| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/compiler/simplified-lowering.h" |
| |
| #include <limits> |
| |
| #include "src/address-map.h" |
| #include "src/base/bits.h" |
| #include "src/code-factory.h" |
| #include "src/compiler/access-builder.h" |
| #include "src/compiler/common-operator.h" |
| #include "src/compiler/compiler-source-position-table.h" |
| #include "src/compiler/diamond.h" |
| #include "src/compiler/linkage.h" |
| #include "src/compiler/node-matchers.h" |
| #include "src/compiler/node-properties.h" |
| #include "src/compiler/operation-typer.h" |
| #include "src/compiler/operator-properties.h" |
| #include "src/compiler/representation-change.h" |
| #include "src/compiler/simplified-operator.h" |
| #include "src/compiler/type-cache.h" |
| #include "src/conversions-inl.h" |
| #include "src/objects.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| // Macro for outputting trace information from representation inference. |
| #define TRACE(...) \ |
| do { \ |
| if (FLAG_trace_representation) PrintF(__VA_ARGS__); \ |
| } while (false) |
| |
| // Representation selection and lowering of {Simplified} operators to machine |
| // operators are interwined. We use a fixpoint calculation to compute both the |
| // output representation and the best possible lowering for {Simplified} nodes. |
| // Representation change insertion ensures that all values are in the correct |
| // machine representation after this phase, as dictated by the machine |
| // operators themselves. |
| enum Phase { |
| // 1.) PROPAGATE: Traverse the graph from the end, pushing usage information |
| // backwards from uses to definitions, around cycles in phis, according |
| // to local rules for each operator. |
| // During this phase, the usage information for a node determines the best |
| // possible lowering for each operator so far, and that in turn determines |
| // the output representation. |
| // Therefore, to be correct, this phase must iterate to a fixpoint before |
| // the next phase can begin. |
| PROPAGATE, |
| |
| // 2.) RETYPE: Propagate types from type feedback forwards. |
| RETYPE, |
| |
| // 3.) LOWER: perform lowering for all {Simplified} nodes by replacing some |
| // operators for some nodes, expanding some nodes to multiple nodes, or |
| // removing some (redundant) nodes. |
| // During this phase, use the {RepresentationChanger} to insert |
| // representation changes between uses that demand a particular |
| // representation and nodes that produce a different representation. |
| LOWER |
| }; |
| |
| namespace { |
| |
| MachineRepresentation MachineRepresentationFromArrayType( |
| ExternalArrayType array_type) { |
| switch (array_type) { |
| case kExternalUint8Array: |
| case kExternalUint8ClampedArray: |
| case kExternalInt8Array: |
| return MachineRepresentation::kWord8; |
| case kExternalUint16Array: |
| case kExternalInt16Array: |
| return MachineRepresentation::kWord16; |
| case kExternalUint32Array: |
| case kExternalInt32Array: |
| return MachineRepresentation::kWord32; |
| case kExternalFloat32Array: |
| return MachineRepresentation::kFloat32; |
| case kExternalFloat64Array: |
| return MachineRepresentation::kFloat64; |
| } |
| UNREACHABLE(); |
| } |
| |
| UseInfo CheckedUseInfoAsWord32FromHint( |
| NumberOperationHint hint, |
| IdentifyZeros identify_zeros = kDistinguishZeros) { |
| switch (hint) { |
| case NumberOperationHint::kSignedSmall: |
| case NumberOperationHint::kSignedSmallInputs: |
| return UseInfo::CheckedSignedSmallAsWord32(identify_zeros, |
| VectorSlotPair()); |
| case NumberOperationHint::kSigned32: |
| return UseInfo::CheckedSigned32AsWord32(identify_zeros); |
| case NumberOperationHint::kNumber: |
| return UseInfo::CheckedNumberAsWord32(); |
| case NumberOperationHint::kNumberOrOddball: |
| return UseInfo::CheckedNumberOrOddballAsWord32(); |
| } |
| UNREACHABLE(); |
| } |
| |
| UseInfo CheckedUseInfoAsFloat64FromHint(NumberOperationHint hint) { |
| switch (hint) { |
| case NumberOperationHint::kSignedSmall: |
| case NumberOperationHint::kSignedSmallInputs: |
| case NumberOperationHint::kSigned32: |
| // Not used currently. |
| UNREACHABLE(); |
| break; |
| case NumberOperationHint::kNumber: |
| return UseInfo::CheckedNumberAsFloat64(); |
| case NumberOperationHint::kNumberOrOddball: |
| return UseInfo::CheckedNumberOrOddballAsFloat64(); |
| } |
| UNREACHABLE(); |
| } |
| |
| UseInfo TruncatingUseInfoFromRepresentation(MachineRepresentation rep) { |
| switch (rep) { |
| case MachineRepresentation::kTaggedSigned: |
| case MachineRepresentation::kTaggedPointer: |
| case MachineRepresentation::kTagged: |
| return UseInfo::AnyTagged(); |
| case MachineRepresentation::kFloat64: |
| return UseInfo::TruncatingFloat64(); |
| case MachineRepresentation::kFloat32: |
| return UseInfo::Float32(); |
| case MachineRepresentation::kWord8: |
| case MachineRepresentation::kWord16: |
| case MachineRepresentation::kWord32: |
| return UseInfo::TruncatingWord32(); |
| case MachineRepresentation::kWord64: |
| return UseInfo::TruncatingWord64(); |
| case MachineRepresentation::kBit: |
| return UseInfo::Bool(); |
| case MachineRepresentation::kSimd128: |
| case MachineRepresentation::kNone: |
| break; |
| } |
| UNREACHABLE(); |
| } |
| |
| UseInfo UseInfoForBasePointer(const FieldAccess& access) { |
| return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::PointerInt(); |
| } |
| |
| UseInfo UseInfoForBasePointer(const ElementAccess& access) { |
| return access.tag() != 0 ? UseInfo::AnyTagged() : UseInfo::PointerInt(); |
| } |
| |
| void ReplaceEffectControlUses(Node* node, Node* effect, Node* control) { |
| for (Edge edge : node->use_edges()) { |
| if (NodeProperties::IsControlEdge(edge)) { |
| edge.UpdateTo(control); |
| } else if (NodeProperties::IsEffectEdge(edge)) { |
| edge.UpdateTo(effect); |
| } else { |
| DCHECK(NodeProperties::IsValueEdge(edge) || |
| NodeProperties::IsContextEdge(edge)); |
| } |
| } |
| } |
| |
| void ChangeToPureOp(Node* node, const Operator* new_op) { |
| DCHECK(new_op->HasProperty(Operator::kPure)); |
| if (node->op()->EffectInputCount() > 0) { |
| DCHECK_LT(0, node->op()->ControlInputCount()); |
| // Disconnect the node from effect and control chains. |
| Node* control = NodeProperties::GetControlInput(node); |
| Node* effect = NodeProperties::GetEffectInput(node); |
| ReplaceEffectControlUses(node, effect, control); |
| node->TrimInputCount(new_op->ValueInputCount()); |
| } else { |
| DCHECK_EQ(0, node->op()->ControlInputCount()); |
| } |
| NodeProperties::ChangeOp(node, new_op); |
| } |
| |
| #ifdef DEBUG |
| // Helpers for monotonicity checking. |
| class InputUseInfos { |
| public: |
| explicit InputUseInfos(Zone* zone) : input_use_infos_(zone) {} |
| |
| void SetAndCheckInput(Node* node, int index, UseInfo use_info) { |
| if (input_use_infos_.empty()) { |
| input_use_infos_.resize(node->InputCount(), UseInfo::None()); |
| } |
| // Check that the new use informatin is a super-type of the old |
| // one. |
| DCHECK(IsUseLessGeneral(input_use_infos_[index], use_info)); |
| input_use_infos_[index] = use_info; |
| } |
| |
| private: |
| ZoneVector<UseInfo> input_use_infos_; |
| |
| static bool IsUseLessGeneral(UseInfo use1, UseInfo use2) { |
| return use1.truncation().IsLessGeneralThan(use2.truncation()); |
| } |
| }; |
| |
| #endif // DEBUG |
| |
| bool CanOverflowSigned32(const Operator* op, Type* left, Type* right, |
| Zone* type_zone) { |
| // We assume the inputs are checked Signed32 (or known statically |
| // to be Signed32). Technically, the inputs could also be minus zero, but |
| // that cannot cause overflow. |
| left = Type::Intersect(left, Type::Signed32(), type_zone); |
| right = Type::Intersect(right, Type::Signed32(), type_zone); |
| if (left->IsNone() || right->IsNone()) return false; |
| switch (op->opcode()) { |
| case IrOpcode::kSpeculativeSafeIntegerAdd: |
| return (left->Max() + right->Max() > kMaxInt) || |
| (left->Min() + right->Min() < kMinInt); |
| |
| case IrOpcode::kSpeculativeSafeIntegerSubtract: |
| return (left->Max() - right->Min() > kMaxInt) || |
| (left->Min() - right->Max() < kMinInt); |
| |
| default: |
| UNREACHABLE(); |
| } |
| return true; |
| } |
| |
| bool IsSomePositiveOrderedNumber(Type* type) { |
| return type->Is(Type::OrderedNumber()) && !type->IsNone() && type->Min() > 0; |
| } |
| |
| } // namespace |
| |
| class RepresentationSelector { |
| public: |
| // Information for each node tracked during the fixpoint. |
| class NodeInfo final { |
| public: |
| // Adds new use to the node. Returns true if something has changed |
| // and the node has to be requeued. |
| bool AddUse(UseInfo info) { |
| Truncation old_truncation = truncation_; |
| truncation_ = Truncation::Generalize(truncation_, info.truncation()); |
| return truncation_ != old_truncation; |
| } |
| |
| void set_queued() { state_ = kQueued; } |
| void set_visited() { state_ = kVisited; } |
| void set_pushed() { state_ = kPushed; } |
| void reset_state() { state_ = kUnvisited; } |
| bool visited() const { return state_ == kVisited; } |
| bool queued() const { return state_ == kQueued; } |
| bool unvisited() const { return state_ == kUnvisited; } |
| Truncation truncation() const { return truncation_; } |
| void set_output(MachineRepresentation output) { representation_ = output; } |
| |
| MachineRepresentation representation() const { return representation_; } |
| |
| // Helpers for feedback typing. |
| void set_feedback_type(Type* type) { feedback_type_ = type; } |
| Type* feedback_type() const { return feedback_type_; } |
| void set_weakened() { weakened_ = true; } |
| bool weakened() const { return weakened_; } |
| void set_restriction_type(Type* type) { restriction_type_ = type; } |
| Type* restriction_type() const { return restriction_type_; } |
| |
| private: |
| enum State : uint8_t { kUnvisited, kPushed, kVisited, kQueued }; |
| State state_ = kUnvisited; |
| MachineRepresentation representation_ = |
| MachineRepresentation::kNone; // Output representation. |
| Truncation truncation_ = Truncation::None(); // Information about uses. |
| |
| Type* restriction_type_ = Type::Any(); |
| Type* feedback_type_ = nullptr; |
| bool weakened_ = false; |
| }; |
| |
| RepresentationSelector(JSGraph* jsgraph, Zone* zone, |
| RepresentationChanger* changer, |
| SourcePositionTable* source_positions) |
| : jsgraph_(jsgraph), |
| zone_(zone), |
| count_(jsgraph->graph()->NodeCount()), |
| info_(count_, zone), |
| #ifdef DEBUG |
| node_input_use_infos_(count_, InputUseInfos(zone), zone), |
| #endif |
| nodes_(zone), |
| replacements_(zone), |
| phase_(PROPAGATE), |
| changer_(changer), |
| queue_(zone), |
| typing_stack_(zone), |
| source_positions_(source_positions), |
| type_cache_(TypeCache::Get()), |
| op_typer_(jsgraph->isolate(), graph_zone()) { |
| } |
| |
| // Forward propagation of types from type feedback. |
| void RunTypePropagationPhase() { |
| // Run type propagation. |
| TRACE("--{Type propagation phase}--\n"); |
| phase_ = RETYPE; |
| ResetNodeInfoState(); |
| |
| DCHECK(typing_stack_.empty()); |
| typing_stack_.push({graph()->end(), 0}); |
| GetInfo(graph()->end())->set_pushed(); |
| while (!typing_stack_.empty()) { |
| NodeState& current = typing_stack_.top(); |
| |
| // If there is an unvisited input, push it and continue. |
| bool pushed_unvisited = false; |
| while (current.input_index < current.node->InputCount()) { |
| Node* input = current.node->InputAt(current.input_index); |
| NodeInfo* input_info = GetInfo(input); |
| current.input_index++; |
| if (input_info->unvisited()) { |
| input_info->set_pushed(); |
| typing_stack_.push({input, 0}); |
| pushed_unvisited = true; |
| break; |
| } |
| } |
| if (pushed_unvisited) continue; |
| |
| // Process the top of the stack. |
| Node* node = current.node; |
| typing_stack_.pop(); |
| NodeInfo* info = GetInfo(node); |
| info->set_visited(); |
| bool updated = UpdateFeedbackType(node); |
| TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic()); |
| VisitNode(node, info->truncation(), nullptr); |
| TRACE(" ==> output "); |
| PrintOutputInfo(info); |
| TRACE("\n"); |
| if (updated) { |
| for (Node* const user : node->uses()) { |
| if (GetInfo(user)->visited()) { |
| GetInfo(user)->set_queued(); |
| queue_.push(user); |
| } |
| } |
| } |
| } |
| |
| // Process the revisit queue. |
| while (!queue_.empty()) { |
| Node* node = queue_.front(); |
| queue_.pop(); |
| NodeInfo* info = GetInfo(node); |
| info->set_visited(); |
| bool updated = UpdateFeedbackType(node); |
| TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic()); |
| VisitNode(node, info->truncation(), nullptr); |
| TRACE(" ==> output "); |
| PrintOutputInfo(info); |
| TRACE("\n"); |
| if (updated) { |
| for (Node* const user : node->uses()) { |
| if (GetInfo(user)->visited()) { |
| GetInfo(user)->set_queued(); |
| queue_.push(user); |
| } |
| } |
| } |
| } |
| } |
| |
| void ResetNodeInfoState() { |
| // Clean up for the next phase. |
| for (NodeInfo& info : info_) { |
| info.reset_state(); |
| } |
| } |
| |
| Type* TypeOf(Node* node) { |
| Type* type = GetInfo(node)->feedback_type(); |
| return type == nullptr ? NodeProperties::GetType(node) : type; |
| } |
| |
| Type* FeedbackTypeOf(Node* node) { |
| Type* type = GetInfo(node)->feedback_type(); |
| return type == nullptr ? Type::None() : type; |
| } |
| |
| Type* TypePhi(Node* node) { |
| int arity = node->op()->ValueInputCount(); |
| Type* type = FeedbackTypeOf(node->InputAt(0)); |
| for (int i = 1; i < arity; ++i) { |
| type = op_typer_.Merge(type, FeedbackTypeOf(node->InputAt(i))); |
| } |
| return type; |
| } |
| |
| Type* TypeSelect(Node* node) { |
| return op_typer_.Merge(FeedbackTypeOf(node->InputAt(1)), |
| FeedbackTypeOf(node->InputAt(2))); |
| } |
| |
| bool UpdateFeedbackType(Node* node) { |
| if (node->op()->ValueOutputCount() == 0) return false; |
| |
| NodeInfo* info = GetInfo(node); |
| Type* type = info->feedback_type(); |
| Type* new_type = type; |
| |
| // For any non-phi node just wait until we get all inputs typed. We only |
| // allow untyped inputs for phi nodes because phis are the only places |
| // where cycles need to be broken. |
| if (node->opcode() != IrOpcode::kPhi) { |
| for (int i = 0; i < node->op()->ValueInputCount(); i++) { |
| if (GetInfo(node->InputAt(i))->feedback_type() == nullptr) { |
| return false; |
| } |
| } |
| } |
| |
| switch (node->opcode()) { |
| #define DECLARE_CASE(Name) \ |
| case IrOpcode::k##Name: { \ |
| new_type = op_typer_.Name(FeedbackTypeOf(node->InputAt(0)), \ |
| FeedbackTypeOf(node->InputAt(1))); \ |
| break; \ |
| } |
| SIMPLIFIED_NUMBER_BINOP_LIST(DECLARE_CASE) |
| DECLARE_CASE(SameValue) |
| #undef DECLARE_CASE |
| |
| #define DECLARE_CASE(Name) \ |
| case IrOpcode::k##Name: { \ |
| new_type = \ |
| Type::Intersect(op_typer_.Name(FeedbackTypeOf(node->InputAt(0)), \ |
| FeedbackTypeOf(node->InputAt(1))), \ |
| info->restriction_type(), graph_zone()); \ |
| break; \ |
| } |
| SIMPLIFIED_SPECULATIVE_NUMBER_BINOP_LIST(DECLARE_CASE) |
| #undef DECLARE_CASE |
| |
| #define DECLARE_CASE(Name) \ |
| case IrOpcode::k##Name: { \ |
| new_type = op_typer_.Name(FeedbackTypeOf(node->InputAt(0))); \ |
| break; \ |
| } |
| SIMPLIFIED_NUMBER_UNOP_LIST(DECLARE_CASE) |
| #undef DECLARE_CASE |
| |
| #define DECLARE_CASE(Name) \ |
| case IrOpcode::k##Name: { \ |
| new_type = \ |
| Type::Intersect(op_typer_.Name(FeedbackTypeOf(node->InputAt(0))), \ |
| info->restriction_type(), graph_zone()); \ |
| break; \ |
| } |
| SIMPLIFIED_SPECULATIVE_NUMBER_UNOP_LIST(DECLARE_CASE) |
| #undef DECLARE_CASE |
| |
| case IrOpcode::kConvertReceiver: |
| new_type = op_typer_.ConvertReceiver(FeedbackTypeOf(node->InputAt(0))); |
| break; |
| |
| case IrOpcode::kPlainPrimitiveToNumber: |
| new_type = op_typer_.ToNumber(FeedbackTypeOf(node->InputAt(0))); |
| break; |
| |
| case IrOpcode::kCheckFloat64Hole: |
| new_type = Type::Intersect( |
| op_typer_.CheckFloat64Hole(FeedbackTypeOf(node->InputAt(0))), |
| info->restriction_type(), graph_zone()); |
| break; |
| |
| case IrOpcode::kCheckNumber: |
| new_type = Type::Intersect( |
| op_typer_.CheckNumber(FeedbackTypeOf(node->InputAt(0))), |
| info->restriction_type(), graph_zone()); |
| break; |
| |
| case IrOpcode::kPhi: { |
| new_type = TypePhi(node); |
| if (type != nullptr) { |
| new_type = Weaken(node, type, new_type); |
| } |
| break; |
| } |
| |
| case IrOpcode::kConvertTaggedHoleToUndefined: |
| new_type = op_typer_.ConvertTaggedHoleToUndefined( |
| FeedbackTypeOf(node->InputAt(0))); |
| break; |
| |
| case IrOpcode::kTypeGuard: { |
| new_type = op_typer_.TypeTypeGuard(node->op(), |
| FeedbackTypeOf(node->InputAt(0))); |
| break; |
| } |
| |
| case IrOpcode::kSelect: { |
| new_type = TypeSelect(node); |
| break; |
| } |
| |
| default: |
| // Shortcut for operations that we do not handle. |
| if (type == nullptr) { |
| GetInfo(node)->set_feedback_type(NodeProperties::GetType(node)); |
| return true; |
| } |
| return false; |
| } |
| // We need to guarantee that the feedback type is a subtype of the upper |
| // bound. Naively that should hold, but weakening can actually produce |
| // a bigger type if we are unlucky with ordering of phi typing. To be |
| // really sure, just intersect the upper bound with the feedback type. |
| new_type = Type::Intersect(GetUpperBound(node), new_type, graph_zone()); |
| |
| if (type != nullptr && new_type->Is(type)) return false; |
| GetInfo(node)->set_feedback_type(new_type); |
| if (FLAG_trace_representation) { |
| PrintNodeFeedbackType(node); |
| } |
| return true; |
| } |
| |
| void PrintNodeFeedbackType(Node* n) { |
| OFStream os(stdout); |
| os << "#" << n->id() << ":" << *n->op() << "("; |
| int j = 0; |
| for (Node* const i : n->inputs()) { |
| if (j++ > 0) os << ", "; |
| os << "#" << i->id() << ":" << i->op()->mnemonic(); |
| } |
| os << ")"; |
| if (NodeProperties::IsTyped(n)) { |
| os << " [Static type: "; |
| Type* static_type = NodeProperties::GetType(n); |
| static_type->PrintTo(os); |
| Type* feedback_type = GetInfo(n)->feedback_type(); |
| if (feedback_type != nullptr && feedback_type != static_type) { |
| os << ", Feedback type: "; |
| feedback_type->PrintTo(os); |
| } |
| os << "]"; |
| } |
| os << std::endl; |
| } |
| |
| Type* Weaken(Node* node, Type* previous_type, Type* current_type) { |
| // If the types have nothing to do with integers, return the types. |
| Type* const integer = type_cache_.kInteger; |
| if (!previous_type->Maybe(integer)) { |
| return current_type; |
| } |
| DCHECK(current_type->Maybe(integer)); |
| |
| Type* current_integer = |
| Type::Intersect(current_type, integer, graph_zone()); |
| DCHECK(!current_integer->IsNone()); |
| Type* previous_integer = |
| Type::Intersect(previous_type, integer, graph_zone()); |
| DCHECK(!previous_integer->IsNone()); |
| |
| // Once we start weakening a node, we should always weaken. |
| if (!GetInfo(node)->weakened()) { |
| // Only weaken if there is range involved; we should converge quickly |
| // for all other types (the exception is a union of many constants, |
| // but we currently do not increase the number of constants in unions). |
| Type* previous = previous_integer->GetRange(); |
| Type* current = current_integer->GetRange(); |
| if (current == nullptr || previous == nullptr) { |
| return current_type; |
| } |
| // Range is involved => we are weakening. |
| GetInfo(node)->set_weakened(); |
| } |
| |
| return Type::Union(current_type, |
| op_typer_.WeakenRange(previous_integer, current_integer), |
| graph_zone()); |
| } |
| |
| // Backward propagation of truncations. |
| void RunTruncationPropagationPhase() { |
| // Run propagation phase to a fixpoint. |
| TRACE("--{Propagation phase}--\n"); |
| phase_ = PROPAGATE; |
| EnqueueInitial(jsgraph_->graph()->end()); |
| // Process nodes from the queue until it is empty. |
| while (!queue_.empty()) { |
| Node* node = queue_.front(); |
| NodeInfo* info = GetInfo(node); |
| queue_.pop(); |
| info->set_visited(); |
| TRACE(" visit #%d: %s (trunc: %s)\n", node->id(), node->op()->mnemonic(), |
| info->truncation().description()); |
| VisitNode(node, info->truncation(), nullptr); |
| } |
| } |
| |
| void Run(SimplifiedLowering* lowering) { |
| RunTruncationPropagationPhase(); |
| |
| RunTypePropagationPhase(); |
| |
| // Run lowering and change insertion phase. |
| TRACE("--{Simplified lowering phase}--\n"); |
| phase_ = LOWER; |
| // Process nodes from the collected {nodes_} vector. |
| for (NodeVector::iterator i = nodes_.begin(); i != nodes_.end(); ++i) { |
| Node* node = *i; |
| NodeInfo* info = GetInfo(node); |
| TRACE(" visit #%d: %s\n", node->id(), node->op()->mnemonic()); |
| // Reuse {VisitNode()} so the representation rules are in one place. |
| SourcePositionTable::Scope scope( |
| source_positions_, source_positions_->GetSourcePosition(node)); |
| VisitNode(node, info->truncation(), lowering); |
| } |
| |
| // Perform the final replacements. |
| for (NodeVector::iterator i = replacements_.begin(); |
| i != replacements_.end(); ++i) { |
| Node* node = *i; |
| Node* replacement = *(++i); |
| node->ReplaceUses(replacement); |
| node->Kill(); |
| // We also need to replace the node in the rest of the vector. |
| for (NodeVector::iterator j = i + 1; j != replacements_.end(); ++j) { |
| ++j; |
| if (*j == node) *j = replacement; |
| } |
| } |
| } |
| |
| void EnqueueInitial(Node* node) { |
| NodeInfo* info = GetInfo(node); |
| info->set_queued(); |
| nodes_.push_back(node); |
| queue_.push(node); |
| } |
| |
| // Enqueue {use_node}'s {index} input if the {use} contains new information |
| // for that input node. Add the input to {nodes_} if this is the first time |
