| // Copyright 2015 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/compiler/representation-change.h" |
| |
| #include <sstream> |
| |
| #include "src/base/bits.h" |
| #include "src/code-factory.h" |
| #include "src/compiler/machine-operator.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/factory-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| const char* Truncation::description() const { |
| switch (kind()) { |
| case TruncationKind::kNone: |
| return "no-value-use"; |
| case TruncationKind::kBool: |
| return "truncate-to-bool"; |
| case TruncationKind::kWord32: |
| return "truncate-to-word32"; |
| case TruncationKind::kWord64: |
| return "truncate-to-word64"; |
| case TruncationKind::kFloat64: |
| switch (identify_zeros()) { |
| case kIdentifyZeros: |
| return "truncate-to-float64 (identify zeros)"; |
| case kDistinguishZeros: |
| return "truncate-to-float64 (distinguish zeros)"; |
| } |
| case TruncationKind::kAny: |
| switch (identify_zeros()) { |
| case kIdentifyZeros: |
| return "no-truncation (but identify zeros)"; |
| case kDistinguishZeros: |
| return "no-truncation (but distinguish zeros)"; |
| } |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| // Partial order for truncations: |
| // |
| // kWord64 kAny <-------+ |
| // ^ ^ | |
| // \ | | |
| // \ kFloat64 | |
| // \ ^ | |
| // \ / | |
| // kWord32 kBool |
| // ^ ^ |
| // \ / |
| // \ / |
| // \ / |
| // \ / |
| // \ / |
| // kNone |
| // |
| // TODO(jarin) We might consider making kBool < kFloat64. |
| |
| // static |
| Truncation::TruncationKind Truncation::Generalize(TruncationKind rep1, |
| TruncationKind rep2) { |
| if (LessGeneral(rep1, rep2)) return rep2; |
| if (LessGeneral(rep2, rep1)) return rep1; |
| // Handle the generalization of float64-representable values. |
| if (LessGeneral(rep1, TruncationKind::kFloat64) && |
| LessGeneral(rep2, TruncationKind::kFloat64)) { |
| return TruncationKind::kFloat64; |
| } |
| // Handle the generalization of any-representable values. |
| if (LessGeneral(rep1, TruncationKind::kAny) && |
| LessGeneral(rep2, TruncationKind::kAny)) { |
| return TruncationKind::kAny; |
| } |
| // All other combinations are illegal. |
| FATAL("Tried to combine incompatible truncations"); |
| return TruncationKind::kNone; |
| } |
| |
| // static |
| IdentifyZeros Truncation::GeneralizeIdentifyZeros(IdentifyZeros i1, |
| IdentifyZeros i2) { |
| if (i1 == i2) { |
| return i1; |
| } else { |
| return kDistinguishZeros; |
| } |
| } |
| |
| // static |
| bool Truncation::LessGeneral(TruncationKind rep1, TruncationKind rep2) { |
| switch (rep1) { |
| case TruncationKind::kNone: |
| return true; |
| case TruncationKind::kBool: |
| return rep2 == TruncationKind::kBool || rep2 == TruncationKind::kAny; |
| case TruncationKind::kWord32: |
| return rep2 == TruncationKind::kWord32 || |
| rep2 == TruncationKind::kWord64 || |
| rep2 == TruncationKind::kFloat64 || rep2 == TruncationKind::kAny; |
| case TruncationKind::kWord64: |
| return rep2 == TruncationKind::kWord64; |
| case TruncationKind::kFloat64: |
| return rep2 == TruncationKind::kFloat64 || rep2 == TruncationKind::kAny; |
| case TruncationKind::kAny: |
| return rep2 == TruncationKind::kAny; |
| } |
| UNREACHABLE(); |
| } |
| |
| // static |
| bool Truncation::LessGeneralIdentifyZeros(IdentifyZeros i1, IdentifyZeros i2) { |
| return i1 == i2 || i1 == kIdentifyZeros; |
| } |
| |
| namespace { |
| |
| bool IsWord(MachineRepresentation rep) { |
| return rep == MachineRepresentation::kWord8 || |
| rep == MachineRepresentation::kWord16 || |
| rep == MachineRepresentation::kWord32; |
| } |
| |
| } // namespace |
| |
| // Changes representation from {output_rep} to {use_rep}. The {truncation} |
| // parameter is only used for sanity checking - if the changer cannot figure |
| // out signedness for the word32->float64 conversion, then we check that the |
| // uses truncate to word32 (so they do not care about signedness). |
| Node* RepresentationChanger::GetRepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Node* use_node, UseInfo use_info) { |
| if (output_rep == MachineRepresentation::kNone && !output_type->IsNone()) { |
| // The output representation should be set if the type is inhabited (i.e., |
| // if the value is possible). |
| return TypeError(node, output_rep, output_type, use_info.representation()); |
| } |
| |
| // Handle the no-op shortcuts when no checking is necessary. |
| if (use_info.type_check() == TypeCheckKind::kNone || |
| output_rep != MachineRepresentation::kWord32) { |
| if (use_info.representation() == output_rep) { |
| // Representations are the same. That's a no-op. |
| return node; |
| } |
| if (IsWord(use_info.representation()) && IsWord(output_rep)) { |
| // Both are words less than or equal to 32-bits. |
| // Since loads of integers from memory implicitly sign or zero extend the |
| // value to the full machine word size and stores implicitly truncate, |
| // no representation change is necessary. |
| return node; |
| } |
| } |
| |
| switch (use_info.representation()) { |
| case MachineRepresentation::kTaggedSigned: |
| DCHECK(use_info.type_check() == TypeCheckKind::kNone || |
| use_info.type_check() == TypeCheckKind::kSignedSmall); |
| return GetTaggedSignedRepresentationFor(node, output_rep, output_type, |
| use_node, use_info); |
| case MachineRepresentation::kTaggedPointer: |
| DCHECK(use_info.type_check() == TypeCheckKind::kNone || |
| use_info.type_check() == TypeCheckKind::kHeapObject); |
| return GetTaggedPointerRepresentationFor(node, output_rep, output_type, |
| use_node, use_info); |
| case MachineRepresentation::kTagged: |
| DCHECK_EQ(TypeCheckKind::kNone, use_info.type_check()); |
| return GetTaggedRepresentationFor(node, output_rep, output_type, |
| use_info.truncation()); |
| case MachineRepresentation::kFloat32: |
| DCHECK_EQ(TypeCheckKind::kNone, use_info.type_check()); |
| return GetFloat32RepresentationFor(node, output_rep, output_type, |
| use_info.truncation()); |
| case MachineRepresentation::kFloat64: |
| return GetFloat64RepresentationFor(node, output_rep, output_type, |
| use_node, use_info); |
| case MachineRepresentation::kBit: |
| DCHECK_EQ(TypeCheckKind::kNone, use_info.type_check()); |
| return GetBitRepresentationFor(node, output_rep, output_type); |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| return GetWord32RepresentationFor(node, output_rep, output_type, use_node, |
| use_info); |
| case MachineRepresentation::kWord64: |
| DCHECK_EQ(TypeCheckKind::kNone, use_info.type_check()); |
| return GetWord64RepresentationFor(node, output_rep, output_type); |
| case MachineRepresentation::kSimd128: |
| case MachineRepresentation::kNone: |
| return node; |
| } |
| UNREACHABLE(); |
| } |
| |
| Node* RepresentationChanger::GetTaggedSignedRepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Node* use_node, UseInfo use_info) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kNumberConstant: |
| if (output_type->Is(Type::SignedSmall())) { |
| return node; |
| } |
| break; |
| default: |
| break; |
| } |
| // Select the correct X -> Tagged operator. |
| const Operator* op; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kTaggedSigned), |
| node); |
| } else if (IsWord(output_rep)) { |
| if (output_type->Is(Type::Signed31())) { |
| op = simplified()->ChangeInt31ToTaggedSigned(); |
| } else if (output_type->Is(Type::Signed32())) { |
| if (SmiValuesAre32Bits()) { |
| op = simplified()->ChangeInt32ToTagged(); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedInt32ToTaggedSigned(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (output_type->Is(Type::Unsigned32()) && |
| use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedUint32ToTaggedSigned(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| if (output_type->Is(Type::Signed31())) { |
| // float64 -> int32 -> tagged signed |
| node = InsertChangeFloat64ToInt32(node); |
| op = simplified()->ChangeInt31ToTaggedSigned(); |
| } else if (output_type->Is(Type::Signed32())) { |
| // float64 -> int32 -> tagged signed |
| node = InsertChangeFloat64ToInt32(node); |
| if (SmiValuesAre32Bits()) { |
| op = simplified()->ChangeInt32ToTagged(); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedInt32ToTaggedSigned(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (output_type->Is(Type::Unsigned32()) && |
| use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| // float64 -> uint32 -> tagged signed |
| node = InsertChangeFloat64ToUint32(node); |
| op = simplified()->CheckedUint32ToTaggedSigned(use_info.feedback()); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedFloat64ToInt32( |
| output_type->Maybe(Type::MinusZero()) |
| ? CheckForMinusZeroMode::kCheckForMinusZero |
| : CheckForMinusZeroMode::kDontCheckForMinusZero, |
| use_info.feedback()); |
| node = InsertConversion(node, op, use_node); |
| if (SmiValuesAre32Bits()) { |
| op = simplified()->ChangeInt32ToTagged(); |
| } else { |
| op = simplified()->CheckedInt32ToTaggedSigned(use_info.feedback()); |
| } |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat32) { |
| if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = machine()->ChangeFloat32ToFloat64(); |
| node = InsertConversion(node, op, use_node); |
| op = simplified()->CheckedFloat64ToInt32( |
| output_type->Maybe(Type::MinusZero()) |
| ? CheckForMinusZeroMode::kCheckForMinusZero |
| : CheckForMinusZeroMode::kDontCheckForMinusZero, |
| use_info.feedback()); |
| node = InsertConversion(node, op, use_node); |
| if (SmiValuesAre32Bits()) { |
| op = simplified()->ChangeInt32ToTagged(); |
| } else { |
| op = simplified()->CheckedInt32ToTaggedSigned(use_info.feedback()); |
| } |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (CanBeTaggedPointer(output_rep)) { |
| if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedTaggedToTaggedSigned(use_info.feedback()); |
| } else if (output_type->Is(Type::SignedSmall())) { |
| op = simplified()->ChangeTaggedToTaggedSigned(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else if (output_rep == MachineRepresentation::kBit) { |
| if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| // TODO(turbofan): Consider adding a Bailout operator that just deopts. |
| // Also use that for MachineRepresentation::kPointer case above. |
| node = InsertChangeBitToTagged(node); |
| op = simplified()->CheckedTaggedToTaggedSigned(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedSigned); |
| } |
| return InsertConversion(node, op, use_node); |
| } |
| |
| Node* RepresentationChanger::GetTaggedPointerRepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Node* use_node, UseInfo use_info) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kHeapConstant: |
| return node; // No change necessary. |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kFloat64Constant: |
| case IrOpcode::kFloat32Constant: |
| UNREACHABLE(); |
| default: |
| break; |
| } |
| // Select the correct X -> TaggedPointer operator. |
| Operator const* op; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kTaggedPointer), |
| node); |
| } else if (output_rep == MachineRepresentation::kBit) { |
| if (output_type->Is(Type::Boolean())) { |
| op = simplified()->ChangeBitToTagged(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTagged); |
| } |
| } else if (IsWord(output_rep)) { |
| if (output_type->Is(Type::Unsigned32())) { |
| // uint32 -> float64 -> tagged |
| node = InsertChangeUint32ToFloat64(node); |
| } else if (output_type->Is(Type::Signed32())) { |
| // int32 -> float64 -> tagged |
| node = InsertChangeInt32ToFloat64(node); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedPointer); |
| } |
| op = simplified()->ChangeFloat64ToTaggedPointer(); |
| } else if (output_rep == MachineRepresentation::kFloat32) { |
| if (output_type->Is(Type::Number())) { |
| // float32 -> float64 -> tagged |
| node = InsertChangeFloat32ToFloat64(node); |
| op = simplified()->ChangeFloat64ToTaggedPointer(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedPointer); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| if (output_type->Is(Type::Number())) { |
| // float64 -> tagged |
| op = simplified()->ChangeFloat64ToTaggedPointer(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedPointer); |
| } |
| } else if (CanBeTaggedSigned(output_rep) && |
| use_info.type_check() == TypeCheckKind::kHeapObject) { |
| if (!output_type->Maybe(Type::SignedSmall())) { |
| return node; |
| } |
| // TODO(turbofan): Consider adding a Bailout operator that just deopts |
| // for TaggedSigned output representation. |
| op = simplified()->CheckedTaggedToTaggedPointer(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTaggedPointer); |
| } |
| return InsertConversion(node, op, use_node); |
| } |
| |
| Node* RepresentationChanger::GetTaggedRepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Truncation truncation) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kNumberConstant: |
| case IrOpcode::kHeapConstant: |
| return node; // No change necessary. |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kFloat64Constant: |
| case IrOpcode::kFloat32Constant: |
| UNREACHABLE(); |
| break; |
| default: |
| break; |
| } |
| if (output_rep == MachineRepresentation::kTaggedSigned || |
| output_rep == MachineRepresentation::kTaggedPointer) { |
| // this is a no-op. |
| return node; |
| } |
| // Select the correct X -> Tagged operator. |
| const Operator* op; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kTagged), node); |
| } else if (output_rep == MachineRepresentation::kBit) { |
| if (output_type->Is(Type::Boolean())) { |
| op = simplified()->ChangeBitToTagged(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTagged); |
| } |
| } else if (IsWord(output_rep)) { |
| if (output_type->Is(Type::Signed31())) { |
| op = simplified()->ChangeInt31ToTaggedSigned(); |
| } else if (output_type->Is(Type::Signed32())) { |
| op = simplified()->ChangeInt32ToTagged(); |
| } else if (output_type->Is(Type::Unsigned32()) || |
| truncation.IsUsedAsWord32()) { |
| // Either the output is uint32 or the uses only care about the |
| // low 32 bits (so we can pick uint32 safely). |
| op = simplified()->ChangeUint32ToTagged(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTagged); |
| } |
| } else if (output_rep == |
| MachineRepresentation::kFloat32) { // float32 -> float64 -> tagged |
| node = InsertChangeFloat32ToFloat64(node); |
| op = simplified()->ChangeFloat64ToTagged( |
| output_type->Maybe(Type::MinusZero()) |
| ? CheckForMinusZeroMode::kCheckForMinusZero |
| : CheckForMinusZeroMode::kDontCheckForMinusZero); |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| if (output_type->Is(Type::Signed31())) { // float64 -> int32 -> tagged |
| node = InsertChangeFloat64ToInt32(node); |
| op = simplified()->ChangeInt31ToTaggedSigned(); |
| } else if (output_type->Is( |
| Type::Signed32())) { // float64 -> int32 -> tagged |
| node = InsertChangeFloat64ToInt32(node); |
| op = simplified()->ChangeInt32ToTagged(); |
| } else if (output_type->Is( |
| Type::Unsigned32())) { // float64 -> uint32 -> tagged |
| node = InsertChangeFloat64ToUint32(node); |
| op = simplified()->ChangeUint32ToTagged(); |
| } else if (output_type->Is(Type::Number())) { |
| op = simplified()->ChangeFloat64ToTagged( |
| output_type->Maybe(Type::MinusZero()) |
| ? CheckForMinusZeroMode::kCheckForMinusZero |
| : CheckForMinusZeroMode::kDontCheckForMinusZero); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTagged); |
| } |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kTagged); |
| } |
| return jsgraph()->graph()->NewNode(op, node); |
| } |
| |
| |
| Node* RepresentationChanger::GetFloat32RepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Truncation truncation) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kNumberConstant: |
| return jsgraph()->Float32Constant( |
| DoubleToFloat32(OpParameter<double>(node))); |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kFloat64Constant: |
| case IrOpcode::kFloat32Constant: |
| UNREACHABLE(); |
| break; |
| default: |
| break; |
| } |
| // Select the correct X -> Float32 operator. |
| const Operator* op = nullptr; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kFloat32), node); |
| } else if (IsWord(output_rep)) { |
| if (output_type->Is(Type::Signed32())) { |
| // int32 -> float64 -> float32 |
| op = machine()->ChangeInt32ToFloat64(); |
| node = jsgraph()->graph()->NewNode(op, node); |
| op = machine()->TruncateFloat64ToFloat32(); |
| } else if (output_type->Is(Type::Unsigned32()) || |
| truncation.IsUsedAsWord32()) { |
| // Either the output is uint32 or the uses only care about the |
| // low 32 bits (so we can pick uint32 safely). |
| |
| // uint32 -> float64 -> float32 |
| op = machine()->ChangeUint32ToFloat64(); |
| node = jsgraph()->graph()->NewNode(op, node); |
| op = machine()->TruncateFloat64ToFloat32(); |
| } |
| } else if (IsAnyTagged(output_rep)) { |
| if (output_type->Is(Type::NumberOrOddball())) { |
| // tagged -> float64 -> float32 |
| if (output_type->Is(Type::Number())) { |
| op = simplified()->ChangeTaggedToFloat64(); |
| } else { |
| op = simplified()->TruncateTaggedToFloat64(); |
| } |
| node = jsgraph()->graph()->NewNode(op, node); |
| op = machine()->TruncateFloat64ToFloat32(); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| op = machine()->TruncateFloat64ToFloat32(); |
| } |
| if (op == nullptr) { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kFloat32); |
| } |
| return jsgraph()->graph()->NewNode(op, node); |
| } |
| |
| Node* RepresentationChanger::GetFloat64RepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Node* use_node, UseInfo use_info) { |
| // Eagerly fold representation changes for constants. |
| if ((use_info.type_check() == TypeCheckKind::kNone)) { |
| // TODO(jarin) Handle checked constant conversions. |
| switch (node->opcode()) { |
| case IrOpcode::kNumberConstant: |
| return jsgraph()->Float64Constant(OpParameter<double>(node)); |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kFloat64Constant: |
| case IrOpcode::kFloat32Constant: |
| UNREACHABLE(); |
| break; |
| default: |
| break; |
| } |
| } |
| // Select the correct X -> Float64 operator. |
| const Operator* op = nullptr; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kFloat64), node); |
| } else if (IsWord(output_rep)) { |
| if (output_type->Is(Type::Signed32())) { |
| op = machine()->ChangeInt32ToFloat64(); |
| } else if (output_type->Is(Type::Unsigned32()) || |
| use_info.truncation().IsUsedAsWord32()) { |
| // Either the output is uint32 or the uses only care about the |
| // low 32 bits (so we can pick uint32 safely). |
| op = machine()->ChangeUint32ToFloat64(); |
| } |
| } else if (output_rep == MachineRepresentation::kBit) { |
| op = machine()->ChangeUint32ToFloat64(); |
| } else if (output_rep == MachineRepresentation::kTagged || |
| output_rep == MachineRepresentation::kTaggedSigned || |
| output_rep == MachineRepresentation::kTaggedPointer) { |
| if (output_type->Is(Type::Undefined())) { |
| return jsgraph()->Float64Constant( |
| std::numeric_limits<double>::quiet_NaN()); |
| |
| } else if (output_rep == MachineRepresentation::kTaggedSigned) { |
| node = InsertChangeTaggedSignedToInt32(node); |
| op = machine()->ChangeInt32ToFloat64(); |
| } else if (output_type->Is(Type::Number())) { |
| op = simplified()->ChangeTaggedToFloat64(); |
| } else if (output_type->Is(Type::NumberOrOddball())) { |
| // TODO(jarin) Here we should check that truncation is Number. |
| op = simplified()->TruncateTaggedToFloat64(); |
| } else if (use_info.type_check() == TypeCheckKind::kNumber || |
| (use_info.type_check() == TypeCheckKind::kNumberOrOddball && |
| !output_type->Maybe(Type::BooleanOrNullOrNumber()))) { |
| op = simplified()->CheckedTaggedToFloat64(CheckTaggedInputMode::kNumber); |
| } else if (use_info.type_check() == TypeCheckKind::kNumberOrOddball) { |
| op = simplified()->CheckedTaggedToFloat64( |
| CheckTaggedInputMode::kNumberOrOddball); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat32) { |
| op = machine()->ChangeFloat32ToFloat64(); |
| } |
| if (op == nullptr) { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kFloat64); |
| } |
| return InsertConversion(node, op, use_node); |
| } |
| |
| Node* RepresentationChanger::MakeTruncatedInt32Constant(double value) { |
| return jsgraph()->Int32Constant(DoubleToInt32(value)); |
| } |
| |
| Node* RepresentationChanger::GetWord32RepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type, |
| Node* use_node, UseInfo use_info) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kInt32Constant: |
| case IrOpcode::kFloat32Constant: |
| case IrOpcode::kFloat64Constant: |
| UNREACHABLE(); |
| break; |
| case IrOpcode::kNumberConstant: { |
| double const fv = OpParameter<double>(node); |
| if (use_info.type_check() == TypeCheckKind::kNone || |
| ((use_info.type_check() == TypeCheckKind::kSignedSmall || |
| use_info.type_check() == TypeCheckKind::kSigned32) && |
| IsInt32Double(fv))) { |
| return MakeTruncatedInt32Constant(fv); |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| |
| // Select the correct X -> Word32 operator. |
| const Operator* op = nullptr; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kWord32), node); |
| } else if (output_rep == MachineRepresentation::kBit) { |
| return node; // Sloppy comparison -> word32 |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| if (output_type->Is(Type::Signed32())) { |
| op = machine()->ChangeFloat64ToInt32(); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall || |
| use_info.type_check() == TypeCheckKind::kSigned32) { |
| op = simplified()->CheckedFloat64ToInt32( |
| output_type->Maybe(Type::MinusZero()) |
| ? use_info.minus_zero_check() |
| : CheckForMinusZeroMode::kDontCheckForMinusZero, |
| use_info.feedback()); |
| } else if (output_type->Is(Type::Unsigned32())) { |
| op = machine()->ChangeFloat64ToUint32(); |
| } else if (use_info.truncation().IsUsedAsWord32()) { |
| op = machine()->TruncateFloat64ToWord32(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| } else if (output_rep == MachineRepresentation::kFloat32) { |
| node = InsertChangeFloat32ToFloat64(node); // float32 -> float64 -> int32 |
| if (output_type->Is(Type::Signed32())) { |
| op = machine()->ChangeFloat64ToInt32(); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall || |
| use_info.type_check() == TypeCheckKind::kSigned32) { |
| op = simplified()->CheckedFloat64ToInt32( |
| output_type->Maybe(Type::MinusZero()) |
| ? use_info.minus_zero_check() |
| : CheckForMinusZeroMode::kDontCheckForMinusZero, |
| use_info.feedback()); |
| } else if (output_type->Is(Type::Unsigned32())) { |
| op = machine()->ChangeFloat64ToUint32(); |
| } else if (use_info.truncation().IsUsedAsWord32()) { |
| op = machine()->TruncateFloat64ToWord32(); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| } else if (IsAnyTagged(output_rep)) { |
| if (output_rep == MachineRepresentation::kTaggedSigned && |
| output_type->Is(Type::SignedSmall())) { |
| op = simplified()->ChangeTaggedSignedToInt32(); |
| } else if (output_type->Is(Type::Signed32())) { |
| op = simplified()->ChangeTaggedToInt32(); |
| } else if (use_info.type_check() == TypeCheckKind::kSignedSmall) { |
| op = simplified()->CheckedTaggedSignedToInt32(use_info.feedback()); |
| } else if (use_info.type_check() == TypeCheckKind::kSigned32) { |
| op = simplified()->CheckedTaggedToInt32( |
| output_type->Maybe(Type::MinusZero()) |
| ? use_info.minus_zero_check() |
| : CheckForMinusZeroMode::kDontCheckForMinusZero, |
| use_info.feedback()); |
| } else if (output_type->Is(Type::Unsigned32())) { |
| op = simplified()->ChangeTaggedToUint32(); |
| } else if (use_info.truncation().IsUsedAsWord32()) { |
| if (output_type->Is(Type::NumberOrOddball())) { |
| op = simplified()->TruncateTaggedToWord32(); |
| } else if (use_info.type_check() == TypeCheckKind::kNumber) { |
| op = simplified()->CheckedTruncateTaggedToWord32( |
| CheckTaggedInputMode::kNumber, use_info.feedback()); |
| } else if (use_info.type_check() == TypeCheckKind::kNumberOrOddball) { |
| op = simplified()->CheckedTruncateTaggedToWord32( |
| CheckTaggedInputMode::kNumberOrOddball, use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| } else if (output_rep == MachineRepresentation::kWord32) { |
| // Only the checked case should get here, the non-checked case is |
| // handled in GetRepresentationFor. |
| if (use_info.type_check() == TypeCheckKind::kSignedSmall || |
| use_info.type_check() == TypeCheckKind::kSigned32) { |
| if (output_type->Is(Type::Signed32())) { |
| return node; |
| } else if (output_type->Is(Type::Unsigned32())) { |
| op = simplified()->CheckedUint32ToInt32(use_info.feedback()); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| } else if (use_info.type_check() == TypeCheckKind::kNumber || |
| use_info.type_check() == TypeCheckKind::kNumberOrOddball) { |
| return node; |
| } |
| } else if (output_rep == MachineRepresentation::kWord8 || |
| output_rep == MachineRepresentation::kWord16) { |
| DCHECK_EQ(MachineRepresentation::kWord32, use_info.representation()); |
| DCHECK(use_info.type_check() == TypeCheckKind::kSignedSmall || |
| use_info.type_check() == TypeCheckKind::kSigned32); |
| return node; |
| } |
| |
| if (op == nullptr) { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord32); |
| } |
| return InsertConversion(node, op, use_node); |
| } |
| |
| Node* RepresentationChanger::InsertConversion(Node* node, const Operator* op, |
| Node* use_node) { |
| if (op->ControlInputCount() > 0) { |
| // If the operator can deoptimize (which means it has control |
| // input), we need to connect it to the effect and control chains. |
| Node* effect = NodeProperties::GetEffectInput(use_node); |
| Node* control = NodeProperties::GetControlInput(use_node); |
| Node* conversion = jsgraph()->graph()->NewNode(op, node, effect, control); |
| NodeProperties::ReplaceEffectInput(use_node, conversion); |
| return conversion; |
| } |
| return jsgraph()->graph()->NewNode(op, node); |
| } |
| |
| |
| Node* RepresentationChanger::GetBitRepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type) { |
| // Eagerly fold representation changes for constants. |
| switch (node->opcode()) { |
| case IrOpcode::kHeapConstant: { |
| HeapObjectMatcher m(node); |
| if (m.Is(factory()->false_value())) { |
| return jsgraph()->Int32Constant(0); |
| } else if (m.Is(factory()->true_value())) { |
| return jsgraph()->Int32Constant(1); |
| } |
| } |
| default: |
| break; |
| } |
| // Select the correct X -> Bit operator. |
| const Operator* op; |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kBit), node); |
| } else if (output_rep == MachineRepresentation::kTagged || |
| output_rep == MachineRepresentation::kTaggedPointer) { |
| if (output_type->Is(Type::BooleanOrNullOrUndefined())) { |
| // true is the only trueish Oddball. |
| op = simplified()->ChangeTaggedToBit(); |
| } else { |
| if (output_rep == MachineRepresentation::kTagged && |
| output_type->Maybe(Type::SignedSmall())) { |
| op = simplified()->TruncateTaggedToBit(); |
| } else { |
| // The {output_type} either doesn't include the Smi range, |
| // or the {output_rep} is known to be TaggedPointer. |
| op = simplified()->TruncateTaggedPointerToBit(); |
| } |
| } |
| } else if (output_rep == MachineRepresentation::kTaggedSigned) { |
| node = jsgraph()->graph()->NewNode(machine()->WordEqual(), node, |
| jsgraph()->IntPtrConstant(0)); |
| return jsgraph()->graph()->NewNode(machine()->Word32Equal(), node, |
| jsgraph()->Int32Constant(0)); |
| } else if (IsWord(output_rep)) { |
| node = jsgraph()->graph()->NewNode(machine()->Word32Equal(), node, |
| jsgraph()->Int32Constant(0)); |
| return jsgraph()->graph()->NewNode(machine()->Word32Equal(), node, |
| jsgraph()->Int32Constant(0)); |
| } else if (output_rep == MachineRepresentation::kFloat32) { |
| node = jsgraph()->graph()->NewNode(machine()->Float32Abs(), node); |
| return jsgraph()->graph()->NewNode(machine()->Float32LessThan(), |
| jsgraph()->Float32Constant(0.0), node); |
| } else if (output_rep == MachineRepresentation::kFloat64) { |
| node = jsgraph()->graph()->NewNode(machine()->Float64Abs(), node); |
| return jsgraph()->graph()->NewNode(machine()->Float64LessThan(), |
| jsgraph()->Float64Constant(0.0), node); |
| } else { |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kBit); |
| } |
| return jsgraph()->graph()->NewNode(op, node); |
| } |
| |
| Node* RepresentationChanger::GetWord64RepresentationFor( |
| Node* node, MachineRepresentation output_rep, Type* output_type) { |
| if (output_type->Is(Type::None())) { |
| // This is an impossible value; it should not be used at runtime. |
| return jsgraph()->graph()->NewNode( |
| jsgraph()->common()->DeadValue(MachineRepresentation::kWord32), node); |
| } else if (output_rep == MachineRepresentation::kBit) { |
| return node; // Sloppy comparison -> word64 |
| } |
| // Can't really convert Word64 to anything else. Purported to be internal. |
| return TypeError(node, output_rep, output_type, |
| MachineRepresentation::kWord64); |
| } |
| |
| const Operator* RepresentationChanger::Int32OperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kSpeculativeNumberAdd: // Fall through. |
| case IrOpcode::kSpeculativeSafeIntegerAdd: |
| case IrOpcode::kNumberAdd: |
| return machine()->Int32Add(); |
| case IrOpcode::kSpeculativeNumberSubtract: // Fall through. |
| case IrOpcode::kSpeculativeSafeIntegerSubtract: |
| case IrOpcode::kNumberSubtract: |
| return machine()->Int32Sub(); |
| case IrOpcode::kSpeculativeNumberMultiply: |
| case IrOpcode::kNumberMultiply: |
| return machine()->Int32Mul(); |
| case IrOpcode::kSpeculativeNumberDivide: |
| case IrOpcode::kNumberDivide: |
| return machine()->Int32Div(); |
| case IrOpcode::kSpeculativeNumberModulus: |
| case IrOpcode::kNumberModulus: |
| return machine()->Int32Mod(); |
| case IrOpcode::kSpeculativeNumberBitwiseOr: // Fall through. |
| case IrOpcode::kNumberBitwiseOr: |
| return machine()->Word32Or(); |
| case IrOpcode::kSpeculativeNumberBitwiseXor: // Fall through. |
| case IrOpcode::kNumberBitwiseXor: |
| return machine()->Word32Xor(); |
| case IrOpcode::kSpeculativeNumberBitwiseAnd: // Fall through. |
| case IrOpcode::kNumberBitwiseAnd: |
| return machine()->Word32And(); |
| case IrOpcode::kNumberEqual: |
| case IrOpcode::kSpeculativeNumberEqual: |
| return machine()->Word32Equal(); |
| case IrOpcode::kNumberLessThan: |
| case IrOpcode::kSpeculativeNumberLessThan: |
| return machine()->Int32LessThan(); |
| case IrOpcode::kNumberLessThanOrEqual: |
| case IrOpcode::kSpeculativeNumberLessThanOrEqual: |
| return machine()->Int32LessThanOrEqual(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| const Operator* RepresentationChanger::Int32OverflowOperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kSpeculativeSafeIntegerAdd: |
| return simplified()->CheckedInt32Add(); |
| case IrOpcode::kSpeculativeSafeIntegerSubtract: |
| return simplified()->CheckedInt32Sub(); |
| case IrOpcode::kSpeculativeNumberDivide: |
| return simplified()->CheckedInt32Div(); |
| case IrOpcode::kSpeculativeNumberModulus: |
| return simplified()->CheckedInt32Mod(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| const Operator* RepresentationChanger::TaggedSignedOperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kSpeculativeNumberLessThan: |
| return machine()->Is32() ? machine()->Int32LessThan() |
| : machine()->Int64LessThan(); |
| case IrOpcode::kSpeculativeNumberLessThanOrEqual: |
| return machine()->Is32() ? machine()->Int32LessThanOrEqual() |
| : machine()->Int64LessThanOrEqual(); |
| case IrOpcode::kSpeculativeNumberEqual: |
| return machine()->Is32() ? machine()->Word32Equal() |
| : machine()->Word64Equal(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| const Operator* RepresentationChanger::Uint32OperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kNumberAdd: |
| return machine()->Int32Add(); |
| case IrOpcode::kNumberSubtract: |
| return machine()->Int32Sub(); |
| case IrOpcode::kSpeculativeNumberMultiply: |
| case IrOpcode::kNumberMultiply: |
| return machine()->Int32Mul(); |
| case IrOpcode::kSpeculativeNumberDivide: |
| case IrOpcode::kNumberDivide: |
| return machine()->Uint32Div(); |
| case IrOpcode::kSpeculativeNumberModulus: |
| case IrOpcode::kNumberModulus: |
| return machine()->Uint32Mod(); |
| case IrOpcode::kNumberEqual: |
| case IrOpcode::kSpeculativeNumberEqual: |
| return machine()->Word32Equal(); |
| case IrOpcode::kNumberLessThan: |
| case IrOpcode::kSpeculativeNumberLessThan: |
| return machine()->Uint32LessThan(); |
| case IrOpcode::kNumberLessThanOrEqual: |
| case IrOpcode::kSpeculativeNumberLessThanOrEqual: |
| return machine()->Uint32LessThanOrEqual(); |
| case IrOpcode::kNumberClz32: |
| return machine()->Word32Clz(); |
| case IrOpcode::kNumberImul: |
| return machine()->Int32Mul(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| const Operator* RepresentationChanger::Uint32OverflowOperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kSpeculativeNumberDivide: |
| return simplified()->CheckedUint32Div(); |
| case IrOpcode::kSpeculativeNumberModulus: |
| return simplified()->CheckedUint32Mod(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| const Operator* RepresentationChanger::Float64OperatorFor( |
| IrOpcode::Value opcode) { |
| switch (opcode) { |
| case IrOpcode::kSpeculativeNumberAdd: |
| case IrOpcode::kSpeculativeSafeIntegerAdd: |
| case IrOpcode::kNumberAdd: |
| return machine()->Float64Add(); |
| case IrOpcode::kSpeculativeNumberSubtract: |
| case IrOpcode::kSpeculativeSafeIntegerSubtract: |
| case IrOpcode::kNumberSubtract: |
| return machine()->Float64Sub(); |
| case IrOpcode::kSpeculativeNumberMultiply: |
| case IrOpcode::kNumberMultiply: |
| return machine()->Float64Mul(); |
| case IrOpcode::kSpeculativeNumberDivide: |
| case IrOpcode::kNumberDivide: |
| return machine()->Float64Div(); |
| case IrOpcode::kSpeculativeNumberModulus: |
| case IrOpcode::kNumberModulus: |
| return machine()->Float64Mod(); |
| case IrOpcode::kNumberEqual: |
| case IrOpcode::kSpeculativeNumberEqual: |
| return machine()->Float64Equal(); |
| case IrOpcode::kNumberLessThan: |
| case IrOpcode::kSpeculativeNumberLessThan: |
| return machine()->Float64LessThan(); |
| case IrOpcode::kNumberLessThanOrEqual: |
| case IrOpcode::kSpeculativeNumberLessThanOrEqual: |
| return machine()->Float64LessThanOrEqual(); |
| case IrOpcode::kNumberAbs: |
| return machine()->Float64Abs(); |
| case IrOpcode::kNumberAcos: |
| return machine()->Float64Acos(); |
| case IrOpcode::kNumberAcosh: |
| return machine()->Float64Acosh(); |
| case IrOpcode::kNumberAsin: |
| return machine()->Float64Asin(); |
| case IrOpcode::kNumberAsinh: |
| return machine()->Float64Asinh(); |
| case IrOpcode::kNumberAtan: |
| return machine()->Float64Atan(); |
| case IrOpcode::kNumberAtanh: |
| return machine()->Float64Atanh(); |
| case IrOpcode::kNumberAtan2: |
| return machine()->Float64Atan2(); |
| case IrOpcode::kNumberCbrt: |
| return machine()->Float64Cbrt(); |
| case IrOpcode::kNumberCeil: |
| return machine()->Float64RoundUp().placeholder(); |
| case IrOpcode::kNumberCos: |
| return machine()->Float64Cos(); |
| case IrOpcode::kNumberCosh: |
| return machine()->Float64Cosh(); |
| case IrOpcode::kNumberExp: |
| return machine()->Float64Exp(); |
| case IrOpcode::kNumberExpm1: |
| return machine()->Float64Expm1(); |
| case IrOpcode::kNumberFloor: |
| return machine()->Float64RoundDown().placeholder(); |
| case IrOpcode::kNumberFround: |
| return machine()->TruncateFloat64ToFloat32(); |
| case IrOpcode::kNumberLog: |
| return machine()->Float64Log(); |
| case IrOpcode::kNumberLog1p: |
| return machine()->Float64Log1p(); |
| case IrOpcode::kNumberLog2: |
| return machine()->Float64Log2(); |
| case IrOpcode::kNumberLog10: |
| return machine()->Float64Log10(); |
| case IrOpcode::kNumberMax: |
| return machine()->Float64Max(); |
| case IrOpcode::kNumberMin: |
| return machine()->Float64Min(); |
| case IrOpcode::kNumberPow: |
| return machine()->Float64Pow(); |
| case IrOpcode::kNumberSin: |
| return machine()->Float64Sin(); |
| case IrOpcode::kNumberSinh: |
| return machine()->Float64Sinh(); |
| case IrOpcode::kNumberSqrt: |
| return machine()->Float64Sqrt(); |
| case IrOpcode::kNumberTan: |
| return machine()->Float64Tan(); |
| case IrOpcode::kNumberTanh: |
| return machine()->Float64Tanh(); |
| case IrOpcode::kNumberTrunc: |
| return machine()->Float64RoundTruncate().placeholder(); |
| case IrOpcode::kNumberSilenceNaN: |
| return machine()->Float64SilenceNaN(); |
| default: |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| Node* RepresentationChanger::TypeError(Node* node, |
| MachineRepresentation output_rep, |
| Type* output_type, |
| MachineRepresentation use) { |
| type_error_ = true; |
| if (!testing_type_errors_) { |
| std::ostringstream out_str; |
| out_str << output_rep << " ("; |
| output_type->PrintTo(out_str); |
| out_str << ")"; |
| |
| std::ostringstream use_str; |
| use_str << use; |
| |
| V8_Fatal(__FILE__, __LINE__, |
| "RepresentationChangerError: node #%d:%s of " |
| "%s cannot be changed to %s", |
| node->id(), node->op()->mnemonic(), out_str.str().c_str(), |
| use_str.str().c_str()); |
| } |
| return node; |
| } |
| |
| Node* RepresentationChanger::InsertChangeBitToTagged(Node* node) { |
| return jsgraph()->graph()->NewNode(simplified()->ChangeBitToTagged(), node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeFloat32ToFloat64(Node* node) { |
| return jsgraph()->graph()->NewNode(machine()->ChangeFloat32ToFloat64(), node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeFloat64ToUint32(Node* node) { |
| return jsgraph()->graph()->NewNode(machine()->ChangeFloat64ToUint32(), node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeFloat64ToInt32(Node* node) { |
| return jsgraph()->graph()->NewNode(machine()->ChangeFloat64ToInt32(), node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeInt32ToFloat64(Node* node) { |
| return jsgraph()->graph()->NewNode(machine()->ChangeInt32ToFloat64(), node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeTaggedSignedToInt32(Node* node) { |
| return jsgraph()->graph()->NewNode(simplified()->ChangeTaggedSignedToInt32(), |
| node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeTaggedToFloat64(Node* node) { |
| return jsgraph()->graph()->NewNode(simplified()->ChangeTaggedToFloat64(), |
| node); |
| } |
| |
| Node* RepresentationChanger::InsertChangeUint32ToFloat64(Node* node) { |
| return jsgraph()->graph()->NewNode(machine()->ChangeUint32ToFloat64(), node); |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |