BinopMatcher mright(m.right().node()); |
| if (mright.right().HasValue() && !m.left().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mright.right().Value()); |
| Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(mright.left().node()), g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| |
| // Select Lsa for ((left_of_left << imm) + right). |
| if (m.left().opcode() == IrOpcode::kWord32Shl && |
| CanCover(node, m.right().node()) && CanCover(node, m.left().node())) { |
| Int32BinopMatcher mleft(m.left().node()); |
| if (mleft.right().HasValue() && !m.right().HasValue()) { |
| int32_t shift_value = static_cast<int32_t>(mleft.right().Value()); |
| Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.right().node()), |
| g.UseRegister(mleft.left().node()), g.TempImmediate(shift_value)); |
| return; |
| } |
| } |
| |
| VisitBinop(this, node, kMipsAdd, true, kMipsAdd); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Sub(Node* node) { |
| VisitBinop(this, node, kMipsSub); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Mul(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| if (m.right().HasValue() && m.right().Value() > 0) { |
| uint32_t value = static_cast<uint32_t>(m.right().Value()); |
| if (base::bits::IsPowerOfTwo(value)) { |
| Emit(kMipsShl | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value - 1)) { |
| Emit(kMipsLsa, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value - 1))); |
| return; |
| } |
| if (base::bits::IsPowerOfTwo(value + 1)) { |
| InstructionOperand temp = g.TempRegister(); |
| Emit(kMipsShl | AddressingModeField::encode(kMode_None), temp, |
| g.UseRegister(m.left().node()), |
| g.TempImmediate(WhichPowerOf2(value + 1))); |
| Emit(kMipsSub | AddressingModeField::encode(kMode_None), |
| g.DefineAsRegister(node), temp, g.UseRegister(m.left().node())); |
| return; |
| } |
| } |
| VisitRRR(this, kMipsMul, node); |
| } |
| |
| |
| void InstructionSelector::VisitInt32MulHigh(Node* node) { |
| VisitRRR(this, kMipsMulHigh, node); |
| } |
| |
| |
| void InstructionSelector::VisitUint32MulHigh(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsMulHighU, g.DefineAsRegister(node), g.UseRegister(node->InputAt(0)), |
| g.UseRegister(node->InputAt(1))); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Div(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMipsDiv, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| |
| void InstructionSelector::VisitUint32Div(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMipsDivU, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| |
| void InstructionSelector::VisitInt32Mod(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMipsMod, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| |
| void InstructionSelector::VisitUint32Mod(Node* node) { |
| MipsOperandGenerator g(this); |
| Int32BinopMatcher m(node); |
| Emit(kMipsModU, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(m.right().node())); |
| } |
| |
| |
| void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) { |
| VisitRR(this, kMipsCvtDS, node); |
| } |
| |
| |
| void InstructionSelector::VisitRoundInt32ToFloat32(Node* node) { |
| VisitRR(this, kMipsCvtSW, node); |
| } |
| |
| |
| void InstructionSelector::VisitRoundUint32ToFloat32(Node* node) { |
| VisitRR(this, kMipsCvtSUw, node); |
| } |
| |
| |
| void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) { |
| VisitRR(this, kMipsCvtDW, node); |
| } |
| |
| |
| void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) { |
| VisitRR(this, kMipsCvtDUw, node); |
| } |
| |
| |
| void InstructionSelector::VisitTruncateFloat32ToInt32(Node* node) { |
| VisitRR(this, kMipsTruncWS, node); |
| } |
| |
| |
| void InstructionSelector::VisitTruncateFloat32ToUint32(Node* node) { |
| VisitRR(this, kMipsTruncUwS, node); |
| } |
| |
| |
| void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| // Match ChangeFloat64ToInt32(Float64Round##OP) to corresponding instruction |
| // which does rounding and conversion to integer format. |
| if (CanCover(node, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kFloat64RoundDown: |
| Emit(kMipsFloorWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundUp: |
| Emit(kMipsCeilWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundTiesEven: |
| Emit(kMipsRoundWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| case IrOpcode::kFloat64RoundTruncate: |
| Emit(kMipsTruncWD, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| default: |
| break; |
| } |
| if (value->opcode() == IrOpcode::kChangeFloat32ToFloat64) { |
| Node* next = value->InputAt(0); |
| if (CanCover(value, next)) { |
| // Match ChangeFloat64ToInt32(ChangeFloat32ToFloat64(Float64Round##OP)) |
| switch (next->opcode()) { |
| case IrOpcode::kFloat32RoundDown: |
| Emit(kMipsFloorWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundUp: |
| Emit(kMipsCeilWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundTiesEven: |
| Emit(kMipsRoundWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| case IrOpcode::kFloat32RoundTruncate: |
| Emit(kMipsTruncWS, g.DefineAsRegister(node), |
| g.UseRegister(next->InputAt(0))); |
| return; |
| default: |
| Emit(kMipsTruncWS, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| } else { |
| // Match float32 -> float64 -> int32 representation change path. |
| Emit(kMipsTruncWS, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| } |
| } |
| VisitRR(this, kMipsTruncWD, node); |
| } |
| |
| |
| void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) { |
| VisitRR(this, kMipsTruncUwD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToUint32(Node* node) { |
| VisitRR(this, kMipsTruncUwD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* value = node->InputAt(0); |
| // Match TruncateFloat64ToFloat32(ChangeInt32ToFloat64) to corresponding |
| // instruction. |
| if (CanCover(node, value) && |
| value->opcode() == IrOpcode::kChangeInt32ToFloat64) { |
| Emit(kMipsCvtSW, g.DefineAsRegister(node), |
| g.UseRegister(value->InputAt(0))); |
| return; |
| } |
| VisitRR(this, kMipsCvtSD, node); |
| } |
| |
| void InstructionSelector::VisitTruncateFloat64ToWord32(Node* node) { |
| VisitRR(this, kArchTruncateDoubleToI, node); |
| } |
| |
| void InstructionSelector::VisitRoundFloat64ToInt32(Node* node) { |
| VisitRR(this, kMipsTruncWD, node); |
| } |
| |
| void InstructionSelector::VisitBitcastFloat32ToInt32(Node* node) { |
| VisitRR(this, kMipsFloat64ExtractLowWord32, node); |
| } |
| |
| |
| void InstructionSelector::VisitBitcastInt32ToFloat32(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat64InsertLowWord32, g.DefineAsRegister(node), |
| ImmediateOperand(ImmediateOperand::INLINE, 0), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32Add(Node* node) { |
| MipsOperandGenerator g(this); |
| if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y). |
| Float32BinopMatcher m(node); |
| if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) { |
| // For Add.S(Mul.S(x, y), z): |
| Float32BinopMatcher mleft(m.left().node()); |
| Emit(kMipsMaddS, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| if (m.right().IsFloat32Mul() && CanCover(node, m.right().node())) { |
| // For Add.S(x, Mul.S(y, z)): |
| Float32BinopMatcher mright(m.right().node()); |
| Emit(kMipsMaddS, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| VisitRRR(this, kMipsAddS, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Add(Node* node) { |
| MipsOperandGenerator g(this); |
| if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y). |
| Float64BinopMatcher m(node); |
| if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) { |
| // For Add.D(Mul.D(x, y), z): |
| Float64BinopMatcher mleft(m.left().node()); |
| Emit(kMipsMaddD, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| if (m.right().IsFloat64Mul() && CanCover(node, m.right().node())) { |
| // For Add.D(x, Mul.D(y, z)): |
| Float64BinopMatcher mright(m.right().node()); |
| Emit(kMipsMaddD, g.DefineAsRegister(node), g.UseRegister(m.left().node()), |
| g.UseRegister(mright.left().node()), |
| g.UseRegister(mright.right().node())); |
| return; |
| } |
| } |
| VisitRRR(this, kMipsAddD, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32Sub(Node* node) { |
| MipsOperandGenerator g(this); |
| if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y). |
| Float32BinopMatcher m(node); |
| if (m.left().IsFloat32Mul() && CanCover(node, m.left().node())) { |
| // For Sub.S(Mul.S(x,y), z) select Msub.S(z, x, y). |
| Float32BinopMatcher mleft(m.left().node()); |
| Emit(kMipsMsubS, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| } |
| VisitRRR(this, kMipsSubS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Sub(Node* node) { |
| MipsOperandGenerator g(this); |
| if (IsMipsArchVariant(kMips32r2)) { // Select Madd.S(z, x, y). |
| Float64BinopMatcher m(node); |
| if (m.left().IsFloat64Mul() && CanCover(node, m.left().node())) { |
| // For Sub.D(Mul.S(x,y), z) select Msub.D(z, x, y). |
| Float64BinopMatcher mleft(m.left().node()); |
| Emit(kMipsMsubD, g.DefineAsRegister(node), |
| g.UseRegister(m.right().node()), g.UseRegister(mleft.left().node()), |
| g.UseRegister(mleft.right().node())); |
| return; |
| } |
| } |
| VisitRRR(this, kMipsSubD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Mul(Node* node) { |
| VisitRRR(this, kMipsMulS, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Mul(Node* node) { |
| VisitRRR(this, kMipsMulD, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32Div(Node* node) { |
| VisitRRR(this, kMipsDivS, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Div(Node* node) { |
| VisitRRR(this, kMipsDivD, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Mod(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsModD, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12), |
| g.UseFixed(node->InputAt(1), f14))->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat32Max(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat32Max, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat64Max(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat64Max, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat32Min(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat32Min, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| void InstructionSelector::VisitFloat64Min(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat64Min, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1))); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32Abs(Node* node) { |
| VisitRR(this, kMipsAbsS, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Abs(Node* node) { |
| VisitRR(this, kMipsAbsD, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Sqrt(Node* node) { |
| VisitRR(this, kMipsSqrtS, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Sqrt(Node* node) { |
| VisitRR(this, kMipsSqrtD, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32RoundDown(Node* node) { |
| VisitRR(this, kMipsFloat32RoundDown, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64RoundDown(Node* node) { |
| VisitRR(this, kMipsFloat64RoundDown, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32RoundUp(Node* node) { |
| VisitRR(this, kMipsFloat32RoundUp, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64RoundUp(Node* node) { |
| VisitRR(this, kMipsFloat64RoundUp, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32RoundTruncate(Node* node) { |
| VisitRR(this, kMipsFloat32RoundTruncate, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64RoundTruncate(Node* node) { |
| VisitRR(this, kMipsFloat64RoundTruncate, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32RoundTiesEven(Node* node) { |
| VisitRR(this, kMipsFloat32RoundTiesEven, node); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64RoundTiesEven(Node* node) { |
| VisitRR(this, kMipsFloat64RoundTiesEven, node); |
| } |
| |
| void InstructionSelector::VisitFloat32Neg(Node* node) { |
| VisitRR(this, kMipsNegS, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Neg(Node* node) { |
| VisitRR(this, kMipsNegD, node); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Binop(Node* node, |
| InstructionCode opcode) { |
| MipsOperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f2), |
| g.UseFixed(node->InputAt(1), f4)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::VisitFloat64Ieee754Unop(Node* node, |
| InstructionCode opcode) { |
| MipsOperandGenerator g(this); |
| Emit(opcode, g.DefineAsFixed(node, f0), g.UseFixed(node->InputAt(0), f12)) |
| ->MarkAsCall(); |
| } |
| |
| void InstructionSelector::EmitPrepareArguments( |
| ZoneVector<PushParameter>* arguments, const CallDescriptor* descriptor, |
| Node* node) { |
| MipsOperandGenerator g(this); |
| |
| // Prepare for C function call. |
| if (descriptor->IsCFunctionCall()) { |
| Emit(kArchPrepareCallCFunction | |
| MiscField::encode(static_cast<int>(descriptor->ParameterCount())), |
| 0, nullptr, 0, nullptr); |
| |
| // Poke any stack arguments. |
| int slot = kCArgSlotCount; |
| for (PushParameter input : (*arguments)) { |
| if (input.node) { |
| Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(slot << kPointerSizeLog2)); |
| ++slot; |
| } |
| } |
| } else { |
| // Possibly align stack here for functions. |
| int push_count = static_cast<int>(descriptor->StackParameterCount()); |
| if (push_count > 0) { |
| // Calculate needed space |
| int stack_size = 0; |
| for (size_t n = 0; n < arguments->size(); ++n) { |
| PushParameter input = (*arguments)[n]; |
| if (input.node) { |
| stack_size += input.location.GetSizeInPointers(); |
| } |
| } |
| Emit(kMipsStackClaim, g.NoOutput(), |
| g.TempImmediate(stack_size << kPointerSizeLog2)); |
| } |
| for (size_t n = 0; n < arguments->size(); ++n) { |
| PushParameter input = (*arguments)[n]; |
| if (input.node) { |
| Emit(kMipsStoreToStackSlot, g.NoOutput(), g.UseRegister(input.node), |
| g.TempImmediate(n << kPointerSizeLog2)); |
| } |
| } |
| } |
| } |
| |
| void InstructionSelector::EmitPrepareResults(ZoneVector<PushParameter>* results, |
| const CallDescriptor* descriptor, |
| Node* node) { |
| MipsOperandGenerator g(this); |
| |
| int reverse_slot = 0; |
| for (PushParameter output : *results) { |
| if (!output.location.IsCallerFrameSlot()) continue; |
| ++reverse_slot; |
| // Skip any alignment holes in nodes. |
| if (output.node != nullptr) { |
| DCHECK(!descriptor->IsCFunctionCall()); |
| if (output.location.GetType() == MachineType::Float32()) { |
| MarkAsFloat32(output.node); |
| } else if (output.location.GetType() == MachineType::Float64()) { |
| MarkAsFloat64(output.node); |
| } |
| InstructionOperand result = g.DefineAsRegister(output.node); |
| Emit(kMipsPeek | MiscField::encode(reverse_slot), result); |
| } |
| if (output.location.GetType() == MachineType::Float64()) { |
| // Float64 require an implicit second slot. |
| ++reverse_slot; |
| } |
| } |
| } |
| |
| bool InstructionSelector::IsTailCallAddressImmediate() { return false; } |
| |
| int InstructionSelector::GetTempsCountForTailCallFromJSFunction() { return 3; } |
| |
| void InstructionSelector::VisitUnalignedLoad(Node* node) { |
| UnalignedLoadRepresentation load_rep = |
| UnalignedLoadRepresentationOf(node->op()); |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| UNREACHABLE(); |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsUnsigned() ? kMipsUlhu : kMipsUlh; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kMipsUlw; |
| break; |
| case MachineRepresentation::kFloat32: |
| opcode = kMipsUlwc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMipsUldc1; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMipsMsaLd; |
| break; |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitUnalignedStore(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| |
| UnalignedStoreRepresentation rep = UnalignedStoreRepresentationOf(node->op()); |
| |
| // TODO(mips): I guess this could be done in a better way. |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kFloat32: |
| opcode = kMipsUswc1; |
| break; |
| case MachineRepresentation::kFloat64: |
| opcode = kMipsUsdc1; |
| break; |
| case MachineRepresentation::kBit: // Fall through. |
| case MachineRepresentation::kWord8: |
| UNREACHABLE(); |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kMipsUsh; |
| break; |
| case MachineRepresentation::kTaggedSigned: // Fall through. |
| case MachineRepresentation::kTaggedPointer: // Fall through. |
| case MachineRepresentation::kTagged: // Fall through. |
| case MachineRepresentation::kWord32: |
| opcode = kMipsUsw; |
| break; |
| case MachineRepresentation::kSimd128: |
| opcode = kMipsMsaSt; |
| break; |
| case MachineRepresentation::kWord64: // Fall through. |
| case MachineRepresentation::kNone: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| |
| namespace { |
| // Shared routine for multiple compare operations. |
| static void VisitCompare(InstructionSelector* selector, InstructionCode opcode, |
| InstructionOperand left, InstructionOperand right, |
| FlagsContinuation* cont) { |
| MipsOperandGenerator g(selector); |
| opcode = cont->Encode(opcode); |
| if (cont->IsBranch()) { |
| selector->Emit(opcode, g.NoOutput(), left, right, |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| } else if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(opcode, g.NoOutput(), left, right, cont->kind(), |
| cont->reason(), cont->feedback(), |
| cont->frame_state()); |
| } else if (cont->IsSet()) { |
| selector->Emit(opcode, g.DefineAsRegister(cont->result()), left, right); |
| } else { |
| DCHECK(cont->IsTrap()); |
| selector->Emit(opcode, g.NoOutput(), left, right, |
| g.TempImmediate(cont->trap_id())); |
| } |
| } |
| |
| |
| // Shared routine for multiple float32 compare operations. |
| void VisitFloat32Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| MipsOperandGenerator g(selector); |
