| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_ |
| #define V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_ |
| |
| #include "src/assembler.h" |
| #include "src/compiler/common-operator.h" |
| #include "src/compiler/graph.h" |
| #include "src/compiler/linkage.h" |
| #include "src/compiler/machine-operator.h" |
| #include "src/compiler/node.h" |
| #include "src/compiler/operator.h" |
| #include "src/factory.h" |
| #include "src/globals.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| class BasicBlock; |
| class RawMachineLabel; |
| class Schedule; |
| |
| |
| // The RawMachineAssembler produces a low-level IR graph. All nodes are wired |
| // into a graph and also placed into a schedule immediately, hence subsequent |
| // code generation can happen without the need for scheduling. |
| // |
| // In order to create a schedule on-the-fly, the assembler keeps track of basic |
| // blocks by having one current basic block being populated and by referencing |
| // other basic blocks through the use of labels. |
| // |
| // Also note that the generated graph is only valid together with the generated |
| // schedule, using one without the other is invalid as the graph is inherently |
| // non-schedulable due to missing control and effect dependencies. |
| class V8_EXPORT_PRIVATE RawMachineAssembler { |
| public: |
| RawMachineAssembler( |
| Isolate* isolate, Graph* graph, CallDescriptor* call_descriptor, |
| MachineRepresentation word = MachineType::PointerRepresentation(), |
| MachineOperatorBuilder::Flags flags = |
| MachineOperatorBuilder::Flag::kNoFlags, |
| MachineOperatorBuilder::AlignmentRequirements alignment_requirements = |
| MachineOperatorBuilder::AlignmentRequirements:: |
| FullUnalignedAccessSupport()); |
| ~RawMachineAssembler() {} |
| |
| Isolate* isolate() const { return isolate_; } |
| Graph* graph() const { return graph_; } |
| Zone* zone() const { return graph()->zone(); } |
| MachineOperatorBuilder* machine() { return &machine_; } |
| CommonOperatorBuilder* common() { return &common_; } |
| CallDescriptor* call_descriptor() const { return call_descriptor_; } |
| |
| // Finalizes the schedule and exports it to be used for code generation. Note |
| // that this RawMachineAssembler becomes invalid after export. |
| Schedule* Export(); |
| |
| // =========================================================================== |
| // The following utility methods create new nodes with specific operators and |
| // place them into the current basic block. They don't perform control flow, |
| // hence will not switch the current basic block. |
| |
| Node* NullConstant(); |
| Node* UndefinedConstant(); |
| |
| // Constants. |
| Node* PointerConstant(void* value) { |
| return IntPtrConstant(reinterpret_cast<intptr_t>(value)); |
| } |
| Node* IntPtrConstant(intptr_t value) { |
| // TODO(dcarney): mark generated code as unserializable if value != 0. |
| return kPointerSize == 8 ? Int64Constant(value) |
| : Int32Constant(static_cast<int>(value)); |
| } |
| Node* RelocatableIntPtrConstant(intptr_t value, RelocInfo::Mode rmode); |
| Node* Int32Constant(int32_t value) { |
| return AddNode(common()->Int32Constant(value)); |
| } |
| Node* StackSlot(MachineRepresentation rep, int alignment = 0) { |
| return AddNode(machine()->StackSlot(rep, alignment)); |
| } |
| Node* Int64Constant(int64_t value) { |
| return AddNode(common()->Int64Constant(value)); |
| } |
| Node* NumberConstant(double value) { |
| return AddNode(common()->NumberConstant(value)); |
| } |
| Node* Float32Constant(float value) { |
| return AddNode(common()->Float32Constant(value)); |
| } |
| Node* Float64Constant(double value) { |
| return AddNode(common()->Float64Constant(value)); |
| } |
| Node* HeapConstant(Handle<HeapObject> object) { |
| return AddNode(common()->HeapConstant(object)); |
| } |
| Node* BooleanConstant(bool value) { |
| Handle<Object> object = isolate()->factory()->ToBoolean(value); |
| return HeapConstant(Handle<HeapObject>::cast(object)); |
| } |
| Node* ExternalConstant(ExternalReference address) { |
| return AddNode(common()->ExternalConstant(address)); |
| } |
| Node* RelocatableInt32Constant(int32_t value, RelocInfo::Mode rmode) { |
| return AddNode(common()->RelocatableInt32Constant(value, rmode)); |
| } |
| Node* RelocatableInt64Constant(int64_t value, RelocInfo::Mode rmode) { |
| return AddNode(common()->RelocatableInt64Constant(value, rmode)); |
| } |
| |
| Node* Projection(int index, Node* a) { |
| return AddNode(common()->Projection(index), a); |
| } |
| |
| // Memory Operations. |
| Node* Load(MachineType rep, Node* base) { |
| return Load(rep, base, IntPtrConstant(0)); |
| } |
| Node* Load(MachineType rep, Node* base, Node* index) { |
| return AddNode(machine()->Load(rep), base, index); |
| } |
| Node* Store(MachineRepresentation rep, Node* base, Node* value, |
| WriteBarrierKind write_barrier) { |
| return Store(rep, base, IntPtrConstant(0), value, write_barrier); |
| } |
| Node* Store(MachineRepresentation rep, Node* base, Node* index, Node* value, |
| WriteBarrierKind write_barrier) { |
| return AddNode(machine()->Store(StoreRepresentation(rep, write_barrier)), |
| base, index, value); |
| } |
| Node* Retain(Node* value) { return AddNode(common()->Retain(), value); } |
| |
| // Unaligned memory operations |
| Node* UnalignedLoad(MachineType type, Node* base) { |
| return UnalignedLoad(type, base, IntPtrConstant(0)); |
| } |
| Node* UnalignedLoad(MachineType type, Node* base, Node* index) { |
| if (machine()->UnalignedLoadSupported(type.representation())) { |
| return AddNode(machine()->Load(type), base, index); |
| } else { |
| return AddNode(machine()->UnalignedLoad(type), base, index); |
| } |
| } |
| Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* value) { |
| return UnalignedStore(rep, base, IntPtrConstant(0), value); |
| } |
| Node* UnalignedStore(MachineRepresentation rep, Node* base, Node* index, |
| Node* value) { |
| if (machine()->UnalignedStoreSupported(rep)) { |
| return AddNode(machine()->Store(StoreRepresentation( |
| rep, WriteBarrierKind::kNoWriteBarrier)), |
| base, index, value); |
| } else { |
| return AddNode( |
| machine()->UnalignedStore(UnalignedStoreRepresentation(rep)), base, |
| index, value); |
| } |
| } |
| |
| // Atomic memory operations. |
| Node* AtomicLoad(MachineType type, Node* base, Node* index) { |
| return AddNode(machine()->AtomicLoad(type), base, index); |
| } |
| Node* AtomicStore(MachineRepresentation rep, Node* base, Node* index, |
| Node* value) { |
| return AddNode(machine()->AtomicStore(rep), base, index, value); |
| } |
| #define ATOMIC_FUNCTION(name) \ |
| Node* Atomic##name(MachineType rep, Node* base, Node* index, Node* value) { \ |
| return AddNode(machine()->Atomic##name(rep), base, index, value); \ |
| } |
| ATOMIC_FUNCTION(Exchange); |
| ATOMIC_FUNCTION(Add); |
| ATOMIC_FUNCTION(Sub); |
| ATOMIC_FUNCTION(And); |
| ATOMIC_FUNCTION(Or); |
| ATOMIC_FUNCTION(Xor); |
| #undef ATOMIC_FUNCTION |
| |
| Node* AtomicCompareExchange(MachineType rep, Node* base, Node* index, |
| Node* old_value, Node* new_value) { |
| return AddNode(machine()->AtomicCompareExchange(rep), base, index, |
| old_value, new_value); |
| } |
| |
| Node* SpeculationFence() { |
| return AddNode(machine()->SpeculationFence().op()); |
| } |
| |
| // Arithmetic Operations. |
| Node* WordAnd(Node* a, Node* b) { |
| return AddNode(machine()->WordAnd(), a, b); |
| } |
| Node* WordOr(Node* a, Node* b) { return AddNode(machine()->WordOr(), a, b); } |
| Node* WordXor(Node* a, Node* b) { |
| return AddNode(machine()->WordXor(), a, b); |
| } |
| Node* WordShl(Node* a, Node* b) { |
| return AddNode(machine()->WordShl(), a, b); |
| } |
| Node* WordShr(Node* a, Node* b) { |
| return AddNode(machine()->WordShr(), a, b); |
| } |
| Node* WordSar(Node* a, Node* b) { |
| return AddNode(machine()->WordSar(), a, b); |
| } |
| Node* WordRor(Node* a, Node* b) { |
| return AddNode(machine()->WordRor(), a, b); |
| } |
| Node* WordEqual(Node* a, Node* b) { |
| return AddNode(machine()->WordEqual(), a, b); |
| } |
| Node* WordNotEqual(Node* a, Node* b) { |
| return Word32BinaryNot(WordEqual(a, b)); |
| } |
| Node* WordNot(Node* a) { |
| if (machine()->Is32()) { |
| return Word32Not(a); |
| } else { |
| return Word64Not(a); |
| } |
| } |
| |
| Node* Word32And(Node* a, Node* b) { |
| return AddNode(machine()->Word32And(), a, b); |
| } |
| Node* Word32Or(Node* a, Node* b) { |
| return AddNode(machine()->Word32Or(), a, b); |
| } |
| Node* Word32Xor(Node* a, Node* b) { |
| return AddNode(machine()->Word32Xor(), a, b); |
| } |
| Node* Word32Shl(Node* a, Node* b) { |
| return AddNode(machine()->Word32Shl(), a, b); |
| } |
| Node* Word32Shr(Node* a, Node* b) { |
| return AddNode(machine()->Word32Shr(), a, b); |
| } |
| Node* Word32Sar(Node* a, Node* b) { |
| return AddNode(machine()->Word32Sar(), a, b); |
| } |
| Node* Word32Ror(Node* a, Node* b) { |
| return AddNode(machine()->Word32Ror(), a, b); |
| } |
| Node* Word32Clz(Node* a) { return AddNode(machine()->Word32Clz(), a); } |
| Node* Word32Equal(Node* a, Node* b) { |
| return AddNode(machine()->Word32Equal(), a, b); |
| } |
| Node* Word32NotEqual(Node* a, Node* b) { |
| return Word32BinaryNot(Word32Equal(a, b)); |
| } |
| Node* Word32Not(Node* a) { return Word32Xor(a, Int32Constant(-1)); } |
| Node* Word32BinaryNot(Node* a) { return Word32Equal(a, Int32Constant(0)); } |
| |
| Node* Word64And(Node* a, Node* b) { |
| return AddNode(machine()->Word64And(), a, b); |
| } |
| Node* Word64Or(Node* a, Node* b) { |
| return AddNode(machine()->Word64Or(), a, b); |
| } |
| Node* Word64Xor(Node* a, Node* b) { |
| return AddNode(machine()->Word64Xor(), a, b); |
| } |
| Node* Word64Shl(Node* a, Node* b) { |
| return AddNode(machine()->Word64Shl(), a, b); |
| } |
| Node* Word64Shr(Node* a, Node* b) { |
| return AddNode(machine()->Word64Shr(), a, b); |
| } |
| Node* Word64Sar(Node* a, Node* b) { |
| return AddNode(machine()->Word64Sar(), a, b); |
| } |
| Node* Word64Ror(Node* a, Node* b) { |
| return AddNode(machine()->Word64Ror(), a, b); |
| } |
| Node* Word64Clz(Node* a) { return AddNode(machine()->Word64Clz(), a); } |
| Node* Word64Equal(Node* a, Node* b) { |
| return AddNode(machine()->Word64Equal(), a, b); |
| } |
| Node* Word64NotEqual(Node* a, Node* b) { |
| return Word32BinaryNot(Word64Equal(a, b)); |
| } |
| Node* Word64Not(Node* a) { return Word64Xor(a, Int64Constant(-1)); } |
| |
| Node* Int32Add(Node* a, Node* b) { |
| return AddNode(machine()->Int32Add(), a, b); |
| } |
| Node* Int32AddWithOverflow(Node* a, Node* b) { |
| return AddNode(machine()->Int32AddWithOverflow(), a, b); |
| } |
| Node* Int32Sub(Node* a, Node* b) { |
| return AddNode(machine()->Int32Sub(), a, b); |
| } |
| Node* Int32SubWithOverflow(Node* a, Node* b) { |
| return AddNode(machine()->Int32SubWithOverflow(), a, b); |
| } |
| Node* Int32Mul(Node* a, Node* b) { |
| return AddNode(machine()->Int32Mul(), a, b); |
| } |
| Node* Int32MulHigh(Node* a, Node* b) { |
| return AddNode(machine()->Int32MulHigh(), a, b); |
| } |
| Node* Int32MulWithOverflow(Node* a, Node* b) { |
| return AddNode(machine()->Int32MulWithOverflow(), a, b); |
| } |
| Node* Int32Div(Node* a, Node* b) { |
| return AddNode(machine()->Int32Div(), a, b); |
| } |
| Node* Int32Mod(Node* a, Node* b) { |
| return AddNode(machine()->Int32Mod(), a, b); |
| } |
| Node* Int32LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Int32LessThan(), a, b); |
| } |
| Node* Int32LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Int32LessThanOrEqual(), a, b); |
| } |
| Node* Uint32Div(Node* a, Node* b) { |
| return AddNode(machine()->Uint32Div(), a, b); |
| } |
| Node* Uint32LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Uint32LessThan(), a, b); |
| } |
| Node* Uint32LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Uint32LessThanOrEqual(), a, b); |
| } |
| Node* Uint32Mod(Node* a, Node* b) { |
| return AddNode(machine()->Uint32Mod(), a, b); |
| } |
| Node* Uint32MulHigh(Node* a, Node* b) { |
| return AddNode(machine()->Uint32MulHigh(), a, b); |
| } |
| Node* Int32GreaterThan(Node* a, Node* b) { return Int32LessThan(b, a); } |
| Node* Int32GreaterThanOrEqual(Node* a, Node* b) { |
| return Int32LessThanOrEqual(b, a); |
| } |
| Node* Uint32GreaterThan(Node* a, Node* b) { return Uint32LessThan(b, a); } |
| Node* Uint32GreaterThanOrEqual(Node* a, Node* b) { |
| return Uint32LessThanOrEqual(b, a); |
| } |
| Node* Int32Neg(Node* a) { return Int32Sub(Int32Constant(0), a); } |
| |
| Node* Int64Add(Node* a, Node* b) { |
| return AddNode(machine()->Int64Add(), a, b); |
| } |
| Node* Int64AddWithOverflow(Node* a, Node* b) { |
| return AddNode(machine()->Int64AddWithOverflow(), a, b); |
| } |
| Node* Int64Sub(Node* a, Node* b) { |
| return AddNode(machine()->Int64Sub(), a, b); |
| } |
| Node* Int64SubWithOverflow(Node* a, Node* b) { |
| return AddNode(machine()->Int64SubWithOverflow(), a, b); |
| } |
| Node* Int64Mul(Node* a, Node* b) { |
| return AddNode(machine()->Int64Mul(), a, b); |
| } |
| Node* Int64Div(Node* a, Node* b) { |
| return AddNode(machine()->Int64Div(), a, b); |
| } |
| Node* Int64Mod(Node* a, Node* b) { |
| return AddNode(machine()->Int64Mod(), a, b); |
| } |
| Node* Int64Neg(Node* a) { return Int64Sub(Int64Constant(0), a); } |
| Node* Int64LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Int64LessThan(), a, b); |
| } |
| Node* Int64LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Int64LessThanOrEqual(), a, b); |
| } |
| Node* Uint64LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Uint64LessThan(), a, b); |
| } |
| Node* Uint64LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Uint64LessThanOrEqual(), a, b); |
| } |
| Node* Int64GreaterThan(Node* a, Node* b) { return Int64LessThan(b, a); } |
| Node* Int64GreaterThanOrEqual(Node* a, Node* b) { |
| return Int64LessThanOrEqual(b, a); |
| } |
| Node* Uint64GreaterThan(Node* a, Node* b) { return Uint64LessThan(b, a); } |
| Node* Uint64GreaterThanOrEqual(Node* a, Node* b) { |
| return Uint64LessThanOrEqual(b, a); |
| } |
| Node* Uint64Div(Node* a, Node* b) { |
| return AddNode(machine()->Uint64Div(), a, b); |
| } |
| Node* Uint64Mod(Node* a, Node* b) { |
| return AddNode(machine()->Uint64Mod(), a, b); |
| } |
| Node* Int32PairAdd(Node* a_low, Node* a_high, Node* b_low, Node* b_high) { |
| return AddNode(machine()->Int32PairAdd(), a_low, a_high, b_low, b_high); |
| } |
| Node* Int32PairSub(Node* a_low, Node* a_high, Node* b_low, Node* b_high) { |
| return AddNode(machine()->Int32PairSub(), a_low, a_high, b_low, b_high); |
| } |
| Node* Int32PairMul(Node* a_low, Node* a_high, Node* b_low, Node* b_high) { |
| return AddNode(machine()->Int32PairMul(), a_low, a_high, b_low, b_high); |
| } |
| Node* Word32PairShl(Node* low_word, Node* high_word, Node* shift) { |
| return AddNode(machine()->Word32PairShl(), low_word, high_word, shift); |
| } |
| Node* Word32PairShr(Node* low_word, Node* high_word, Node* shift) { |
| return AddNode(machine()->Word32PairShr(), low_word, high_word, shift); |
| } |
| Node* Word32PairSar(Node* low_word, Node* high_word, Node* shift) { |
| return AddNode(machine()->Word32PairSar(), low_word, high_word, shift); |
| } |
| |
| #define INTPTR_BINOP(prefix, name) \ |
| Node* IntPtr##name(Node* a, Node* b) { \ |
| return kPointerSize == 8 ? prefix##64##name(a, b) \ |
| : prefix##32##name(a, b); \ |
| } |
| |
| INTPTR_BINOP(Int, Add); |
| INTPTR_BINOP(Int, AddWithOverflow); |
| INTPTR_BINOP(Int, Sub); |
| INTPTR_BINOP(Int, SubWithOverflow); |
| INTPTR_BINOP(Int, Mul); |
| INTPTR_BINOP(Int, Div); |
| INTPTR_BINOP(Int, LessThan); |
| INTPTR_BINOP(Int, LessThanOrEqual); |
| INTPTR_BINOP(Word, Equal); |
| INTPTR_BINOP(Word, NotEqual); |
| INTPTR_BINOP(Int, GreaterThanOrEqual); |
| INTPTR_BINOP(Int, GreaterThan); |
| |
| #undef INTPTR_BINOP |
| |
| #define UINTPTR_BINOP(prefix, name) \ |
| Node* UintPtr##name(Node* a, Node* b) { \ |
| return kPointerSize == 8 ? prefix##64##name(a, b) \ |
| : prefix##32##name(a, b); \ |
| } |
| |
| UINTPTR_BINOP(Uint, LessThan); |
| UINTPTR_BINOP(Uint, LessThanOrEqual); |
| UINTPTR_BINOP(Uint, GreaterThanOrEqual); |
| UINTPTR_BINOP(Uint, GreaterThan); |
| |
| #undef UINTPTR_BINOP |
| |
| Node* Int32AbsWithOverflow(Node* a) { |
| return AddNode(machine()->Int32AbsWithOverflow().op(), a); |
| } |
| |
| Node* Int64AbsWithOverflow(Node* a) { |
| return AddNode(machine()->Int64AbsWithOverflow().op(), a); |
| } |
| |
| Node* IntPtrAbsWithOverflow(Node* a) { |
| return kPointerSize == 8 ? Int64AbsWithOverflow(a) |
| : Int32AbsWithOverflow(a); |
| } |
| |
| Node* Float32Add(Node* a, Node* b) { |
| return AddNode(machine()->Float32Add(), a, b); |
| } |
| Node* Float32Sub(Node* a, Node* b) { |
| return AddNode(machine()->Float32Sub(), a, b); |
| } |
| Node* Float32Mul(Node* a, Node* b) { |
| return AddNode(machine()->Float32Mul(), a, b); |
| } |
| Node* Float32Div(Node* a, Node* b) { |
| return AddNode(machine()->Float32Div(), a, b); |
| } |
| Node* Float32Abs(Node* a) { return AddNode(machine()->Float32Abs(), a); } |
| Node* Float32Neg(Node* a) { return AddNode(machine()->Float32Neg(), a); } |
| Node* Float32Sqrt(Node* a) { return AddNode(machine()->Float32Sqrt(), a); } |
| Node* Float32Equal(Node* a, Node* b) { |
| return AddNode(machine()->Float32Equal(), a, b); |
| } |
| Node* Float32NotEqual(Node* a, Node* b) { |
| return Word32BinaryNot(Float32Equal(a, b)); |
| } |
| Node* Float32LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Float32LessThan(), a, b); |
| } |
| Node* Float32LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Float32LessThanOrEqual(), a, b); |
| } |
| Node* Float32GreaterThan(Node* a, Node* b) { return Float32LessThan(b, a); } |
| Node* Float32GreaterThanOrEqual(Node* a, Node* b) { |
| return Float32LessThanOrEqual(b, a); |
| } |
| Node* Float32Max(Node* a, Node* b) { |
| return AddNode(machine()->Float32Max(), a, b); |
| } |
| Node* Float32Min(Node* a, Node* b) { |
| return AddNode(machine()->Float32Min(), a, b); |
| } |
| Node* Float64Add(Node* a, Node* b) { |
| return AddNode(machine()->Float64Add(), a, b); |
| } |
| Node* Float64Sub(Node* a, Node* b) { |
| return AddNode(machine()->Float64Sub(), a, b); |
| } |
| Node* Float64Mul(Node* a, Node* b) { |
| return AddNode(machine()->Float64Mul(), a, b); |
| } |
| Node* Float64Div(Node* a, Node* b) { |
| return AddNode(machine()->Float64Div(), a, b); |
| } |
| Node* Float64Mod(Node* a, Node* b) { |
| return AddNode(machine()->Float64Mod(), a, b); |
| } |
| Node* Float64Max(Node* a, Node* b) { |
| return AddNode(machine()->Float64Max(), a, b); |
| } |
| Node* Float64Min(Node* a, Node* b) { |
| return AddNode(machine()->Float64Min(), a, b); |
| } |
| Node* Float64Abs(Node* a) { return AddNode(machine()->Float64Abs(), a); } |
| Node* Float64Neg(Node* a) { return AddNode(machine()->Float64Neg(), a); } |
| Node* Float64Acos(Node* a) { return AddNode(machine()->Float64Acos(), a); } |
| Node* Float64Acosh(Node* a) { return AddNode(machine()->Float64Acosh(), a); } |
| Node* Float64Asin(Node* a) { return AddNode(machine()->Float64Asin(), a); } |
| Node* Float64Asinh(Node* a) { return AddNode(machine()->Float64Asinh(), a); } |
| Node* Float64Atan(Node* a) { return AddNode(machine()->Float64Atan(), a); } |
| Node* Float64Atanh(Node* a) { return AddNode(machine()->Float64Atanh(), a); } |
| Node* Float64Atan2(Node* a, Node* b) { |
| return AddNode(machine()->Float64Atan2(), a, b); |
| } |
| Node* Float64Cbrt(Node* a) { return AddNode(machine()->Float64Cbrt(), a); } |
| Node* Float64Cos(Node* a) { return AddNode(machine()->Float64Cos(), a); } |
| Node* Float64Cosh(Node* a) { return AddNode(machine()->Float64Cosh(), a); } |
| Node* Float64Exp(Node* a) { return AddNode(machine()->Float64Exp(), a); } |
| Node* Float64Expm1(Node* a) { return AddNode(machine()->Float64Expm1(), a); } |
| Node* Float64Log(Node* a) { return AddNode(machine()->Float64Log(), a); } |
| Node* Float64Log1p(Node* a) { return AddNode(machine()->Float64Log1p(), a); } |
| Node* Float64Log10(Node* a) { return AddNode(machine()->Float64Log10(), a); } |
| Node* Float64Log2(Node* a) { return AddNode(machine()->Float64Log2(), a); } |
| Node* Float64Pow(Node* a, Node* b) { |
| return AddNode(machine()->Float64Pow(), a, b); |
| } |
| Node* Float64Sin(Node* a) { return AddNode(machine()->Float64Sin(), a); } |
| Node* Float64Sinh(Node* a) { return AddNode(machine()->Float64Sinh(), a); } |
| Node* Float64Sqrt(Node* a) { return AddNode(machine()->Float64Sqrt(), a); } |
| Node* Float64Tan(Node* a) { return AddNode(machine()->Float64Tan(), a); } |
| Node* Float64Tanh(Node* a) { return AddNode(machine()->Float64Tanh(), a); } |
| Node* Float64Equal(Node* a, Node* b) { |
| return AddNode(machine()->Float64Equal(), a, b); |
| } |
| Node* Float64NotEqual(Node* a, Node* b) { |
| return Word32BinaryNot(Float64Equal(a, b)); |
| } |
| Node* Float64LessThan(Node* a, Node* b) { |
| return AddNode(machine()->Float64LessThan(), a, b); |
| } |
| Node* Float64LessThanOrEqual(Node* a, Node* b) { |
| return AddNode(machine()->Float64LessThanOrEqual(), a, b); |
| } |
| Node* Float64GreaterThan(Node* a, Node* b) { return Float64LessThan(b, a); } |
| Node* Float64GreaterThanOrEqual(Node* a, Node* b) { |
| return Float64LessThanOrEqual(b, a); |
| } |
| |
| // Conversions. |
| Node* BitcastTaggedToWord(Node* a) { |
| #ifdef ENABLE_VERIFY_CSA |
| return AddNode(machine()->BitcastTaggedToWord(), a); |
| #else |
| return a; |
| #endif |
| } |
| Node* BitcastWordToTagged(Node* a) { |
| return AddNode(machine()->BitcastWordToTagged(), a); |
| } |
| Node* BitcastWordToTaggedSigned(Node* a) { |
| #ifdef ENABLE_VERIFY_CSA |
| return AddNode(machine()->BitcastWordToTaggedSigned(), a); |
| #else |
| return a; |
| #endif |
| } |
| Node* TruncateFloat64ToWord32(Node* a) { |
| return AddNode(machine()->TruncateFloat64ToWord32(), a); |
| } |
| Node* ChangeFloat32ToFloat64(Node* a) { |
| return AddNode(machine()->ChangeFloat32ToFloat64(), a); |
| } |
| Node* ChangeInt32ToFloat64(Node* a) { |
| return AddNode(machine()->ChangeInt32ToFloat64(), a); |
| } |
| Node* ChangeUint32ToFloat64(Node* a) { |
| return AddNode(machine()->ChangeUint32ToFloat64(), a); |
| } |
| Node* ChangeFloat64ToInt32(Node* a) { |
| return AddNode(machine()->ChangeFloat64ToInt32(), a); |
| } |
| Node* ChangeFloat64ToUint32(Node* a) { |
| return AddNode(machine()->ChangeFloat64ToUint32(), a); |
| } |
| Node* ChangeFloat64ToUint64(Node* a) { |
| return AddNode(machine()->ChangeFloat64ToUint64(), a); |
| } |
| Node* TruncateFloat64ToUint32(Node* a) { |
| return AddNode(machine()->TruncateFloat64ToUint32(), a); |
| } |
| Node* TruncateFloat32ToInt32(Node* a) { |
| return AddNode(machine()->TruncateFloat32ToInt32(), a); |
| } |
| Node* TruncateFloat32ToUint32(Node* a) { |
| return AddNode(machine()->TruncateFloat32ToUint32(), a); |
| } |
| Node* TryTruncateFloat32ToInt64(Node* a) { |
| return AddNode(machine()->TryTruncateFloat32ToInt64(), a); |
| } |
| Node* TryTruncateFloat64ToInt64(Node* a) { |
| return AddNode(machine()->TryTruncateFloat64ToInt64(), a); |
| } |
| Node* TryTruncateFloat32ToUint64(Node* a) { |
| return AddNode(machine()->TryTruncateFloat32ToUint64(), a); |
| } |
| Node* TryTruncateFloat64ToUint64(Node* a) { |
| return AddNode(machine()->TryTruncateFloat64ToUint64(), a); |
| } |
| Node* ChangeInt32ToInt64(Node* a) { |
| return AddNode(machine()->ChangeInt32ToInt64(), a); |
| } |
| Node* ChangeUint32ToUint64(Node* a) { |
| return AddNode(machine()->ChangeUint32ToUint64(), a); |
| } |
| Node* TruncateFloat64ToFloat32(Node* a) { |
| return AddNode(machine()->TruncateFloat64ToFloat32(), a); |
| } |
| Node* TruncateInt64ToInt32(Node* a) { |
| return AddNode(machine()->TruncateInt64ToInt32(), a); |
| } |
| Node* RoundFloat64ToInt32(Node* a) { |
| return AddNode(machine()->RoundFloat64ToInt32(), a); |
| } |
| Node* RoundInt32ToFloat32(Node* a) { |
| return AddNode(machine()->RoundInt32ToFloat32(), a); |
| } |
| Node* RoundInt64ToFloat32(Node* a) { |
| return AddNode(machine()->RoundInt64ToFloat32(), a); |
| } |
| Node* RoundInt64ToFloat64(Node* a) { |
| return AddNode(machine()->RoundInt64ToFloat64(), a); |
| } |
| Node* RoundUint32ToFloat32(Node* a) { |
| return AddNode(machine()->RoundUint32ToFloat32(), a); |
| } |
| Node* RoundUint64ToFloat32(Node* a) { |
| return AddNode(machine()->RoundUint64ToFloat32(), a); |
| } |
| Node* RoundUint64ToFloat64(Node* a) { |
| return AddNode(machine()->RoundUint64ToFloat64(), a); |
| } |
| Node* BitcastFloat32ToInt32(Node* a) { |
| return AddNode(machine()->BitcastFloat32ToInt32(), a); |
| } |
| Node* BitcastFloat64ToInt64(Node* a) { |
| return AddNode(machine()->BitcastFloat64ToInt64(), a); |
| } |
| Node* BitcastInt32ToFloat32(Node* a) { |
| return AddNode(machine()->BitcastInt32ToFloat32(), a); |
| } |
| Node* BitcastInt64ToFloat64(Node* a) { |
| return AddNode(machine()->BitcastInt64ToFloat64(), a); |
| } |
| Node* Float32RoundDown(Node* a) { |
| return AddNode(machine()->Float32RoundDown().op(), a); |
| } |
| Node* Float64RoundDown(Node* a) { |
| return AddNode(machine()->Float64RoundDown().op(), a); |
| } |
| Node* Float32RoundUp(Node* a) { |
| return AddNode(machine()->Float32RoundUp().op(), a); |
| } |
| Node* Float64RoundUp(Node* a) { |
| return AddNode(machine()->Float64RoundUp().op(), a); |
| } |
| Node* Float32RoundTruncate(Node* a) { |
| return AddNode(machine()->Float32RoundTruncate().op(), a); |
| } |
| Node* Float64RoundTruncate(Node* a) { |
| return AddNode(machine()->Float64RoundTruncate().op(), a); |
| } |
| Node* Float64RoundTiesAway(Node* a) { |
| return AddNode(machine()->Float64RoundTiesAway().op(), a); |
| } |
| Node* Float32RoundTiesEven(Node* a) { |
| return AddNode(machine()->Float32RoundTiesEven().op(), a); |
| } |
| Node* Float64RoundTiesEven(Node* a) { |
| return AddNode(machine()->Float64RoundTiesEven().op(), a); |
| } |
| Node* Word32ReverseBytes(Node* a) { |
| return AddNode(machine()->Word32ReverseBytes().op(), a); |
| } |
| Node* Word64ReverseBytes(Node* a) { |
| return AddNode(machine()->Word64ReverseBytes().op(), a); |
| } |
| |
| // Float64 bit operations. |
| Node* Float64ExtractLowWord32(Node* a) { |
| return AddNode(machine()->Float64ExtractLowWord32(), a); |
| } |
| Node* Float64ExtractHighWord32(Node* a) { |
| return AddNode(machine()->Float64ExtractHighWord32(), a); |
| } |
| Node* Float64InsertLowWord32(Node* a, Node* b) { |
| return AddNode(machine()->Float64InsertLowWord32(), a, b); |
| } |
| Node* Float64InsertHighWord32(Node* a, Node* b) { |
| return AddNode(machine()->Float64InsertHighWord32(), a, b); |
| } |
| Node* Float64SilenceNaN(Node* a) { |
| return AddNode(machine()->Float64SilenceNaN(), a); |
| } |
| |
| // Stack operations. |
| Node* LoadStackPointer() { return AddNode(machine()->LoadStackPointer()); } |
| Node* LoadFramePointer() { return AddNode(machine()->LoadFramePointer()); } |
| Node* LoadParentFramePointer() { |
| return AddNode(machine()->LoadParentFramePointer()); |
| } |
| |
| // Parameters. |
| Node* Parameter(size_t index); |
| |
| // Pointer utilities. |
| Node* LoadFromPointer(void* address, MachineType rep, int32_t offset = 0) { |
| return Load(rep, PointerConstant(address), Int32Constant(offset)); |
| } |
| Node* StoreToPointer(void* address, MachineRepresentation rep, Node* node) { |
| return Store(rep, PointerConstant(address), node, kNoWriteBarrier); |
| } |
| Node* UnalignedLoadFromPointer(void* address, MachineType rep, |
| int32_t offset = 0) { |
| return UnalignedLoad(rep, PointerConstant(address), Int32Constant(offset)); |
| } |
| Node* UnalignedStoreToPointer(void* address, MachineRepresentation rep, |
| Node* node) { |
| return UnalignedStore(rep, PointerConstant(address), node); |
| } |
| Node* StringConstant(const char* string) { |
| return HeapConstant(isolate()->factory()->InternalizeUtf8String(string)); |
| } |
| |
| // Call a given call descriptor and the given arguments. |
| // The call target is passed as part of the {inputs} array. |
| Node* CallN(CallDescriptor* desc, int input_count, Node* const* inputs); |
| |
| // Call a given call descriptor and the given arguments and frame-state. |
| // The call target and frame state are passed as part of the {inputs} array. |
| Node* CallNWithFrameState(CallDescriptor* desc, int input_count, |
| Node* const* inputs); |
| |
| // Tail call a given call descriptor and the given arguments. |
| // The call target is passed as part of the {inputs} array. |
| Node* TailCallN(CallDescriptor* desc, int input_count, Node* const* inputs); |
| |
| // Call to a C function with zero arguments. |
| Node* CallCFunction0(MachineType return_type, Node* function); |
| // Call to a C function with one parameter. |
| Node* CallCFunction1(MachineType return_type, MachineType arg0_type, |
| Node* function, Node* arg0); |
| // Call to a C function with one argument, while saving/restoring caller |
| // registers. |
| Node* CallCFunction1WithCallerSavedRegisters( |
| MachineType return_type, MachineType arg0_type, Node* function, |
| Node* arg0, SaveFPRegsMode mode = kSaveFPRegs); |
| // Call to a C function with two arguments. |
| Node* CallCFunction2(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, Node* function, Node* arg0, |
| Node* arg1); |
| // Call to a C function with three arguments. |
| Node* CallCFunction3(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| Node* function, Node* arg0, Node* arg1, Node* arg2); |
| // Call to a C function with three arguments, while saving/restoring caller |
| // registers. |
| Node* CallCFunction3WithCallerSavedRegisters( |
| MachineType return_type, MachineType arg0_type, MachineType arg1_type, |
| MachineType arg2_type, Node* function, Node* arg0, Node* arg1, Node* arg2, |
| SaveFPRegsMode mode = kSaveFPRegs); |
| // Call to a C function with four arguments. |
| Node* CallCFunction4(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| MachineType arg3_type, Node* function, Node* arg0, |
| Node* arg1, Node* arg2, Node* arg3); |
| // Call to a C function with five arguments. |
| Node* CallCFunction5(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| MachineType arg3_type, MachineType arg4_type, |
| Node* function, Node* arg0, Node* arg1, Node* arg2, |
| Node* arg3, Node* arg4); |
| // Call to a C function with six arguments. |
| Node* CallCFunction6(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| MachineType arg3_type, MachineType arg4_type, |
| MachineType arg5_type, Node* function, Node* arg0, |
| Node* arg1, Node* arg2, Node* arg3, Node* arg4, |
| Node* arg5); |
| // Call to a C function with eight arguments. |
| Node* CallCFunction8(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| MachineType arg3_type, MachineType arg4_type, |
| MachineType arg5_type, MachineType arg6_type, |
| MachineType arg7_type, Node* function, Node* arg0, |
| Node* arg1, Node* arg2, Node* arg3, Node* arg4, |
| Node* arg5, Node* arg6, Node* arg7); |
| // Call to a C function with nine arguments. |
| Node* CallCFunction9(MachineType return_type, MachineType arg0_type, |
| MachineType arg1_type, MachineType arg2_type, |
| MachineType arg3_type, MachineType arg4_type, |
| MachineType arg5_type, MachineType arg6_type, |
| MachineType arg7_type, MachineType arg8_type, |
| Node* function, Node* arg0, Node* arg1, Node* arg2, |
| Node* arg3, Node* arg4, Node* arg5, Node* arg6, |
| Node* arg7, Node* arg8); |
| |
| // =========================================================================== |
| // The following utility methods deal with control flow, hence might switch |
| // the current basic block or create new basic blocks for labels. |
| |
| // Control flow. |
| void Goto(RawMachineLabel* label); |
| void Branch(Node* condition, RawMachineLabel* true_val, |
| RawMachineLabel* false_val); |
| void Switch(Node* index, RawMachineLabel* default_label, |
| const int32_t* case_values, RawMachineLabel** case_labels, |
| size_t case_count); |
| void Return(Node* value); |
| void Return(Node* v1, Node* v2); |
| void Return(Node* v1, Node* v2, Node* v3); |
| void Return(Node* v1, Node* v2, Node* v3, Node* v4); |
| void Return(int count, Node* v[]); |
| void PopAndReturn(Node* pop, Node* value); |
| void PopAndReturn(Node* pop, Node* v1, Node* v2); |
| void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3); |
| void PopAndReturn(Node* pop, Node* v1, Node* v2, Node* v3, Node* v4); |
| void Bind(RawMachineLabel* label); |
| void Deoptimize(Node* state); |
| void DebugAbort(Node* message); |
| void DebugBreak(); |
| void Unreachable(); |
| void Comment(const char* msg); |
| |
| #if DEBUG |
| void Bind(RawMachineLabel* label, AssemblerDebugInfo info); |
| void SetInitialDebugInformation(AssemblerDebugInfo info); |
| void PrintCurrentBlock(std::ostream& os); |
| bool InsideBlock(); |
| #endif // DEBUG |
| |
| // Add success / exception successor blocks and ends the current block ending |
| // in a potentially throwing call node. |
| void Continuations(Node* call, RawMachineLabel* if_success, |
| RawMachineLabel* if_exception); |
| |
| // Variables. |
| Node* Phi(MachineRepresentation rep, Node* n1, Node* n2) { |
| return AddNode(common()->Phi(rep, 2), n1, n2, graph()->start()); |
| } |
| Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3) { |
| return AddNode(common()->Phi(rep, 3), n1, n2, n3, graph()->start()); |
| } |
| Node* Phi(MachineRepresentation rep, Node* n1, Node* n2, Node* n3, Node* n4) { |
| return AddNode(common()->Phi(rep, 4), n1, n2, n3, n4, graph()->start()); |
| } |
| Node* Phi(MachineRepresentation rep, int input_count, Node* const* inputs); |
| void AppendPhiInput(Node* phi, Node* new_input); |
| |
| // =========================================================================== |
| // The following generic node creation methods can be used for operators that |
| // are not covered by the above utility methods. There should rarely be a need |
| // to do that outside of testing though. |
| |
| Node* AddNode(const Operator* op, int input_count, Node* const* inputs); |
| |
| Node* AddNode(const Operator* op) { |
| return AddNode(op, 0, static_cast<Node* const*>(nullptr)); |
| } |
| |
| template <class... TArgs> |
| Node* AddNode(const Operator* op, Node* n1, TArgs... args) { |
| Node* buffer[] = {n1, args...}; |
| return AddNode(op, sizeof...(args) + 1, buffer); |
| } |
| |
| private: |
| Node* MakeNode(const Operator* op, int input_count, Node* const* inputs); |
| BasicBlock* Use(RawMachineLabel* label); |
| BasicBlock* EnsureBlock(RawMachineLabel* label); |
| BasicBlock* CurrentBlock(); |
| |
| Schedule* schedule() { return schedule_; } |
| size_t parameter_count() const { return call_descriptor_->ParameterCount(); } |
| |
| Isolate* isolate_; |
| Graph* graph_; |
| Schedule* schedule_; |
| MachineOperatorBuilder machine_; |
| CommonOperatorBuilder common_; |
| CallDescriptor* call_descriptor_; |
| NodeVector parameters_; |
| BasicBlock* current_block_; |
| |
| DISALLOW_COPY_AND_ASSIGN(RawMachineAssembler); |
| }; |
| |
| class V8_EXPORT_PRIVATE RawMachineLabel final { |
| public: |
| enum Type { kDeferred, kNonDeferred }; |
| |
| explicit RawMachineLabel(Type type = kNonDeferred) |
| : deferred_(type == kDeferred) {} |
| ~RawMachineLabel(); |
| |
| BasicBlock* block() const { return block_; } |
| |
| private: |
| BasicBlock* block_ = nullptr; |
| bool used_ = false; |
| bool bound_ = false; |
| bool deferred_; |
| friend class RawMachineAssembler; |
| DISALLOW_COPY_AND_ASSIGN(RawMachineLabel); |
| }; |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_COMPILER_RAW_MACHINE_ASSEMBLER_H_ |