| // it's been visited. |
| void EnqueueInput(Node* use_node, int index, |
| UseInfo use_info = UseInfo::None()) { |
| Node* node = use_node->InputAt(index); |
| if (phase_ != PROPAGATE) return; |
| NodeInfo* info = GetInfo(node); |
| #ifdef DEBUG |
| // Check monotonicity of input requirements. |
| node_input_use_infos_[use_node->id()].SetAndCheckInput(use_node, index, |
| use_info); |
| #endif // DEBUG |
| if (info->unvisited()) { |
| // First visit of this node. |
| info->set_queued(); |
| nodes_.push_back(node); |
| queue_.push(node); |
| TRACE(" initial #%i: ", node->id()); |
| info->AddUse(use_info); |
| PrintTruncation(info->truncation()); |
| return; |
| } |
| TRACE(" queue #%i?: ", node->id()); |
| PrintTruncation(info->truncation()); |
| if (info->AddUse(use_info)) { |
| // New usage information for the node is available. |
| if (!info->queued()) { |
| queue_.push(node); |
| info->set_queued(); |
| TRACE(" added: "); |
| } else { |
| TRACE(" inqueue: "); |
| } |
| PrintTruncation(info->truncation()); |
| } |
| } |
| |
| bool lower() const { return phase_ == LOWER; } |
| bool retype() const { return phase_ == RETYPE; } |
| bool propagate() const { return phase_ == PROPAGATE; } |
| |
| void SetOutput(Node* node, MachineRepresentation representation, |
| Type* restriction_type = Type::Any()) { |
| NodeInfo* const info = GetInfo(node); |
| switch (phase_) { |
| case PROPAGATE: |
| info->set_restriction_type(restriction_type); |
| break; |
| case RETYPE: |
| DCHECK(info->restriction_type()->Is(restriction_type)); |
| DCHECK(restriction_type->Is(info->restriction_type())); |
| info->set_output(representation); |
| break; |
| case LOWER: |
| DCHECK_EQ(info->representation(), representation); |
| DCHECK(info->restriction_type()->Is(restriction_type)); |
| DCHECK(restriction_type->Is(info->restriction_type())); |
| break; |
| } |
| } |
| |
| Type* GetUpperBound(Node* node) { return NodeProperties::GetType(node); } |
| |
| bool InputCannotBe(Node* node, Type* type) { |
| DCHECK_EQ(1, node->op()->ValueInputCount()); |
| return !GetUpperBound(node->InputAt(0))->Maybe(type); |
| } |
| |
| bool InputIs(Node* node, Type* type) { |
| DCHECK_EQ(1, node->op()->ValueInputCount()); |
| return GetUpperBound(node->InputAt(0))->Is(type); |
| } |
| |
| bool BothInputsAreSigned32(Node* node) { |
| return BothInputsAre(node, Type::Signed32()); |
| } |
| |
| bool BothInputsAreUnsigned32(Node* node) { |
| return BothInputsAre(node, Type::Unsigned32()); |
| } |
| |
| bool BothInputsAre(Node* node, Type* type) { |
| DCHECK_EQ(2, node->op()->ValueInputCount()); |
| return GetUpperBound(node->InputAt(0))->Is(type) && |
| GetUpperBound(node->InputAt(1))->Is(type); |
| } |
| |
| bool IsNodeRepresentationTagged(Node* node) { |
| MachineRepresentation representation = GetInfo(node)->representation(); |
| return IsAnyTagged(representation); |
| } |
| |
| bool OneInputCannotBe(Node* node, Type* type) { |
| DCHECK_EQ(2, node->op()->ValueInputCount()); |
| return !GetUpperBound(node->InputAt(0))->Maybe(type) || |
| !GetUpperBound(node->InputAt(1))->Maybe(type); |
| } |
| |
| // Converts input {index} of {node} according to given UseInfo {use}, |
| // assuming the type of the input is {input_type}. If {input_type} is null, |
| // it takes the input from the input node {TypeOf(node->InputAt(index))}. |
| void ConvertInput(Node* node, int index, UseInfo use, |
| Type* input_type = nullptr) { |
| Node* input = node->InputAt(index); |
| // In the change phase, insert a change before the use if necessary. |
| if (use.representation() == MachineRepresentation::kNone) |
| return; // No input requirement on the use. |
| DCHECK_NOT_NULL(input); |
| NodeInfo* input_info = GetInfo(input); |
| MachineRepresentation input_rep = input_info->representation(); |
| if (input_rep != use.representation() || |
| use.type_check() != TypeCheckKind::kNone) { |
| // Output representation doesn't match usage. |
| TRACE(" change: #%d:%s(@%d #%d:%s) ", node->id(), node->op()->mnemonic(), |
| index, input->id(), input->op()->mnemonic()); |
| TRACE(" from "); |
| PrintOutputInfo(input_info); |
| TRACE(" to "); |
| PrintUseInfo(use); |
| TRACE("\n"); |
| if (input_type == nullptr) { |
| input_type = TypeOf(input); |
| } |
| Node* n = changer_->GetRepresentationFor( |
| input, input_info->representation(), input_type, node, use); |
| node->ReplaceInput(index, n); |
| } |
| } |
| |
| void ProcessInput(Node* node, int index, UseInfo use) { |
| switch (phase_) { |
| case PROPAGATE: |
| EnqueueInput(node, index, use); |
| break; |
| case RETYPE: |
| break; |
| case LOWER: |
| ConvertInput(node, index, use); |
| break; |
| } |
| } |
| |
| void ProcessRemainingInputs(Node* node, int index) { |
| DCHECK_GE(index, NodeProperties::PastValueIndex(node)); |
| DCHECK_GE(index, NodeProperties::PastContextIndex(node)); |
| for (int i = std::max(index, NodeProperties::FirstEffectIndex(node)); |
| i < NodeProperties::PastEffectIndex(node); ++i) { |
| EnqueueInput(node, i); // Effect inputs: just visit |
| } |
| for (int i = std::max(index, NodeProperties::FirstControlIndex(node)); |
| i < NodeProperties::PastControlIndex(node); ++i) { |
| EnqueueInput(node, i); // Control inputs: just visit |
| } |
| } |
| |
| // The default, most general visitation case. For {node}, process all value, |
| // context, frame state, effect, and control inputs, assuming that value |
| // inputs should have {kRepTagged} representation and can observe all output |
| // values {kTypeAny}. |
| void VisitInputs(Node* node) { |
| int tagged_count = node->op()->ValueInputCount() + |
| OperatorProperties::GetContextInputCount(node->op()) + |
| OperatorProperties::GetFrameStateInputCount(node->op()); |
| // Visit value, context and frame state inputs as tagged. |
| for (int i = 0; i < tagged_count; i++) { |
| ProcessInput(node, i, UseInfo::AnyTagged()); |
| } |
| // Only enqueue other inputs (effects, control). |
| for (int i = tagged_count; i < node->InputCount(); i++) { |
| EnqueueInput(node, i); |
| } |
| } |
| |
| void VisitReturn(Node* node) { |
| int tagged_limit = node->op()->ValueInputCount() + |
| OperatorProperties::GetContextInputCount(node->op()) + |
| OperatorProperties::GetFrameStateInputCount(node->op()); |
| // Visit integer slot count to pop |
| ProcessInput(node, 0, UseInfo::TruncatingWord32()); |
| |
| // Visit value, context and frame state inputs as tagged. |
| for (int i = 1; i < tagged_limit; i++) { |
| ProcessInput(node, i, UseInfo::AnyTagged()); |
| } |
| // Only enqueue other inputs (effects, control). |
| for (int i = tagged_limit; i < node->InputCount(); i++) { |
| EnqueueInput(node, i); |
| } |
| } |
| |
| // Helper for an unused node. |
| void VisitUnused(Node* node) { |
| int value_count = node->op()->ValueInputCount() + |
| OperatorProperties::GetContextInputCount(node->op()) + |
| OperatorProperties::GetFrameStateInputCount(node->op()); |
| for (int i = 0; i < value_count; i++) { |
| ProcessInput(node, i, UseInfo::None()); |
| } |
| ProcessRemainingInputs(node, value_count); |
| if (lower()) Kill(node); |
| } |
| |
| // Helper for no-op node. |
| void VisitNoop(Node* node, Truncation truncation) { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| MachineRepresentation representation = |
| GetOutputInfoForPhi(node, TypeOf(node), truncation); |
| VisitUnop(node, UseInfo(representation, truncation), representation); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } |
| |
| // Helper for binops of the R x L -> O variety. |
| void VisitBinop(Node* node, UseInfo left_use, UseInfo right_use, |
| MachineRepresentation output, |
| Type* restriction_type = Type::Any()) { |
| DCHECK_EQ(2, node->op()->ValueInputCount()); |
| ProcessInput(node, 0, left_use); |
| ProcessInput(node, 1, right_use); |
| for (int i = 2; i < node->InputCount(); i++) { |
| EnqueueInput(node, i); |
| } |
| SetOutput(node, output, restriction_type); |
| } |
| |
| // Helper for binops of the I x I -> O variety. |
| void VisitBinop(Node* node, UseInfo input_use, MachineRepresentation output, |
| Type* restriction_type = Type::Any()) { |
| VisitBinop(node, input_use, input_use, output, restriction_type); |
| } |
| |
| void VisitSpeculativeInt32Binop(Node* node) { |
| DCHECK_EQ(2, node->op()->ValueInputCount()); |
| if (BothInputsAre(node, Type::NumberOrOddball())) { |
| return VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| } |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| return VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32); |
| } |
| |
| // Helper for unops of the I -> O variety. |
| void VisitUnop(Node* node, UseInfo input_use, MachineRepresentation output, |
| Type* restriction_type = Type::Any()) { |
| DCHECK_EQ(1, node->op()->ValueInputCount()); |
| ProcessInput(node, 0, input_use); |
| ProcessRemainingInputs(node, 1); |
| SetOutput(node, output, restriction_type); |
| } |
| |
| // Helper for leaf nodes. |
| void VisitLeaf(Node* node, MachineRepresentation output) { |
| DCHECK_EQ(0, node->InputCount()); |
| SetOutput(node, output); |
| } |
| |
| // Helpers for specific types of binops. |
| void VisitFloat64Binop(Node* node) { |
| VisitBinop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| } |
| void VisitWord32TruncatingBinop(Node* node) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| } |
| |
| // Infer representation for phi-like nodes. |
| // The {node} parameter is only used to decide on the int64 representation. |
| // Once the type system supports an external pointer type, the {node} |
| // parameter can be removed. |
| MachineRepresentation GetOutputInfoForPhi(Node* node, Type* type, |
| Truncation use) { |
| // Compute the representation. |
| if (type->Is(Type::None())) { |
| return MachineRepresentation::kNone; |
| } else if (type->Is(Type::Signed32()) || type->Is(Type::Unsigned32())) { |
| return MachineRepresentation::kWord32; |
| } else if (type->Is(Type::NumberOrOddball()) && use.IsUsedAsWord32()) { |
| return MachineRepresentation::kWord32; |
| } else if (type->Is(Type::Boolean())) { |
| return MachineRepresentation::kBit; |
| } else if (type->Is(Type::NumberOrOddball()) && use.IsUsedAsFloat64()) { |
| return MachineRepresentation::kFloat64; |
| } else if (type->Is( |
| Type::Union(Type::SignedSmall(), Type::NaN(), zone()))) { |
| // TODO(turbofan): For Phis that return either NaN or some Smi, it's |
| // beneficial to not go all the way to double, unless the uses are |
| // double uses. For tagging that just means some potentially expensive |
| // allocation code; we might want to do the same for -0 as well? |
| return MachineRepresentation::kTagged; |
| } else if (type->Is(Type::Number())) { |
| return MachineRepresentation::kFloat64; |
| } else if (type->Is(Type::ExternalPointer())) { |
| return MachineType::PointerRepresentation(); |
| } |
| return MachineRepresentation::kTagged; |
| } |
| |
| // Helper for handling selects. |
| void VisitSelect(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| DCHECK(TypeOf(node->InputAt(0))->Is(Type::Boolean())); |
| ProcessInput(node, 0, UseInfo::Bool()); |
| |
| MachineRepresentation output = |
| GetOutputInfoForPhi(node, TypeOf(node), truncation); |
| SetOutput(node, output); |
| |
| if (lower()) { |
| // Update the select operator. |
| SelectParameters p = SelectParametersOf(node->op()); |
| if (output != p.representation()) { |
| NodeProperties::ChangeOp(node, |
| lowering->common()->Select(output, p.hint())); |
| } |
| } |
| // Convert inputs to the output representation of this phi, pass the |
| // truncation truncation along. |
| UseInfo input_use(output, truncation); |
| ProcessInput(node, 1, input_use); |
| ProcessInput(node, 2, input_use); |
| } |
| |
| // Helper for handling phis. |
| void VisitPhi(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| MachineRepresentation output = |
| GetOutputInfoForPhi(node, TypeOf(node), truncation); |
| // Only set the output representation if not running with type |
| // feedback. (Feedback typing will set the representation.) |
| SetOutput(node, output); |
| |
| int values = node->op()->ValueInputCount(); |
| if (lower()) { |
| // Update the phi operator. |
| if (output != PhiRepresentationOf(node->op())) { |
| NodeProperties::ChangeOp(node, lowering->common()->Phi(output, values)); |
| } |
| } |
| |
| // Convert inputs to the output representation of this phi, pass the |
| // truncation along. |
| UseInfo input_use(output, truncation); |
| for (int i = 0; i < node->InputCount(); i++) { |
| ProcessInput(node, i, i < values ? input_use : UseInfo::None()); |
| } |
| } |
| |
| void VisitObjectIs(Node* node, Type* type, SimplifiedLowering* lowering) { |
| Type* const input_type = TypeOf(node->InputAt(0)); |
| if (input_type->Is(type)) { |
| VisitUnop(node, UseInfo::None(), MachineRepresentation::kBit); |
| if (lower()) { |
| DeferReplacement(node, lowering->jsgraph()->Int32Constant(1)); |
| } |
| } else { |
| VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit); |
| if (lower() && !input_type->Maybe(type)) { |
| DeferReplacement(node, lowering->jsgraph()->Int32Constant(0)); |
| } |
| } |
| } |
| |
| void VisitCheck(Node* node, Type* type, SimplifiedLowering* lowering) { |
| if (InputIs(node, type)) { |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else { |
| VisitUnop(node, UseInfo::CheckedHeapObjectAsTaggedPointer(), |
| MachineRepresentation::kTaggedPointer); |
| } |
| return; |
| } |
| |
| void VisitCall(Node* node, SimplifiedLowering* lowering) { |
| const CallDescriptor* desc = CallDescriptorOf(node->op()); |
| int params = static_cast<int>(desc->ParameterCount()); |
| int value_input_count = node->op()->ValueInputCount(); |
| // Propagate representation information from call descriptor. |
| for (int i = 0; i < value_input_count; i++) { |
| if (i == 0) { |
| // The target of the call. |
| ProcessInput(node, i, UseInfo::Any()); |
| } else if ((i - 1) < params) { |
| ProcessInput(node, i, |
| TruncatingUseInfoFromRepresentation( |
| desc->GetInputType(i).representation())); |
| } else { |
| ProcessInput(node, i, UseInfo::AnyTagged()); |
| } |
| } |
| ProcessRemainingInputs(node, value_input_count); |
| |
| if (desc->ReturnCount() > 0) { |
| SetOutput(node, desc->GetReturnType(0).representation()); |
| } else { |
| SetOutput(node, MachineRepresentation::kTagged); |
| } |
| } |
| |
| static MachineSemantic DeoptValueSemanticOf(Type* type) { |
| // We only need signedness to do deopt correctly. |
| if (type->Is(Type::Signed32())) { |
| return MachineSemantic::kInt32; |
| } else if (type->Is(Type::Unsigned32())) { |
| return MachineSemantic::kUint32; |
| } else { |
| return MachineSemantic::kAny; |
| } |
| } |
| |
| static MachineType DeoptMachineTypeOf(MachineRepresentation rep, Type* type) { |
| if (type->IsNone()) { |
| return MachineType::None(); |
| } |
| // TODO(turbofan): Special treatment for ExternalPointer here, |
| // to avoid incompatible truncations. We really need a story |
| // for the JSFunction::entry field. |
| if (type->Is(Type::ExternalPointer())) { |
| return MachineType::Pointer(); |
| } |
| // Do not distinguish between various Tagged variations. |
| if (IsAnyTagged(rep)) { |
| return MachineType::AnyTagged(); |
| } |
| MachineType machine_type(rep, DeoptValueSemanticOf(type)); |
| DCHECK(machine_type.representation() != MachineRepresentation::kWord32 || |
| machine_type.semantic() == MachineSemantic::kInt32 || |
| machine_type.semantic() == MachineSemantic::kUint32); |
| DCHECK(machine_type.representation() != MachineRepresentation::kBit || |
| type->Is(Type::Boolean())); |
| return machine_type; |
| } |
| |
| void VisitStateValues(Node* node) { |
| if (propagate()) { |
| for (int i = 0; i < node->InputCount(); i++) { |
| EnqueueInput(node, i, UseInfo::Any()); |
| } |
| } else if (lower()) { |
| Zone* zone = jsgraph_->zone(); |
| ZoneVector<MachineType>* types = |
| new (zone->New(sizeof(ZoneVector<MachineType>))) |
| ZoneVector<MachineType>(node->InputCount(), zone); |
| for (int i = 0; i < node->InputCount(); i++) { |
| Node* input = node->InputAt(i); |
| (*types)[i] = |
| DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input)); |
| } |
| SparseInputMask mask = SparseInputMaskOf(node->op()); |
| NodeProperties::ChangeOp( |
| node, jsgraph_->common()->TypedStateValues(types, mask)); |
| } |
| SetOutput(node, MachineRepresentation::kTagged); |
| } |
| |
| void VisitFrameState(Node* node) { |
| DCHECK_EQ(5, node->op()->ValueInputCount()); |
| DCHECK_EQ(1, OperatorProperties::GetFrameStateInputCount(node->op())); |
| |
| ProcessInput(node, 0, UseInfo::AnyTagged()); // Parameters. |
| ProcessInput(node, 1, UseInfo::AnyTagged()); // Registers. |
| |
| // Accumulator is a special flower - we need to remember its type in |
| // a singleton typed-state-values node (as if it was a singleton |
| // state-values node). |
| if (propagate()) { |
| EnqueueInput(node, 2, UseInfo::Any()); |
| } else if (lower()) { |
| Zone* zone = jsgraph_->zone(); |
| Node* accumulator = node->InputAt(2); |
| if (accumulator == jsgraph_->OptimizedOutConstant()) { |
| node->ReplaceInput(2, jsgraph_->SingleDeadTypedStateValues()); |
| } else { |
| ZoneVector<MachineType>* types = |
| new (zone->New(sizeof(ZoneVector<MachineType>))) |
| ZoneVector<MachineType>(1, zone); |
| (*types)[0] = DeoptMachineTypeOf(GetInfo(accumulator)->representation(), |
| TypeOf(accumulator)); |
| |
| node->ReplaceInput( |
| 2, jsgraph_->graph()->NewNode(jsgraph_->common()->TypedStateValues( |
| types, SparseInputMask::Dense()), |
| accumulator)); |
| } |
| } |
| |
| ProcessInput(node, 3, UseInfo::AnyTagged()); // Context. |
| ProcessInput(node, 4, UseInfo::AnyTagged()); // Closure. |
| ProcessInput(node, 5, UseInfo::AnyTagged()); // Outer frame state. |
| return SetOutput(node, MachineRepresentation::kTagged); |
| } |
| |
| void VisitObjectState(Node* node) { |
| if (propagate()) { |
| for (int i = 0; i < node->InputCount(); i++) { |
| EnqueueInput(node, i, UseInfo::Any()); |
| } |
| } else if (lower()) { |
| Zone* zone = jsgraph_->zone(); |
| ZoneVector<MachineType>* types = |
| new (zone->New(sizeof(ZoneVector<MachineType>))) |
| ZoneVector<MachineType>(node->InputCount(), zone); |
| for (int i = 0; i < node->InputCount(); i++) { |
| Node* input = node->InputAt(i); |
| (*types)[i] = |
| DeoptMachineTypeOf(GetInfo(input)->representation(), TypeOf(input)); |
| } |
| NodeProperties::ChangeOp(node, jsgraph_->common()->TypedObjectState( |
| ObjectIdOf(node->op()), types)); |
| } |
| SetOutput(node, MachineRepresentation::kTagged); |
| } |
| |
| const Operator* Int32Op(Node* node) { |
| return changer_->Int32OperatorFor(node->opcode()); |
| } |
| |
| const Operator* Int32OverflowOp(Node* node) { |
| return changer_->Int32OverflowOperatorFor(node->opcode()); |
| } |
| |
| const Operator* Uint32Op(Node* node) { |
| return changer_->Uint32OperatorFor(node->opcode()); |
| } |
| |
| const Operator* Uint32OverflowOp(Node* node) { |
| return changer_->Uint32OverflowOperatorFor(node->opcode()); |
| } |
| |
| const Operator* Float64Op(Node* node) { |
| return changer_->Float64OperatorFor(node->opcode()); |
| } |
| |
| WriteBarrierKind WriteBarrierKindFor( |
| BaseTaggedness base_taggedness, |
| MachineRepresentation field_representation, Type* field_type, |
| MachineRepresentation value_representation, Node* value) { |
| if (base_taggedness == kTaggedBase && |
| CanBeTaggedPointer(field_representation)) { |
| Type* value_type = NodeProperties::GetType(value); |
| if (field_representation == MachineRepresentation::kTaggedSigned || |
| value_representation == MachineRepresentation::kTaggedSigned) { |
| // Write barriers are only for stores of heap objects. |
| return kNoWriteBarrier; |
| } |
| if (field_type->Is(Type::BooleanOrNullOrUndefined()) || |
| value_type->Is(Type::BooleanOrNullOrUndefined())) { |
| // Write barriers are not necessary when storing true, false, null or |
| // undefined, because these special oddballs are always in the root set. |
| return kNoWriteBarrier; |
| } |
| if (value_type->IsHeapConstant()) { |
| Heap::RootListIndex root_index; |
| Heap* heap = jsgraph_->isolate()->heap(); |
| if (heap->IsRootHandle(value_type->AsHeapConstant()->Value(), |
| &root_index)) { |
| if (heap->RootIsImmortalImmovable(root_index)) { |
| // Write barriers are unnecessary for immortal immovable roots. |
| return kNoWriteBarrier; |
| } |
| } |
| } |
| if (field_representation == MachineRepresentation::kTaggedPointer || |
| value_representation == MachineRepresentation::kTaggedPointer) { |
| // Write barriers for heap objects are cheaper. |
| return kPointerWriteBarrier; |
| } |
| NumberMatcher m(value); |
| if (m.HasValue()) { |
| if (IsSmiDouble(m.Value())) { |
| // Storing a smi doesn't need a write barrier. |
| return kNoWriteBarrier; |
| } |
| // The NumberConstant will be represented as HeapNumber. |
| return kPointerWriteBarrier; |
| } |
| return kFullWriteBarrier; |
| } |
| return kNoWriteBarrier; |
| } |
| |
| WriteBarrierKind WriteBarrierKindFor( |
| BaseTaggedness base_taggedness, |
| MachineRepresentation field_representation, int field_offset, |
| Type* field_type, MachineRepresentation value_representation, |
| Node* value) { |
| if (base_taggedness == kTaggedBase && |
| field_offset == HeapObject::kMapOffset) { |
| return kMapWriteBarrier; |
| } |
| return WriteBarrierKindFor(base_taggedness, field_representation, |
| field_type, value_representation, value); |
| } |
| |
| Graph* graph() const { return jsgraph_->graph(); } |
| CommonOperatorBuilder* common() const { return jsgraph_->common(); } |
| SimplifiedOperatorBuilder* simplified() const { |
| return jsgraph_->simplified(); |
| } |
| |
| void LowerToCheckedInt32Mul(Node* node, Truncation truncation, |
| Type* input0_type, Type* input1_type) { |
| // If one of the inputs is positive and/or truncation is being applied, |
| // there is no need to return -0. |
| CheckForMinusZeroMode mz_mode = |
| truncation.IdentifiesZeroAndMinusZero() || |
| IsSomePositiveOrderedNumber(input0_type) || |
| IsSomePositiveOrderedNumber(input1_type) |
| ? CheckForMinusZeroMode::kDontCheckForMinusZero |
| : CheckForMinusZeroMode::kCheckForMinusZero; |
| |
| NodeProperties::ChangeOp(node, simplified()->CheckedInt32Mul(mz_mode)); |
| } |
| |
| void ChangeToInt32OverflowOp(Node* node) { |
| NodeProperties::ChangeOp(node, Int32OverflowOp(node)); |
| } |
| |
| void ChangeToUint32OverflowOp(Node* node) { |
| NodeProperties::ChangeOp(node, Uint32OverflowOp(node)); |
| } |
| |
| void VisitSpeculativeIntegerAdditiveOp(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| Type* left_upper = GetUpperBound(node->InputAt(0)); |
| Type* right_upper = GetUpperBound(node->InputAt(1)); |
| |
| if (left_upper->Is(type_cache_.kAdditiveSafeIntegerOrMinusZero) && |
| right_upper->Is(type_cache_.kAdditiveSafeIntegerOrMinusZero)) { |
| // Only eliminate the node if its typing rule can be satisfied, namely |
| // that a safe integer is produced. |
| if (truncation.IsUnused()) return VisitUnused(node); |
| |
| // If we know how to interpret the result or if the users only care |
| // about the low 32-bits, we can truncate to Word32 do a wrapping |
| // addition. |
| if (GetUpperBound(node)->Is(Type::Signed32()) || |
| GetUpperBound(node)->Is(Type::Unsigned32()) || |
| truncation.IsUsedAsWord32()) { |
| // => Int32Add/Sub |
| VisitWord32TruncatingBinop(node); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| return; |
| } |
| } |
| |
| // Try to use type feedback. |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| |
| DCHECK(hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32); |
| |
| Type* left_feedback_type = TypeOf(node->InputAt(0)); |
| Type* right_feedback_type = TypeOf(node->InputAt(1)); |
| // Handle the case when no int32 checks on inputs are necessary (but |
| // an overflow check is needed on the output). Note that we do not |
| // have to do any check if at most one side can be minus zero. |
| if (left_upper->Is(Type::Signed32OrMinusZero()) && |
| right_upper->Is(Type::Signed32OrMinusZero()) && |
| (left_upper->Is(Type::Signed32()) || |
| right_upper->Is(Type::Signed32()))) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| } else { |
| // If the output's truncation is identify-zeros, we can pass it |
| // along. Moreover, if the operation is addition and we know the |
| // right-hand side is not minus zero, we do not have to distinguish |
| // between 0 and -0. |
| IdentifyZeros left_identify_zeros = truncation.identify_zeros(); |
| if (node->opcode() == IrOpcode::kSpeculativeSafeIntegerAdd && |
| !right_feedback_type->Maybe(Type::MinusZero())) { |
| left_identify_zeros = kIdentifyZeros; |
| } |
| UseInfo left_use = |
| CheckedUseInfoAsWord32FromHint(hint, left_identify_zeros); |
| // For CheckedInt32Add and CheckedInt32Sub, we don't need to do |
| // a minus zero check for the right hand side, since we already |
| // know that the left hand side is a proper Signed32 value, |
| // potentially guarded by a check. |
| UseInfo right_use = CheckedUseInfoAsWord32FromHint(hint, kIdentifyZeros); |
| VisitBinop(node, left_use, right_use, MachineRepresentation::kWord32, |
| Type::Signed32()); |
| } |
| if (lower()) { |
| if (truncation.IsUsedAsWord32() || |
| !CanOverflowSigned32(node->op(), left_feedback_type, |
| right_feedback_type, graph_zone())) { |
| ChangeToPureOp(node, Int32Op(node)); |
| |
| } else { |
| ChangeToInt32OverflowOp(node); |
| } |
| } |
| return; |
| } |
| |
| void VisitSpeculativeAdditiveOp(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| if (BothInputsAre(node, type_cache_.kAdditiveSafeIntegerOrMinusZero) && |
| (GetUpperBound(node)->Is(Type::Signed32()) || |
| GetUpperBound(node)->Is(Type::Unsigned32()) || |
| truncation.IsUsedAsWord32())) { |
| // => Int32Add/Sub |
| VisitWord32TruncatingBinop(node); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| return; |
| } |
| |
| // default case => Float64Add/Sub |
| VisitBinop(node, UseInfo::CheckedNumberOrOddballAsFloat64(), |
| MachineRepresentation::kFloat64, Type::Number()); |
| if (lower()) { |
| ChangeToPureOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| |
| void VisitSpeculativeNumberModulus(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()))) { |
| // => unsigned Uint32Mod |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Uint32Mod(node)); |
| return; |
| } |
| if (BothInputsAre(node, Type::Signed32OrMinusZeroOrNaN()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Signed32()))) { |
| // => signed Int32Mod |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Mod(node)); |
| return; |
| } |
| |
| // Try to use type feedback. |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| |
| // Handle the case when no uint32 checks on inputs are necessary |
| // (but an overflow check is needed on the output). |
| if (BothInputsAreUnsigned32(node)) { |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Unsigned32()); |
| if (lower()) ChangeToUint32OverflowOp(node); |
| return; |
| } |
| } |
| |
| // Handle the case when no int32 checks on inputs are necessary |
| // (but an overflow check is needed on the output). |
| if (BothInputsAre(node, Type::Signed32())) { |
| // If both the inputs the feedback are int32, use the overflow op. |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) ChangeToInt32OverflowOp(node); |
| return; |
| } |
| } |
| |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| // If the result is truncated, we only need to check the inputs. |
| if (truncation.IsUsedAsWord32()) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Int32Mod(node)); |
| } else if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN())) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Unsigned32()); |
| if (lower()) DeferReplacement(node, lowering->Uint32Mod(node)); |
| } else { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) ChangeToInt32OverflowOp(node); |
| } |
| return; |
| } |
| |
| if (TypeOf(node->InputAt(0))->Is(Type::Unsigned32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Unsigned32()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()))) { |
| // We can only promise Float64 truncation here, as the decision is |
| // based on the feedback types of the inputs. |
| VisitBinop(node, |
| UseInfo(MachineRepresentation::kWord32, Truncation::Float64()), |
| MachineRepresentation::kWord32, Type::Number()); |
| if (lower()) DeferReplacement(node, lowering->Uint32Mod(node)); |
| return; |
| } |
| if (TypeOf(node->InputAt(0))->Is(Type::Signed32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Signed32()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Signed32()))) { |
| // We can only promise Float64 truncation here, as the decision is |
| // based on the feedback types of the inputs. |
| VisitBinop(node, |
| UseInfo(MachineRepresentation::kWord32, Truncation::Float64()), |
| MachineRepresentation::kWord32, Type::Number()); |
| if (lower()) DeferReplacement(node, lowering->Int32Mod(node)); |
| return; |
| } |
| // default case => Float64Mod |
| VisitBinop(node, UseInfo::CheckedNumberOrOddballAsFloat64(), |
| MachineRepresentation::kFloat64, Type::Number()); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| |
| // Dispatching routine for visiting the node {node} with the usage {use}. |
| // Depending on the operator, propagate new usage info to the inputs. |
| void VisitNode(Node* node, Truncation truncation, |
| SimplifiedLowering* lowering) { |
| // Unconditionally eliminate unused pure nodes (only relevant if there's |
| // a pure operation in between two effectful ones, where the last one |
| // is unused). |
| // Note: We must not do this for constants, as they are cached and we |
| // would thus kill the cached {node} during lowering (i.e. replace all |
| // uses with Dead), but at that point some node lowering might have |
| // already taken the constant {node} from the cache (while it was in |
| // a sane state still) and we would afterwards replace that use with |
| // Dead as well. |
| if (node->op()->ValueInputCount() > 0 && |
| node->op()->HasProperty(Operator::kPure)) { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| } |
| switch (node->opcode()) { |
| //------------------------------------------------------------------ |
| // Common operators. |
| //------------------------------------------------------------------ |
| case IrOpcode::kStart: |
| // We use Start as a terminator for the frame state chain, so even |
| // tho Start doesn't really produce a value, we have to say Tagged |
| // here, otherwise the input conversion will fail. |
| return VisitLeaf(node, MachineRepresentation::kTagged); |
| case IrOpcode::kParameter: |
| // TODO(titzer): use representation from linkage. |
| return VisitUnop(node, UseInfo::None(), MachineRepresentation::kTagged); |
| case IrOpcode::kInt32Constant: |
| return VisitLeaf(node, MachineRepresentation::kWord32); |
| case IrOpcode::kInt64Constant: |
| return VisitLeaf(node, MachineRepresentation::kWord64); |
| case IrOpcode::kExternalConstant: |
| return VisitLeaf(node, MachineType::PointerRepresentation()); |
| case IrOpcode::kNumberConstant: { |
| double const value = OpParameter<double>(node); |
| int value_as_int; |
| if (DoubleToSmiInteger(value, &value_as_int)) { |
| VisitLeaf(node, MachineRepresentation::kTaggedSigned); |
| if (lower()) { |
| intptr_t smi = bit_cast<intptr_t>(Smi::FromInt(value_as_int)); |
| DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(smi)); |
| } |
| return; |
| } |
| VisitLeaf(node, MachineRepresentation::kTagged); |
| return; |
| } |
| case IrOpcode::kHeapConstant: |
| return VisitLeaf(node, MachineRepresentation::kTaggedPointer); |
| case IrOpcode::kPointerConstant: { |
| VisitLeaf(node, MachineType::PointerRepresentation()); |
| if (lower()) { |
| intptr_t const value = OpParameter<intptr_t>(node); |
| DeferReplacement(node, lowering->jsgraph()->IntPtrConstant(value)); |
| } |
| return; |
| } |
| |
| case IrOpcode::kBranch: { |
| DCHECK(TypeOf(node->InputAt(0))->Is(Type::Boolean())); |
| ProcessInput(node, 0, UseInfo::Bool()); |
| EnqueueInput(node, NodeProperties::FirstControlIndex(node)); |
| return; |
| } |
| case IrOpcode::kSwitch: |
| ProcessInput(node, 0, UseInfo::TruncatingWord32()); |
| EnqueueInput(node, NodeProperties::FirstControlIndex(node)); |
| return; |
| case IrOpcode::kSelect: |
| return VisitSelect(node, truncation, lowering); |
| case IrOpcode::kPhi: |
| return VisitPhi(node, truncation, lowering); |
| case IrOpcode::kCall: |
| return VisitCall(node, lowering); |
| |
| //------------------------------------------------------------------ |
| // JavaScript operators. |
| //------------------------------------------------------------------ |
| case IrOpcode::kToBoolean: { |
| if (truncation.IsUsedAsBool()) { |
| ProcessInput(node, 0, UseInfo::Bool()); |
| SetOutput(node, MachineRepresentation::kBit); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else { |
| VisitInputs(node); |
| SetOutput(node, MachineRepresentation::kTaggedPointer); |
| } |
| return; |
| } |
| case IrOpcode::kJSToNumber: |
| case IrOpcode::kJSToNumeric: { |
| VisitInputs(node); |
| // TODO(bmeurer): Optimize somewhat based on input type? |
| if (truncation.IsUsedAsWord32()) { |
| SetOutput(node, MachineRepresentation::kWord32); |
| if (lower()) |
| lowering->DoJSToNumberOrNumericTruncatesToWord32(node, this); |
| } else if (truncation.IsUsedAsFloat64()) { |
| SetOutput(node, MachineRepresentation::kFloat64); |
| if (lower()) |
| lowering->DoJSToNumberOrNumericTruncatesToFloat64(node, this); |
| } else { |
| SetOutput(node, MachineRepresentation::kTagged); |
| } |
| return; |
| } |
| |
| //------------------------------------------------------------------ |
| // Simplified operators. |
| //------------------------------------------------------------------ |
| case IrOpcode::kBooleanNot: { |
| if (lower()) { |
| NodeInfo* input_info = GetInfo(node->InputAt(0)); |
| if (input_info->representation() == MachineRepresentation::kBit) { |
| // BooleanNot(x: kRepBit) => Word32Equal(x, #0) |
| node->AppendInput(jsgraph_->zone(), jsgraph_->Int32Constant(0)); |
| NodeProperties::ChangeOp(node, lowering->machine()->Word32Equal()); |
| } else if (CanBeTaggedPointer(input_info->representation())) { |
| // BooleanNot(x: kRepTagged) => WordEqual(x, #false) |
| node->AppendInput(jsgraph_->zone(), jsgraph_->FalseConstant()); |
| NodeProperties::ChangeOp(node, lowering->machine()->WordEqual()); |
| } else { |
| DCHECK(TypeOf(node->InputAt(0))->IsNone()); |
| DeferReplacement(node, lowering->jsgraph()->Int32Constant(0)); |
| } |
| } else { |
| // No input representation requirement; adapt during lowering. |
| ProcessInput(node, 0, UseInfo::AnyTruncatingToBool()); |
| SetOutput(node, MachineRepresentation::kBit); |
| } |
| return; |
| } |
| case IrOpcode::kNumberEqual: { |
| Type* const lhs_type = TypeOf(node->InputAt(0)); |
| Type* const rhs_type = TypeOf(node->InputAt(1)); |
| // Number comparisons reduce to integer comparisons for integer inputs. |
| if ((lhs_type->Is(Type::Unsigned32()) && |
| rhs_type->Is(Type::Unsigned32())) || |
| (lhs_type->Is(Type::Unsigned32OrMinusZeroOrNaN()) && |
| rhs_type->Is(Type::Unsigned32OrMinusZeroOrNaN()) && |
| OneInputCannotBe(node, type_cache_.kZeroish))) { |
| // => unsigned Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node)); |
| return; |
| } |
| if ((lhs_type->Is(Type::Signed32()) && |
| rhs_type->Is(Type::Signed32())) || |
| (lhs_type->Is(Type::Signed32OrMinusZeroOrNaN()) && |
| rhs_type->Is(Type::Signed32OrMinusZeroOrNaN()) && |
| OneInputCannotBe(node, type_cache_.kZeroish))) { |
| // => signed Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Int32Op(node)); |
| return; |
| } |
| // => Float64Cmp |
| VisitBinop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberLessThan: |
| case IrOpcode::kNumberLessThanOrEqual: { |
| // Number comparisons reduce to integer comparisons for integer inputs. |
| if (TypeOf(node->InputAt(0))->Is(Type::Unsigned32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Unsigned32())) { |
| // => unsigned Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node)); |
| } else if (TypeOf(node->InputAt(0))->Is(Type::Signed32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Signed32())) { |
| // => signed Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Int32Op(node)); |
| } else { |
| // => Float64Cmp |
| VisitBinop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kBit); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| |
| case IrOpcode::kSpeculativeSafeIntegerAdd: |
| case IrOpcode::kSpeculativeSafeIntegerSubtract: |
| return VisitSpeculativeIntegerAdditiveOp(node, truncation, lowering); |
| |
| case IrOpcode::kSpeculativeNumberAdd: |
| case IrOpcode::kSpeculativeNumberSubtract: |
| return VisitSpeculativeAdditiveOp(node, truncation, lowering); |
| |
| case IrOpcode::kSpeculativeNumberLessThan: |
| case IrOpcode::kSpeculativeNumberLessThanOrEqual: |
| case IrOpcode::kSpeculativeNumberEqual: { |
| // Number comparisons reduce to integer comparisons for integer inputs. |
| if (TypeOf(node->InputAt(0))->Is(Type::Unsigned32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Unsigned32())) { |
| // => unsigned Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) ChangeToPureOp(node, Uint32Op(node)); |
| return; |
| } else if (TypeOf(node->InputAt(0))->Is(Type::Signed32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Signed32())) { |
| // => signed Int32Cmp |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| return; |
| } |
| // Try to use type feedback. |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| switch (hint) { |
| case NumberOperationHint::kSigned32: |
| case NumberOperationHint::kSignedSmall: |
| if (propagate()) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kBit); |
| } else if (retype()) { |
| SetOutput(node, MachineRepresentation::kBit, Type::Any()); |
| } else { |
| DCHECK(lower()); |
| Node* lhs = node->InputAt(0); |
| Node* rhs = node->InputAt(1); |
| if (IsNodeRepresentationTagged(lhs) && |
| IsNodeRepresentationTagged(rhs)) { |
| VisitBinop( |
| node, |
| UseInfo::CheckedSignedSmallAsTaggedSigned(VectorSlotPair()), |
| MachineRepresentation::kBit); |
| ChangeToPureOp( |
| node, changer_->TaggedSignedOperatorFor(node->opcode())); |
| |
| } else { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kBit); |
| ChangeToPureOp(node, Int32Op(node)); |
| } |
| } |
| return; |
| case NumberOperationHint::kSignedSmallInputs: |
| // This doesn't make sense for compare operations. |
| UNREACHABLE(); |
| case NumberOperationHint::kNumberOrOddball: |
| // Abstract and strict equality don't perform ToNumber conversions |
| // on Oddballs, so make sure we don't accidentially sneak in a |
| // hint with Oddball feedback here. |
| DCHECK_NE(IrOpcode::kSpeculativeNumberEqual, node->opcode()); |
| // Fallthrough |
| case NumberOperationHint::kNumber: |
| VisitBinop(node, CheckedUseInfoAsFloat64FromHint(hint), |
| MachineRepresentation::kBit); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| UNREACHABLE(); |
| return; |
| } |
| |
| case IrOpcode::kNumberAdd: |
| case IrOpcode::kNumberSubtract: { |
| if (BothInputsAre(node, type_cache_.kAdditiveSafeIntegerOrMinusZero) && |
| (GetUpperBound(node)->Is(Type::Signed32()) || |
| GetUpperBound(node)->Is(Type::Unsigned32()) || |
| truncation.IsUsedAsWord32())) { |
| // => Int32Add/Sub |
| VisitWord32TruncatingBinop(node); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| } else { |
| // => Float64Add/Sub |
| VisitFloat64Binop(node); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberMultiply: { |
| if (BothInputsAre(node, Type::Integral32()) && |
| (NodeProperties::GetType(node)->Is(Type::Signed32()) || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()) || |
| (truncation.IsUsedAsWord32() && |
| NodeProperties::GetType(node)->Is( |
| type_cache_.kSafeIntegerOrMinusZero)))) { |
| // Multiply reduces to Int32Mul if the inputs are integers, and |
| // (a) the output is either known to be Signed32, or |
| // (b) the output is known to be Unsigned32, or |
| // (c) the uses are truncating and the result is in the safe |
| // integer range. |
| VisitWord32TruncatingBinop(node); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| return; |
| } |
| // Try to use type feedback. |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| Type* input0_type = TypeOf(node->InputAt(0)); |
| Type* input1_type = TypeOf(node->InputAt(1)); |
| |
| // Handle the case when no int32 checks on inputs are necessary |
| // (but an overflow check is needed on the output). |
| if (BothInputsAre(node, Type::Signed32())) { |
| // If both inputs and feedback are int32, use the overflow op. |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) { |
| LowerToCheckedInt32Mul(node, truncation, input0_type, |
| input1_type); |
| } |
| return; |
| } |
| } |
| |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) { |
| LowerToCheckedInt32Mul(node, truncation, input0_type, input1_type); |
| } |
| return; |
| } |
| |
| // Checked float64 x float64 => float64 |
| VisitBinop(node, UseInfo::CheckedNumberOrOddballAsFloat64(), |
| MachineRepresentation::kFloat64, Type::Number()); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberMultiply: { |
| if (BothInputsAre(node, Type::Integral32()) && |
| (NodeProperties::GetType(node)->Is(Type::Signed32()) || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()) || |
| (truncation.IsUsedAsWord32() && |
| NodeProperties::GetType(node)->Is( |
| type_cache_.kSafeIntegerOrMinusZero)))) { |
| // Multiply reduces to Int32Mul if the inputs are integers, and |
| // (a) the output is either known to be Signed32, or |
| // (b) the output is known to be Unsigned32, or |
| // (c) the uses are truncating and the result is in the safe |
| // integer range. |
| VisitWord32TruncatingBinop(node); |
| if (lower()) ChangeToPureOp(node, Int32Op(node)); |
| return; |
| } |
| // Number x Number => Float64Mul |
| VisitFloat64Binop(node); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberDivide: { |
| if (BothInputsAreUnsigned32(node) && truncation.IsUsedAsWord32()) { |
| // => unsigned Uint32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Uint32Div(node)); |
| return; |
| } |
| if (BothInputsAreSigned32(node)) { |
| if (NodeProperties::GetType(node)->Is(Type::Signed32())) { |
| // => signed Int32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Div(node)); |
| return; |
| } |
| if (truncation.IsUsedAsWord32()) { |
| // => signed Int32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Div(node)); |
| return; |
| } |
| } |
| |
| // Try to use type feedback. |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| |
| // Handle the case when no uint32 checks on inputs are necessary |
| // (but an overflow check is needed on the output). |
| if (BothInputsAreUnsigned32(node)) { |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Unsigned32()); |
| if (lower()) ChangeToUint32OverflowOp(node); |
| return; |
| } |
| } |
| |
| // Handle the case when no int32 checks on inputs are necessary |
| // (but an overflow check is needed on the output). |
| if (BothInputsAreSigned32(node)) { |
| // If both the inputs the feedback are int32, use the overflow op. |
| if (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) ChangeToInt32OverflowOp(node); |
| return; |
| } |
| } |
| |
| if (hint == NumberOperationHint::kSigned32 || |
| hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSignedSmallInputs) { |
| // If the result is truncated, we only need to check the inputs. |
| if (truncation.IsUsedAsWord32()) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Int32Div(node)); |
| return; |
| } else if (hint != NumberOperationHint::kSignedSmallInputs) { |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) ChangeToInt32OverflowOp(node); |
| return; |
| } |
| } |
| |
| // default case => Float64Div |
| VisitBinop(node, UseInfo::CheckedNumberOrOddballAsFloat64(), |
| MachineRepresentation::kFloat64, Type::Number()); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberDivide: { |
| if (BothInputsAreUnsigned32(node) && truncation.IsUsedAsWord32()) { |
| // => unsigned Uint32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Uint32Div(node)); |
| return; |
| } |
| if (BothInputsAreSigned32(node)) { |
| if (NodeProperties::GetType(node)->Is(Type::Signed32())) { |
| // => signed Int32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Div(node)); |
| return; |
| } |
| if (truncation.IsUsedAsWord32()) { |
| // => signed Int32Div |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Div(node)); |
| return; |
| } |
| } |
| // Number x Number => Float64Div |
| VisitFloat64Binop(node); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberModulus: |
| return VisitSpeculativeNumberModulus(node, truncation, lowering); |
| case IrOpcode::kNumberModulus: { |
| if (BothInputsAre(node, Type::Unsigned32OrMinusZeroOrNaN()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()))) { |
| // => unsigned Uint32Mod |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Uint32Mod(node)); |
| return; |
| } |
| if (BothInputsAre(node, Type::Signed32OrMinusZeroOrNaN()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Signed32()))) { |
| // => signed Int32Mod |
| VisitWord32TruncatingBinop(node); |
| if (lower()) DeferReplacement(node, lowering->Int32Mod(node)); |
| return; |
| } |
| if (TypeOf(node->InputAt(0))->Is(Type::Unsigned32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Unsigned32()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Unsigned32()))) { |
| // We can only promise Float64 truncation here, as the decision is |
| // based on the feedback types of the inputs. |
| VisitBinop(node, UseInfo(MachineRepresentation::kWord32, |
| Truncation::Float64()), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Uint32Mod(node)); |
| return; |
| } |
| if (TypeOf(node->InputAt(0))->Is(Type::Signed32()) && |
| TypeOf(node->InputAt(1))->Is(Type::Signed32()) && |
| (truncation.IsUsedAsWord32() || |
| NodeProperties::GetType(node)->Is(Type::Signed32()))) { |
| // We can only promise Float64 truncation here, as the decision is |
| // based on the feedback types of the inputs. |
| VisitBinop(node, UseInfo(MachineRepresentation::kWord32, |
| Truncation::Float64()), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Int32Mod(node)); |
| return; |
| } |
| // default case => Float64Mod |
| VisitFloat64Binop(node); |
| if (lower()) ChangeToPureOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberBitwiseOr: |
| case IrOpcode::kNumberBitwiseXor: |
| case IrOpcode::kNumberBitwiseAnd: { |
| VisitWord32TruncatingBinop(node); |
| if (lower()) NodeProperties::ChangeOp(node, Int32Op(node)); |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberBitwiseOr: |
| case IrOpcode::kSpeculativeNumberBitwiseXor: |
| case IrOpcode::kSpeculativeNumberBitwiseAnd: |
| VisitSpeculativeInt32Binop(node); |
| if (lower()) { |
| ChangeToPureOp(node, Int32Op(node)); |
| } |
| return; |
| case IrOpcode::kNumberShiftLeft: { |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shl(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberShiftLeft: { |
| if (BothInputsAre(node, Type::NumberOrOddball())) { |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shl(), rhs_type); |
| } |
| return; |
| } |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shl(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kNumberShiftRight: { |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Sar(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberShiftRight: { |
| if (BothInputsAre(node, Type::NumberOrOddball())) { |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Sar(), rhs_type); |
| } |
| return; |
| } |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Signed32()); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Sar(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kNumberShiftRightLogical: { |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shr(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kSpeculativeNumberShiftRightLogical: { |
| NumberOperationHint hint = NumberOperationHintOf(node->op()); |
| Type* rhs_type = GetUpperBound(node->InputAt(1)); |
| if (rhs_type->Is(type_cache_.kZeroish) && |
| (hint == NumberOperationHint::kSignedSmall || |
| hint == NumberOperationHint::kSigned32) && |
| !truncation.IsUsedAsWord32()) { |
| // The SignedSmall or Signed32 feedback means that the results that we |
| // have seen so far were of type Unsigned31. We speculate that this |
| // will continue to hold. Moreover, since the RHS is 0, the result |
| // will just be the (converted) LHS. |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Unsigned31()); |
| if (lower()) { |
| node->RemoveInput(1); |
| NodeProperties::ChangeOp( |
| node, simplified()->CheckedUint32ToInt32(VectorSlotPair())); |
| } |
| return; |
| } |
| if (BothInputsAre(node, Type::NumberOrOddball())) { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shr(), rhs_type); |
| } |
| return; |
| } |
| VisitBinop(node, CheckedUseInfoAsWord32FromHint(hint), |
| MachineRepresentation::kWord32, Type::Unsigned32()); |
| if (lower()) { |
| lowering->DoShift(node, lowering->machine()->Word32Shr(), rhs_type); |
| } |
| return; |
| } |
| case IrOpcode::kNumberAbs: { |
| if (TypeOf(node->InputAt(0))->Is(Type::Unsigned32())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else if (TypeOf(node->InputAt(0))->Is(Type::Signed32())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Int32Abs(node)); |
| } else if (TypeOf(node->InputAt(0)) |
| ->Is(type_cache_.kPositiveIntegerOrMinusZeroOrNaN)) { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| case IrOpcode::kNumberClz32: { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberImul: { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| UseInfo::TruncatingWord32(), MachineRepresentation::kWord32); |
| if (lower()) NodeProperties::ChangeOp(node, Uint32Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberFround: { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat32); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberMax: { |
| // It is safe to use the feedback types for left and right hand side |
| // here, since we can only narrow those types and thus we can only |
| // promise a more specific truncation. |
| Type* const lhs_type = TypeOf(node->InputAt(0)); |
| Type* const rhs_type = TypeOf(node->InputAt(1)); |
| if (lhs_type->Is(Type::Unsigned32()) && |
| rhs_type->Is(Type::Unsigned32())) { |
| VisitWord32TruncatingBinop(node); |
| if (lower()) { |
| lowering->DoMax(node, lowering->machine()->Uint32LessThan(), |
| MachineRepresentation::kWord32); |
| } |
| } else if (lhs_type->Is(Type::Signed32()) && |
| rhs_type->Is(Type::Signed32())) { |
| VisitWord32TruncatingBinop(node); |
| if (lower()) { |
| lowering->DoMax(node, lowering->machine()->Int32LessThan(), |
| MachineRepresentation::kWord32); |
| } |
| } else if (lhs_type->Is(Type::PlainNumber()) && |
| rhs_type->Is(Type::PlainNumber())) { |
| VisitFloat64Binop(node); |
| if (lower()) { |
| lowering->DoMax(node, lowering->machine()->Float64LessThan(), |
| MachineRepresentation::kFloat64); |
| } |
| } else { |
| VisitFloat64Binop(node); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| case IrOpcode::kNumberMin: { |
| // It is safe to use the feedback types for left and right hand side |
| // here, since we can only narrow those types and thus we can only |
| // promise a more specific truncation. |
| Type* const lhs_type = TypeOf(node->InputAt(0)); |
| Type* const rhs_type = TypeOf(node->InputAt(1)); |
| if (lhs_type->Is(Type::Unsigned32()) && |
| rhs_type->Is(Type::Unsigned32())) { |
| VisitWord32TruncatingBinop(node); |
| if (lower()) { |
| lowering->DoMin(node, lowering->machine()->Uint32LessThan(), |
| MachineRepresentation::kWord32); |
| } |
| } else if (lhs_type->Is(Type::Signed32()) && |
| rhs_type->Is(Type::Signed32())) { |
| VisitWord32TruncatingBinop(node); |
| if (lower()) { |
| lowering->DoMin(node, lowering->machine()->Int32LessThan(), |
| MachineRepresentation::kWord32); |
| } |
| } else if (lhs_type->Is(Type::PlainNumber()) && |
| rhs_type->Is(Type::PlainNumber())) { |
| VisitFloat64Binop(node); |
| if (lower()) { |
| lowering->DoMin(node, lowering->machine()->Float64LessThan(), |
| MachineRepresentation::kFloat64); |
| } |
| } else { |
| VisitFloat64Binop(node); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| } |
| return; |
| } |
| case IrOpcode::kNumberAtan2: |
| case IrOpcode::kNumberPow: { |
| VisitBinop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberAcos: |
| case IrOpcode::kNumberAcosh: |
| case IrOpcode::kNumberAsin: |
| case IrOpcode::kNumberAsinh: |
| case IrOpcode::kNumberAtan: |
| case IrOpcode::kNumberAtanh: |
| case IrOpcode::kNumberCeil: |
| case IrOpcode::kNumberCos: |
| case IrOpcode::kNumberCosh: |
| case IrOpcode::kNumberExp: |
| case IrOpcode::kNumberExpm1: |
| case IrOpcode::kNumberFloor: |
| case IrOpcode::kNumberLog: |
| case IrOpcode::kNumberLog1p: |
| case IrOpcode::kNumberLog2: |
| case IrOpcode::kNumberLog10: |
| case IrOpcode::kNumberCbrt: |
| case IrOpcode::kNumberSin: |
| case IrOpcode::kNumberSinh: |
| case IrOpcode::kNumberTan: |
| case IrOpcode::kNumberTanh: |
| case IrOpcode::kNumberTrunc: { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberRound: { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) DeferReplacement(node, lowering->Float64Round(node)); |
| return; |
| } |
| case IrOpcode::kNumberSign: { |
| if (InputIs(node, Type::Signed32())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, lowering->Int32Sign(node)); |
| } else { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) DeferReplacement(node, lowering->Float64Sign(node)); |
| } |
| return; |
| } |
| case IrOpcode::kNumberSqrt: { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) NodeProperties::ChangeOp(node, Float64Op(node)); |
| return; |
| } |
| case IrOpcode::kNumberToBoolean: { |
| Type* const input_type = TypeOf(node->InputAt(0)); |
| if (input_type->Is(Type::Integral32())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kBit); |
| if (lower()) lowering->DoIntegral32ToBit(node); |
| } else if (input_type->Is(Type::OrderedNumber())) { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kBit); |
| if (lower()) lowering->DoOrderedNumberToBit(node); |
| } else { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kBit); |
| if (lower()) lowering->DoNumberToBit(node); |
| } |
| return; |
| } |
| case IrOpcode::kNumberToInt32: { |
| // Just change representation if necessary. |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| return; |
| } |
| case IrOpcode::kNumberToString: { |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kNumberToUint32: { |
| // Just change representation if necessary. |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| return; |
| } |
| case IrOpcode::kNumberToUint8Clamped: { |
| Type* const input_type = TypeOf(node->InputAt(0)); |
| if (input_type->Is(type_cache_.kUint8OrMinusZeroOrNaN)) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else if (input_type->Is(Type::Unsigned32OrMinusZeroOrNaN())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) lowering->DoUnsigned32ToUint8Clamped(node); |
| } else if (input_type->Is(Type::Signed32OrMinusZeroOrNaN())) { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) lowering->DoSigned32ToUint8Clamped(node); |
| } else if (input_type->Is(type_cache_.kIntegerOrMinusZeroOrNaN)) { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) lowering->DoIntegerToUint8Clamped(node); |
| } else { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kFloat64); |
| if (lower()) lowering->DoNumberToUint8Clamped(node); |
| } |
| return; |
| } |
| case IrOpcode::kReferenceEqual: { |
| VisitBinop(node, UseInfo::AnyTagged(), MachineRepresentation::kBit); |
| if (lower()) { |
| NodeProperties::ChangeOp(node, lowering->machine()->WordEqual()); |
| } |
| return; |
| } |
| case IrOpcode::kSameValue: { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| VisitBinop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kClassOf: |
| case IrOpcode::kTypeOf: { |
| return VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| } |
| case IrOpcode::kNewConsString: { |
| ProcessInput(node, 0, UseInfo::TaggedSigned()); // length |
| ProcessInput(node, 1, UseInfo::AnyTagged()); // first |
| ProcessInput(node, 2, UseInfo::AnyTagged()); // second |
| SetOutput(node, MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kStringEqual: |
| case IrOpcode::kStringLessThan: |
| case IrOpcode::kStringLessThanOrEqual: { |
| return VisitBinop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| } |
| case IrOpcode::kStringCharAt: { |
| VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kStringCharCodeAt: { |
| Type* string_type = TypeOf(node->InputAt(0)); |
| if (string_type->Is(Type::SeqString())) { |
| VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) { |
| NodeProperties::ChangeOp(node, simplified()->SeqStringCharCodeAt()); |
| } |
| } else { |
| // TODO(turbofan): Allow builtins to return untagged values. |
| VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTaggedSigned); |
| } |
| return; |
| } |
| case IrOpcode::kStringCodePointAt: { |
| // TODO(turbofan): Allow builtins to return untagged values. |
| VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTaggedSigned); |
| return; |
| } |
| case IrOpcode::kStringFromCharCode: { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kStringFromCodePoint: { |
| VisitUnop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kStringIndexOf: { |
| ProcessInput(node, 0, UseInfo::AnyTagged()); |
| ProcessInput(node, 1, UseInfo::AnyTagged()); |
| ProcessInput(node, 2, UseInfo::TaggedSigned()); |
| SetOutput(node, MachineRepresentation::kTaggedSigned); |
| return; |
| } |
| case IrOpcode::kStringLength: { |
| // TODO(bmeurer): The input representation should be TaggedPointer. |
| // Fix this once we have a dedicated StringConcat/JSStringAdd |
| // operator, which marks it's output as TaggedPointer properly. |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedSigned); |
| return; |
| } |
| case IrOpcode::kStringToLowerCaseIntl: |
| case IrOpcode::kStringToUpperCaseIntl: { |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kCheckBounds: { |
| Type* index_type = TypeOf(node->InputAt(0)); |
| Type* length_type = TypeOf(node->InputAt(1)); |
| if (index_type->Is(Type::Integral32OrMinusZero())) { |
| // Map -0 to 0, and the values in the [-2^31,-1] range to the |
| // [2^31,2^32-1] range, which will be considered out-of-bounds |
| // as well, because the {length_type} is limited to Unsigned31. |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| if (lower()) { |
| if (index_type->IsNone() || length_type->IsNone() || |
| (index_type->Min() >= 0.0 && |
| index_type->Max() < length_type->Min())) { |
| // The bounds check is redundant if we already know that |
| // the index is within the bounds of [0.0, length[. |
| DeferReplacement(node, node->InputAt(0)); |
| } |
| } |
| } else { |
| VisitBinop(node, UseInfo::CheckedSigned32AsWord32(kIdentifyZeros), |
| UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| } |
| return; |
| } |
| case IrOpcode::kMaskIndexWithBound: { |
| VisitBinop(node, UseInfo::TruncatingWord32(), |
| MachineRepresentation::kWord32); |
| return; |
| } |
| case IrOpcode::kCheckHeapObject: { |
| if (InputCannotBe(node, Type::SignedSmall())) { |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| } else { |
| VisitUnop(node, UseInfo::CheckedHeapObjectAsTaggedPointer(), |
| MachineRepresentation::kTaggedPointer); |
| } |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| return; |
| } |
| case IrOpcode::kCheckIf: { |
| ProcessInput(node, 0, UseInfo::Bool()); |
| ProcessRemainingInputs(node, 1); |
| SetOutput(node, MachineRepresentation::kNone); |
| return; |
| } |
| case IrOpcode::kCheckInternalizedString: { |
| VisitCheck(node, Type::InternalizedString(), lowering); |
| return; |
| } |
| case IrOpcode::kCheckNumber: { |
| Type* const input_type = TypeOf(node->InputAt(0)); |
| if (input_type->Is(Type::Number())) { |
| VisitNoop(node, truncation); |
| } else { |
| VisitUnop(node, UseInfo::AnyTagged(), MachineRepresentation::kTagged); |
| } |
| return; |
| } |
| case IrOpcode::kCheckReceiver: { |
| VisitCheck(node, Type::Receiver(), lowering); |
| return; |
| } |
| case IrOpcode::kCheckSmi: { |
| const CheckParameters& params = CheckParametersOf(node->op()); |
| if (SmiValuesAre32Bits() && truncation.IsUsedAsWord32()) { |
| VisitUnop(node, |
| UseInfo::CheckedSignedSmallAsWord32(kDistinguishZeros, |
| params.feedback()), |
| MachineRepresentation::kWord32); |
| } else { |
| VisitUnop( |
| node, |
| UseInfo::CheckedSignedSmallAsTaggedSigned(params.feedback()), |
| MachineRepresentation::kTaggedSigned); |
| } |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| return; |
| } |
| case IrOpcode::kCheckString: { |
| VisitCheck(node, Type::String(), lowering); |
| return; |
| } |
| case IrOpcode::kCheckSymbol: { |
| VisitCheck(node, Type::Symbol(), lowering); |
| return; |
| } |
| case IrOpcode::kCheckSeqString: { |
| if (InputIs(node, Type::SeqString())) { |
| VisitUnop(node, UseInfo::AnyTagged(), |
| MachineRepresentation::kTaggedPointer); |
| if (lower()) DeferReplacement(node, node->InputAt(0)); |
| } else { |
| VisitUnop(node, UseInfo::CheckedHeapObjectAsTaggedPointer(), |
| MachineRepresentation::kTaggedPointer); |
| } |
| return; |
| } |
| |
| case IrOpcode::kAllocate: { |
| ProcessInput(node, 0, UseInfo::TruncatingWord32()); |
| ProcessRemainingInputs(node, 1); |
| SetOutput(node, MachineRepresentation::kTaggedPointer); |
| return; |
| } |
| case IrOpcode::kLoadFieldByIndex: { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| VisitBinop(node, UseInfo::AnyTagged(), UseInfo::TruncatingWord32(), |
| MachineRepresentation::kTagged); |
| return; |
| } |
| case IrOpcode::kLoadField: { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| FieldAccess access = FieldAccessOf(node->op()); |
| MachineRepresentation const representation = |
| access.machine_type.representation(); |
| VisitUnop(node, UseInfoForBasePointer(access), representation); |
| return; |
| } |
| case IrOpcode::kStoreField: { |
| FieldAccess access = FieldAccessOf(node->op()); |
| Node* value_node = node->InputAt(1); |
| NodeInfo* input_info = GetInfo(value_node); |
| MachineRepresentation field_representation = |
| access.machine_type.representation(); |
| |
| WriteBarrierKind write_barrier_kind = WriteBarrierKindFor( |
| access.base_is_tagged, field_representation, access.offset, |
| access.type, input_info->representation(), value_node); |
| |
| ProcessInput(node, 0, UseInfoForBasePointer(access)); |
| ProcessInput(node, 1, |
| TruncatingUseInfoFromRepresentation(field_representation)); |
| ProcessRemainingInputs(node, 2); |
| SetOutput(node, MachineRepresentation::kNone); |
| if (lower()) { |
| if (write_barrier_kind < access.write_barrier_kind) { |
| access.write_barrier_kind = write_barrier_kind; |
| NodeProperties::ChangeOp( |
| node, jsgraph_->simplified()->StoreField(access)); |
| } |
| } |
| return; |
| } |
| case IrOpcode::kLoadElement: { |
| if (truncation.IsUnused()) return VisitUnused(node); |
| ElementAccess access = ElementAccessOf(node->op()); |
| VisitBinop(node, UseInfoForBasePointer(access), |
| UseInfo::TruncatingWord32(), |
| access.machine_type.representation()); |
| return; |
| } |
| case IrOpcode::kStoreElement: { |
| ElementAccess access = ElementAccessOf(node->op()); |
| Node* value_node = node->InputAt(2); |
| NodeInfo* input_info = GetInfo(value_node); |
| MachineRepresentation element_representation = |
| access.machine_type.representation(); |
| |
| WriteBarrierKind write_barrier_kind = WriteBarrierKindFor( |
| access.base_is_tagged, element_representation, access.type, |
| input_info->representation(), value_node); |
| ProcessInput(node, 0, UseInfoForBasePointer(access)); // base |
| ProcessInput(node, 1, UseInfo::TruncatingWord32()); // index |
| ProcessInput(node, 2, |
| TruncatingUseInfoFromRepresentation( |
| element_representation)); // value |
| ProcessRemainingInputs(node, 3); |
| SetOutput(node, MachineRepresentation::kNone); |
| if (lower()) { |
| if (write_barrier_kind < access.write_barrier_kind) { |
| access.write_barrier_kind = write_barrier_kind; |
| NodeProperties::ChangeOp( |
| node, jsgraph_->simplified()->StoreElement(access)); |
| } |
| } |
| return; |
| } |
| case IrOpcode::kNumberIsFloat64Hole: { |
| VisitUnop(node, UseInfo::TruncatingFloat64(), |
| MachineRepresentation::kBit); |
| return; |
| } |
| case IrOpcode::kTransitionAndStoreElement: { |
| Type* value_type = TypeOf(node->InputAt(2)); |
| |
| ProcessInput(node, 0, UseInfo::AnyTagged()); // array |
| ProcessInput(node, 1, UseInfo::TruncatingWord32()); // index |
| |
| if (value_type->Is(Type::SignedSmall |