| Float32BinopMatcher m(node); |
| InstructionOperand lhs, rhs; |
| |
| lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) |
| : g.UseRegister(m.left().node()); |
| rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) |
| : g.UseRegister(m.right().node()); |
| VisitCompare(selector, kMipsCmpS, lhs, rhs, cont); |
| } |
| |
| |
| // Shared routine for multiple float64 compare operations. |
| void VisitFloat64Compare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| MipsOperandGenerator g(selector); |
| Float64BinopMatcher m(node); |
| InstructionOperand lhs, rhs; |
| |
| lhs = m.left().IsZero() ? g.UseImmediate(m.left().node()) |
| : g.UseRegister(m.left().node()); |
| rhs = m.right().IsZero() ? g.UseImmediate(m.right().node()) |
| : g.UseRegister(m.right().node()); |
| VisitCompare(selector, kMipsCmpD, lhs, rhs, cont); |
| } |
| |
| |
| // Shared routine for multiple word compare operations. |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| InstructionCode opcode, FlagsContinuation* cont, |
| bool commutative) { |
| MipsOperandGenerator g(selector); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| |
| // Match immediates on left or right side of comparison. |
| if (g.CanBeImmediate(right, opcode)) { |
| if (opcode == kMipsTst) { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseImmediate(right), |
| cont); |
| } else { |
| switch (cont->condition()) { |
| case kEqual: |
| case kNotEqual: |
| if (cont->IsSet()) { |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseImmediate(right), cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| break; |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseImmediate(right), cont); |
| break; |
| default: |
| VisitCompare(selector, opcode, g.UseRegister(left), |
| g.UseRegister(right), cont); |
| } |
| } |
| } else if (g.CanBeImmediate(left, opcode)) { |
| if (!commutative) cont->Commute(); |
| if (opcode == kMipsTst) { |
| VisitCompare(selector, opcode, g.UseRegister(right), g.UseImmediate(left), |
| cont); |
| } else { |
| switch (cont->condition()) { |
| case kEqual: |
| case kNotEqual: |
| if (cont->IsSet()) { |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseImmediate(left), cont); |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseRegister(left), cont); |
| } |
| break; |
| case kSignedLessThan: |
| case kSignedGreaterThanOrEqual: |
| case kUnsignedLessThan: |
| case kUnsignedGreaterThanOrEqual: |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseImmediate(left), cont); |
| break; |
| default: |
| VisitCompare(selector, opcode, g.UseRegister(right), |
| g.UseRegister(left), cont); |
| } |
| } |
| } else { |
| VisitCompare(selector, opcode, g.UseRegister(left), g.UseRegister(right), |
| cont); |
| } |
| } |
| |
| |
| void VisitWordCompare(InstructionSelector* selector, Node* node, |
| FlagsContinuation* cont) { |
| VisitWordCompare(selector, node, kMipsCmp, cont, false); |
| } |
| |
| // Shared routine for word comparisons against zero. |
| void VisitWordCompareZero(InstructionSelector* selector, Node* user, |
| Node* value, FlagsContinuation* cont) { |
| // Try to combine with comparisons against 0 by simply inverting the branch. |
| while (value->opcode() == IrOpcode::kWord32Equal && |
| selector->CanCover(user, value)) { |
| Int32BinopMatcher m(value); |
| if (!m.right().Is(0)) break; |
| |
| user = value; |
| value = m.left().node(); |
| cont->Negate(); |
| } |
| |
| if (selector->CanCover(user, value)) { |
| switch (value->opcode()) { |
| case IrOpcode::kWord32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitWordCompare(selector, value, cont); |
| case IrOpcode::kInt32LessThan: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThan); |
| return VisitWordCompare(selector, value, cont); |
| case IrOpcode::kInt32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual); |
| return VisitWordCompare(selector, value, cont); |
| case IrOpcode::kUint32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitWordCompare(selector, value, cont); |
| case IrOpcode::kUint32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitWordCompare(selector, value, cont); |
| case IrOpcode::kFloat32Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat32LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat32LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat32Compare(selector, value, cont); |
| case IrOpcode::kFloat64Equal: |
| cont->OverwriteAndNegateIfEqual(kEqual); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kFloat64LessThan: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThan); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kFloat64LessThanOrEqual: |
| cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual); |
| return VisitFloat64Compare(selector, value, cont); |
| case IrOpcode::kProjection: |
| // Check if this is the overflow output projection of an |
| // <Operation>WithOverflow node. |
| if (ProjectionIndexOf(value->op()) == 1u) { |
| // We cannot combine the <Operation>WithOverflow with this branch |
| // unless the 0th projection (the use of the actual value of the |
| // <Operation> is either nullptr, which means there's no use of the |
| // actual value, or was already defined, which means it is scheduled |
| // *AFTER* this branch). |
| Node* const node = value->InputAt(0); |
| Node* const result = NodeProperties::FindProjection(node, 0); |
| if (!result || selector->IsDefined(result)) { |
| switch (node->opcode()) { |
| case IrOpcode::kInt32AddWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(selector, node, kMipsAddOvf, cont); |
| case IrOpcode::kInt32SubWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(selector, node, kMipsSubOvf, cont); |
| case IrOpcode::kInt32MulWithOverflow: |
| cont->OverwriteAndNegateIfEqual(kOverflow); |
| return VisitBinop(selector, node, kMipsMulOvf, cont); |
| default: |
| break; |
| } |
| } |
| } |
| break; |
| case IrOpcode::kWord32And: |
| return VisitWordCompare(selector, value, kMipsTst, cont, true); |
| default: |
| break; |
| } |
| } |
| |
| // Continuation could not be combined with a compare, emit compare against 0. |
| MipsOperandGenerator g(selector); |
| InstructionCode const opcode = cont->Encode(kMipsCmp); |
| InstructionOperand const value_operand = g.UseRegister(value); |
| if (cont->IsBranch()) { |
| selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0), |
| g.Label(cont->true_block()), g.Label(cont->false_block())); |
| } else if (cont->IsDeoptimize()) { |
| selector->EmitDeoptimize(opcode, g.NoOutput(), value_operand, |
| g.TempImmediate(0), cont->kind(), cont->reason(), |
| cont->feedback(), cont->frame_state()); |
| } else if (cont->IsSet()) { |
| selector->Emit(opcode, g.DefineAsRegister(cont->result()), value_operand, |
| g.TempImmediate(0)); |
| } else { |
| DCHECK(cont->IsTrap()); |
| selector->Emit(opcode, g.NoOutput(), value_operand, g.TempImmediate(0), |
| g.TempImmediate(cont->trap_id())); |
| } |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch, |
| BasicBlock* fbranch) { |
| FlagsContinuation cont(kNotEqual, tbranch, fbranch); |
| VisitWordCompareZero(this, branch, branch->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitDeoptimizeIf(Node* node) { |
| DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); |
| FlagsContinuation cont = FlagsContinuation::ForDeoptimize( |
| kNotEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitDeoptimizeUnless(Node* node) { |
| DeoptimizeParameters p = DeoptimizeParametersOf(node->op()); |
| FlagsContinuation cont = FlagsContinuation::ForDeoptimize( |
| kEqual, p.kind(), p.reason(), p.feedback(), node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitTrapIf(Node* node, Runtime::FunctionId func_id) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForTrap(kNotEqual, func_id, node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitTrapUnless(Node* node, |
| Runtime::FunctionId func_id) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForTrap(kEqual, func_id, node->InputAt(1)); |
| VisitWordCompareZero(this, node, node->InputAt(0), &cont); |
| } |
| |
| void InstructionSelector::VisitSwitch(Node* node, const SwitchInfo& sw) { |
| MipsOperandGenerator g(this); |
| InstructionOperand value_operand = g.UseRegister(node->InputAt(0)); |
| |
| // Emit either ArchTableSwitch or ArchLookupSwitch. |
| static const size_t kMaxTableSwitchValueRange = 2 << 16; |
| size_t table_space_cost = 9 + sw.value_range; |
| size_t table_time_cost = 3; |
| size_t lookup_space_cost = 2 + 2 * sw.case_count; |
| size_t lookup_time_cost = sw.case_count; |
| if (sw.case_count > 0 && |
| table_space_cost + 3 * table_time_cost <= |
| lookup_space_cost + 3 * lookup_time_cost && |
| sw.min_value > std::numeric_limits<int32_t>::min() && |
| sw.value_range <= kMaxTableSwitchValueRange) { |
| InstructionOperand index_operand = value_operand; |
| if (sw.min_value) { |
| index_operand = g.TempRegister(); |
| Emit(kMipsSub, index_operand, value_operand, |
| g.TempImmediate(sw.min_value)); |
| } |
| // Generate a table lookup. |
| return EmitTableSwitch(sw, index_operand); |
| } |
| |
| // Generate a sequence of conditional jumps. |
| return EmitLookupSwitch(sw, value_operand); |
| } |
| |
| |
| void InstructionSelector::VisitWord32Equal(Node* const node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| Int32BinopMatcher m(node); |
| if (m.right().Is(0)) { |
| return VisitWordCompareZero(this, m.node(), m.left().node(), &cont); |
| } |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kSignedLessThan, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kSignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitUint32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitWordCompare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32AddWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMipsAddOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMipsAddOvf, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitInt32SubWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMipsSubOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMipsSubOvf, &cont); |
| } |
| |
| void InstructionSelector::VisitInt32MulWithOverflow(Node* node) { |
| if (Node* ovf = NodeProperties::FindProjection(node, 1)) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kOverflow, ovf); |
| return VisitBinop(this, node, kMipsMulOvf, &cont); |
| } |
| FlagsContinuation cont; |
| VisitBinop(this, node, kMipsMulOvf, &cont); |
| } |
| |
| void InstructionSelector::VisitFloat32Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat32LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat32Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64Equal(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64LessThan(Node* node) { |
| FlagsContinuation cont = FlagsContinuation::ForSet(kUnsignedLessThan, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) { |
| FlagsContinuation cont = |
| FlagsContinuation::ForSet(kUnsignedLessThanOrEqual, node); |
| VisitFloat64Compare(this, node, &cont); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64ExtractLowWord32(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat64ExtractLowWord32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64ExtractHighWord32(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsFloat64ExtractHighWord32, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0))); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64InsertLowWord32(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kMipsFloat64InsertLowWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| |
| void InstructionSelector::VisitFloat64InsertHighWord32(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| Node* right = node->InputAt(1); |
| Emit(kMipsFloat64InsertHighWord32, g.DefineSameAsFirst(node), |
| g.UseRegister(left), g.UseRegister(right)); |
| } |
| |
| void InstructionSelector::VisitFloat64SilenceNaN(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* left = node->InputAt(0); |
| InstructionOperand temps[] = {g.TempRegister()}; |
| Emit(kMipsFloat64SilenceNaN, g.DefineSameAsFirst(node), g.UseRegister(left), |
| arraysize(temps), temps); |
| } |
| |
| void InstructionSelector::VisitAtomicLoad(Node* node) { |
| LoadRepresentation load_rep = LoadRepresentationOf(node->op()); |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| ArchOpcode opcode = kArchNop; |
| switch (load_rep.representation()) { |
| case MachineRepresentation::kWord8: |
| opcode = load_rep.IsSigned() ? kAtomicLoadInt8 : kAtomicLoadUint8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = load_rep.IsSigned() ? kAtomicLoadInt16 : kAtomicLoadUint16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kAtomicLoadWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), g.UseRegister(base), g.UseImmediate(index)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired load opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), |
| g.DefineAsRegister(node), addr_reg, g.TempImmediate(0)); |
| } |
| } |
| |
| void InstructionSelector::VisitAtomicStore(Node* node) { |
| MachineRepresentation rep = AtomicStoreRepresentationOf(node->op()); |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| ArchOpcode opcode = kArchNop; |
| switch (rep) { |
| case MachineRepresentation::kWord8: |
| opcode = kAtomicStoreWord8; |
| break; |
| case MachineRepresentation::kWord16: |
| opcode = kAtomicStoreWord16; |
| break; |
| case MachineRepresentation::kWord32: |
| opcode = kAtomicStoreWord32; |
| break; |
| default: |
| UNREACHABLE(); |
| return; |
| } |
| |
| if (g.CanBeImmediate(index, opcode)) { |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| g.UseRegister(base), g.UseImmediate(index), |
| g.UseRegisterOrImmediateZero(value)); |
| } else { |
| InstructionOperand addr_reg = g.TempRegister(); |
| Emit(kMipsAdd | AddressingModeField::encode(kMode_None), addr_reg, |
| g.UseRegister(index), g.UseRegister(base)); |
| // Emit desired store opcode, using temp addr_reg. |
| Emit(opcode | AddressingModeField::encode(kMode_MRI), g.NoOutput(), |
| addr_reg, g.TempImmediate(0), g.UseRegisterOrImmediateZero(value)); |
| } |
| } |
| |
| void InstructionSelector::VisitAtomicExchange(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpRepresentationOf(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kAtomicExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kAtomicExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kAtomicExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kAtomicExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kAtomicExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temp[3]; |
| temp[0] = g.TempRegister(); |
| temp[1] = g.TempRegister(); |
| temp[2] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| Emit(code, 1, outputs, input_count, inputs, 3, temp); |
| } |
| |
| void InstructionSelector::VisitAtomicCompareExchange(Node* node) { |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* old_value = node->InputAt(2); |
| Node* new_value = node->InputAt(3); |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpRepresentationOf(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = kAtomicCompareExchangeInt8; |
| } else if (type == MachineType::Uint8()) { |
| opcode = kAtomicCompareExchangeUint8; |
| } else if (type == MachineType::Int16()) { |
| opcode = kAtomicCompareExchangeInt16; |
| } else if (type == MachineType::Uint16()) { |
| opcode = kAtomicCompareExchangeUint16; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = kAtomicCompareExchangeWord32; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[4]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(old_value); |
| inputs[input_count++] = g.UseUniqueRegister(new_value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temp[3]; |
| temp[0] = g.TempRegister(); |
| temp[1] = g.TempRegister(); |
| temp[2] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| Emit(code, 1, outputs, input_count, inputs, 3, temp); |
| } |
| |
| void InstructionSelector::VisitAtomicBinaryOperation( |
| Node* node, ArchOpcode int8_op, ArchOpcode uint8_op, ArchOpcode int16_op, |
| ArchOpcode uint16_op, ArchOpcode word32_op) { |
| MipsOperandGenerator g(this); |
| Node* base = node->InputAt(0); |
| Node* index = node->InputAt(1); |
| Node* value = node->InputAt(2); |
| ArchOpcode opcode = kArchNop; |
| MachineType type = AtomicOpRepresentationOf(node->op()); |
| if (type == MachineType::Int8()) { |
| opcode = int8_op; |
| } else if (type == MachineType::Uint8()) { |
| opcode = uint8_op; |
| } else if (type == MachineType::Int16()) { |
| opcode = int16_op; |
| } else if (type == MachineType::Uint16()) { |
| opcode = uint16_op; |
| } else if (type == MachineType::Int32() || type == MachineType::Uint32()) { |
| opcode = word32_op; |
| } else { |
| UNREACHABLE(); |
| return; |
| } |
| |
| AddressingMode addressing_mode = kMode_MRI; |
| InstructionOperand inputs[3]; |
| size_t input_count = 0; |
| inputs[input_count++] = g.UseUniqueRegister(base); |
| inputs[input_count++] = g.UseUniqueRegister(index); |
| inputs[input_count++] = g.UseUniqueRegister(value); |
| InstructionOperand outputs[1]; |
| outputs[0] = g.UseUniqueRegister(node); |
| InstructionOperand temps[4]; |
| temps[0] = g.TempRegister(); |
| temps[1] = g.TempRegister(); |
| temps[2] = g.TempRegister(); |
| temps[3] = g.TempRegister(); |
| InstructionCode code = opcode | AddressingModeField::encode(addressing_mode); |
| Emit(code, 1, outputs, input_count, inputs, 4, temps); |
| } |
| |
| #define VISIT_ATOMIC_BINOP(op) \ |
| void InstructionSelector::VisitAtomic##op(Node* node) { \ |
| VisitAtomicBinaryOperation(node, kAtomic##op##Int8, kAtomic##op##Uint8, \ |
| kAtomic##op##Int16, kAtomic##op##Uint16, \ |
| kAtomic##op##Word32); \ |
| } |
| VISIT_ATOMIC_BINOP(Add) |
| VISIT_ATOMIC_BINOP(Sub) |
| VISIT_ATOMIC_BINOP(And) |
| VISIT_ATOMIC_BINOP(Or) |
| VISIT_ATOMIC_BINOP(Xor) |
| #undef VISIT_ATOMIC_BINOP |
| |
| void InstructionSelector::VisitInt32AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitInt64AbsWithOverflow(Node* node) { |
| UNREACHABLE(); |
| } |
| |
| void InstructionSelector::VisitSpeculationFence(Node* node) { UNREACHABLE(); } |
| |
| #define SIMD_TYPE_LIST(V) \ |
| V(F32x4) \ |
| V(I32x4) \ |
| V(I16x8) \ |
| V(I8x16) |
| |
| #define SIMD_FORMAT_LIST(V) \ |
| V(32x4) \ |
| V(16x8) \ |
| V(8x16) |
| |
| #define SIMD_UNOP_LIST(V) \ |
| V(F32x4SConvertI32x4, kMipsF32x4SConvertI32x4) \ |
| V(F32x4UConvertI32x4, kMipsF32x4UConvertI32x4) \ |
| V(F32x4Abs, kMipsF32x4Abs) \ |
| V(F32x4Neg, kMipsF32x4Neg) \ |
| V(F32x4RecipApprox, kMipsF32x4RecipApprox) \ |
| V(F32x4RecipSqrtApprox, kMipsF32x4RecipSqrtApprox) \ |
| V(I32x4SConvertF32x4, kMipsI32x4SConvertF32x4) \ |
| V(I32x4UConvertF32x4, kMipsI32x4UConvertF32x4) \ |
| V(I32x4Neg, kMipsI32x4Neg) \ |
| V(I32x4SConvertI16x8Low, kMipsI32x4SConvertI16x8Low) \ |
| V(I32x4SConvertI16x8High, kMipsI32x4SConvertI16x8High) \ |
| V(I32x4UConvertI16x8Low, kMipsI32x4UConvertI16x8Low) \ |
| V(I32x4UConvertI16x8High, kMipsI32x4UConvertI16x8High) \ |
| V(I16x8Neg, kMipsI16x8Neg) \ |
| V(I16x8SConvertI8x16Low, kMipsI16x8SConvertI8x16Low) \ |
| V(I16x8SConvertI8x16High, kMipsI16x8SConvertI8x16High) \ |
| V(I16x8UConvertI8x16Low, kMipsI16x8UConvertI8x16Low) \ |
| V(I16x8UConvertI8x16High, kMipsI16x8UConvertI8x16High) \ |
| V(I8x16Neg, kMipsI8x16Neg) \ |
| V(S128Not, kMipsS128Not) \ |
| V(S1x4AnyTrue, kMipsS1x4AnyTrue) \ |
| V(S1x4AllTrue, kMipsS1x4AllTrue) \ |
| V(S1x8AnyTrue, kMipsS1x8AnyTrue) \ |
| V(S1x8AllTrue, kMipsS1x8AllTrue) \ |
| V(S1x16AnyTrue, kMipsS1x16AnyTrue) \ |
| V(S1x16AllTrue, kMipsS1x16AllTrue) |
| |
| #define SIMD_SHIFT_OP_LIST(V) \ |
| V(I32x4Shl) \ |
| V(I32x4ShrS) \ |
| V(I32x4ShrU) \ |
| V(I16x8Shl) \ |
| V(I16x8ShrS) \ |
| V(I16x8ShrU) \ |
| V(I8x16Shl) \ |
| V(I8x16ShrS) \ |
| V(I8x16ShrU) |
| |
| #define SIMD_BINOP_LIST(V) \ |
| V(F32x4Add, kMipsF32x4Add) \ |
| V(F32x4AddHoriz, kMipsF32x4AddHoriz) \ |
| V(F32x4Sub, kMipsF32x4Sub) \ |
| V(F32x4Mul, kMipsF32x4Mul) \ |
| V(F32x4Max, kMipsF32x4Max) \ |
| V(F32x4Min, kMipsF32x4Min) \ |
| V(F32x4Eq, kMipsF32x4Eq) \ |
| V(F32x4Ne, kMipsF32x4Ne) \ |
| V(F32x4Lt, kMipsF32x4Lt) \ |
| V(F32x4Le, kMipsF32x4Le) \ |
| V(I32x4Add, kMipsI32x4Add) \ |
| V(I32x4AddHoriz, kMipsI32x4AddHoriz) \ |
| V(I32x4Sub, kMipsI32x4Sub) \ |
| V(I32x4Mul, kMipsI32x4Mul) \ |
| V(I32x4MaxS, kMipsI32x4MaxS) \ |
| V(I32x4MinS, kMipsI32x4MinS) \ |
| V(I32x4MaxU, kMipsI32x4MaxU) \ |
| V(I32x4MinU, kMipsI32x4MinU) \ |
| V(I32x4Eq, kMipsI32x4Eq) \ |
| V(I32x4Ne, kMipsI32x4Ne) \ |
| V(I32x4GtS, kMipsI32x4GtS) \ |
| V(I32x4GeS, kMipsI32x4GeS) \ |
| V(I32x4GtU, kMipsI32x4GtU) \ |
| V(I32x4GeU, kMipsI32x4GeU) \ |
| V(I16x8Add, kMipsI16x8Add) \ |
| V(I16x8AddSaturateS, kMipsI16x8AddSaturateS) \ |
| V(I16x8AddSaturateU, kMipsI16x8AddSaturateU) \ |
| V(I16x8AddHoriz, kMipsI16x8AddHoriz) \ |
| V(I16x8Sub, kMipsI16x8Sub) \ |
| V(I16x8SubSaturateS, kMipsI16x8SubSaturateS) \ |
| V(I16x8SubSaturateU, kMipsI16x8SubSaturateU) \ |
| V(I16x8Mul, kMipsI16x8Mul) \ |
| V(I16x8MaxS, kMipsI16x8MaxS) \ |
| V(I16x8MinS, kMipsI16x8MinS) \ |
| V(I16x8MaxU, kMipsI16x8MaxU) \ |
| V(I16x8MinU, kMipsI16x8MinU) \ |
| V(I16x8Eq, kMipsI16x8Eq) \ |
| V(I16x8Ne, kMipsI16x8Ne) \ |
| V(I16x8GtS, kMipsI16x8GtS) \ |
| V(I16x8GeS, kMipsI16x8GeS) \ |
| V(I16x8GtU, kMipsI16x8GtU) \ |
| V(I16x8GeU, kMipsI16x8GeU) \ |
| V(I16x8SConvertI32x4, kMipsI16x8SConvertI32x4) \ |
| V(I16x8UConvertI32x4, kMipsI16x8UConvertI32x4) \ |
| V(I8x16Add, kMipsI8x16Add) \ |
| V(I8x16AddSaturateS, kMipsI8x16AddSaturateS) \ |
| V(I8x16AddSaturateU, kMipsI8x16AddSaturateU) \ |
| V(I8x16Sub, kMipsI8x16Sub) \ |
| V(I8x16SubSaturateS, kMipsI8x16SubSaturateS) \ |
| V(I8x16SubSaturateU, kMipsI8x16SubSaturateU) \ |
| V(I8x16Mul, kMipsI8x16Mul) \ |
| V(I8x16MaxS, kMipsI8x16MaxS) \ |
| V(I8x16MinS, kMipsI8x16MinS) \ |
| V(I8x16MaxU, kMipsI8x16MaxU) \ |
| V(I8x16MinU, kMipsI8x16MinU) \ |
| V(I8x16Eq, kMipsI8x16Eq) \ |
| V(I8x16Ne, kMipsI8x16Ne) \ |
| V(I8x16GtS, kMipsI8x16GtS) \ |
| V(I8x16GeS, kMipsI8x16GeS) \ |
| V(I8x16GtU, kMipsI8x16GtU) \ |
| V(I8x16GeU, kMipsI8x16GeU) \ |
| V(I8x16SConvertI16x8, kMipsI8x16SConvertI16x8) \ |
| V(I8x16UConvertI16x8, kMipsI8x16UConvertI16x8) \ |
| V(S128And, kMipsS128And) \ |
| V(S128Or, kMipsS128Or) \ |
| V(S128Xor, kMipsS128Xor) |
| |
| void InstructionSelector::VisitS128Zero(Node* node) { |
| MipsOperandGenerator g(this); |
| Emit(kMipsS128Zero, g.DefineSameAsFirst(node)); |
| } |
| |
| #define SIMD_VISIT_SPLAT(Type) \ |
| void InstructionSelector::Visit##Type##Splat(Node* node) { \ |
| VisitRR(this, kMips##Type##Splat, node); \ |
| } |
| SIMD_TYPE_LIST(SIMD_VISIT_SPLAT) |
| #undef SIMD_VISIT_SPLAT |
| |
| #define SIMD_VISIT_EXTRACT_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ExtractLane(Node* node) { \ |
| VisitRRI(this, kMips##Type##ExtractLane, node); \ |
| } |
| SIMD_TYPE_LIST(SIMD_VISIT_EXTRACT_LANE) |
| #undef SIMD_VISIT_EXTRACT_LANE |
| |
| #define SIMD_VISIT_REPLACE_LANE(Type) \ |
| void InstructionSelector::Visit##Type##ReplaceLane(Node* node) { \ |
| VisitRRIR(this, kMips##Type##ReplaceLane, node); \ |
| } |
| SIMD_TYPE_LIST(SIMD_VISIT_REPLACE_LANE) |
| #undef SIMD_VISIT_REPLACE_LANE |
| |
| #define SIMD_VISIT_UNOP(Name, instruction) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRR(this, instruction, node); \ |
| } |
| SIMD_UNOP_LIST(SIMD_VISIT_UNOP) |
| #undef SIMD_VISIT_UNOP |
| |
| #define SIMD_VISIT_SHIFT_OP(Name) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRRI(this, kMips##Name, node); \ |
| } |
| SIMD_SHIFT_OP_LIST(SIMD_VISIT_SHIFT_OP) |
| #undef SIMD_VISIT_SHIFT_OP |
| |
| #define SIMD_VISIT_BINOP(Name, instruction) \ |
| void InstructionSelector::Visit##Name(Node* node) { \ |
| VisitRRR(this, instruction, node); \ |
| } |
| SIMD_BINOP_LIST(SIMD_VISIT_BINOP) |
| #undef SIMD_VISIT_BINOP |
| |
| void InstructionSelector::VisitS128Select(Node* node) { |
| VisitRRRR(this, kMipsS128Select, node); |
| } |
| |
| namespace { |
| |
| struct ShuffleEntry { |
| uint8_t shuffle[kSimd128Size]; |
| ArchOpcode opcode; |
| }; |
| |
| static const ShuffleEntry arch_shuffles[] = { |
| {{0, 1, 2, 3, 16, 17, 18, 19, 4, 5, 6, 7, 20, 21, 22, 23}, |
| kMipsS32x4InterleaveRight}, |
| {{8, 9, 10, 11, 24, 25, 26, 27, 12, 13, 14, 15, 28, 29, 30, 31}, |
| kMipsS32x4InterleaveLeft}, |
| {{0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27}, |
| kMipsS32x4PackEven}, |
| {{4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31}, |
| kMipsS32x4PackOdd}, |
| {{0, 1, 2, 3, 16, 17, 18, 19, 8, 9, 10, 11, 24, 25, 26, 27}, |
| kMipsS32x4InterleaveEven}, |
| {{4, 5, 6, 7, 20, 21, 22, 23, 12, 13, 14, 15, 28, 29, 30, 31}, |
| kMipsS32x4InterleaveOdd}, |
| |
| {{0, 1, 16, 17, 2, 3, 18, 19, 4, 5, 20, 21, 6, 7, 22, 23}, |
| kMipsS16x8InterleaveRight}, |
| {{8, 9, 24, 25, 10, 11, 26, 27, 12, 13, 28, 29, 14, 15, 30, 31}, |
| kMipsS16x8InterleaveLeft}, |
| {{0, 1, 4, 5, 8, 9, 12, 13, 16, 17, 20, 21, 24, 25, 28, 29}, |
| kMipsS16x8PackEven}, |
| {{2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31}, |
| kMipsS16x8PackOdd}, |
| {{0, 1, 16, 17, 4, 5, 20, 21, 8, 9, 24, 25, 12, 13, 28, 29}, |
| kMipsS16x8InterleaveEven}, |
| {{2, 3, 18, 19, 6, 7, 22, 23, 10, 11, 26, 27, 14, 15, 30, 31}, |
| kMipsS16x8InterleaveOdd}, |
| {{6, 7, 4, 5, 2, 3, 0, 1, 14, 15, 12, 13, 10, 11, 8, 9}, kMipsS16x4Reverse}, |
| {{2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}, kMipsS16x2Reverse}, |
| |
| {{0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23}, |
| kMipsS8x16InterleaveRight}, |
| {{8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31}, |
| kMipsS8x16InterleaveLeft}, |
| {{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}, |
| kMipsS8x16PackEven}, |
| {{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}, |
| kMipsS8x16PackOdd}, |
| {{0, 16, 2, 18, 4, 20, 6, 22, 8, 24, 10, 26, 12, 28, 14, 30}, |
| kMipsS8x16InterleaveEven}, |
| {{1, 17, 3, 19, 5, 21, 7, 23, 9, 25, 11, 27, 13, 29, 15, 31}, |
| kMipsS8x16InterleaveOdd}, |
| {{7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}, kMipsS8x8Reverse}, |
| {{3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}, kMipsS8x4Reverse}, |
| {{1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}, kMipsS8x2Reverse}}; |
| |
| bool TryMatchArchShuffle(const uint8_t* shuffle, const ShuffleEntry* table, |
| size_t num_entries, uint8_t mask, ArchOpcode* opcode) { |
| for (size_t i = 0; i < num_entries; ++i) { |
| const ShuffleEntry& entry = table[i]; |
| int j = 0; |
| for (; j < kSimd128Size; ++j) { |
| if ((entry.shuffle[j] & mask) != (shuffle[j] & mask)) { |
| break; |
| } |
| } |
| if (j == kSimd128Size) { |
| *opcode = entry.opcode; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| } // namespace |
| |
| void InstructionSelector::VisitS8x16Shuffle(Node* node) { |
| const uint8_t* shuffle = OpParameter<uint8_t*>(node); |
| uint8_t mask = CanonicalizeShuffle(node); |
| uint8_t shuffle32x4[4]; |
| ArchOpcode opcode; |
| if (TryMatchArchShuffle(shuffle, arch_shuffles, arraysize(arch_shuffles), |
| mask, &opcode)) { |
| VisitRRR(this, opcode, node); |
| return; |
| } |
| uint8_t offset; |
| MipsOperandGenerator g(this); |
| if (TryMatchConcat(shuffle, mask, &offset)) { |
| Emit(kMipsS8x16Concat, g.DefineSameAsFirst(node), |
| g.UseRegister(node->InputAt(1)), g.UseRegister(node->InputAt(0)), |
| g.UseImmediate(offset)); |
| return; |
| } |
| if (TryMatch32x4Shuffle(shuffle, shuffle32x4)) { |
| Emit(kMipsS32x4Shuffle, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| g.UseImmediate(Pack4Lanes(shuffle32x4, mask))); |
| return; |
| } |
| Emit(kMipsS8x16Shuffle, g.DefineAsRegister(node), |
| g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), |
| g.UseImmediate(Pack4Lanes(shuffle, mask)), |
| g.UseImmediate(Pack4Lanes(shuffle + 4, mask)), |
| g.UseImmediate(Pack4Lanes(shuffle + 8, mask)), |
| g.UseImmediate(Pack4Lanes(shuffle + 12, mask))); |
| } |
| |
| // static |
| MachineOperatorBuilder::Flags |
| InstructionSelector::SupportedMachineOperatorFlags() { |
| MachineOperatorBuilder::Flags flags = MachineOperatorBuilder::kNoFlags; |
| if ((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) && |
| IsFp64Mode()) { |
| flags |= MachineOperatorBuilder::kFloat64RoundDown | |
| MachineOperatorBuilder::kFloat64RoundUp | |
| MachineOperatorBuilder::kFloat64RoundTruncate | |
| MachineOperatorBuilder::kFloat64RoundTiesEven; |
| } |
| |
| return flags | MachineOperatorBuilder::kWord32Ctz | |
| MachineOperatorBuilder::kWord32Popcnt | |
| MachineOperatorBuilder::kInt32DivIsSafe | |
| MachineOperatorBuilder::kUint32DivIsSafe | |
| MachineOperatorBuilder::kWord32ShiftIsSafe | |
| MachineOperatorBuilder::kFloat32RoundDown | |
| MachineOperatorBuilder::kFloat32RoundUp | |
| MachineOperatorBuilder::kFloat32RoundTruncate | |
| MachineOperatorBuilder::kFloat32RoundTiesEven | |
| MachineOperatorBuilder::kWord32ReverseBytes | |
| MachineOperatorBuilder::kWord64ReverseBytes; |
| } |
| |
| // static |
| MachineOperatorBuilder::AlignmentRequirements |
| InstructionSelector::AlignmentRequirements() { |
| if (IsMipsArchVariant(kMips32r6)) { |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport(); |
| } else { |
| DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) || |
| IsMipsArchVariant(kMips32r2)); |
| return MachineOperatorBuilder::AlignmentRequirements:: |
| NoUnalignedAccessSupport(); |
| } |
| } |
| |
| #undef SIMD_BINOP_LIST |
| #undef SIMD_SHIFT_OP_LIST |
| #undef SIMD_UNOP_LIST |
| #undef SIMD_TYPE_LIST |
| #undef SIMD_FORMAT_LIST |
| #undef TRACE_UNIMPL |
| #undef TRACE |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |