| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <iomanip> |
| |
| #include "src/compiler/types.h" |
| |
| #include "src/handles-inl.h" |
| #include "src/objects-inl.h" |
| #include "src/ostreams.h" |
| |
| namespace v8 { |
| namespace internal { |
| namespace compiler { |
| |
| // NOTE: If code is marked as being a "shortcut", this means that removing |
| // the code won't affect the semantics of the surrounding function definition. |
| |
| // static |
| bool Type::IsInteger(i::Object* x) { |
| return x->IsNumber() && Type::IsInteger(x->Number()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Range-related helper functions. |
| |
| bool RangeType::Limits::IsEmpty() { return this->min > this->max; } |
| |
| RangeType::Limits RangeType::Limits::Intersect(Limits lhs, Limits rhs) { |
| DisallowHeapAllocation no_allocation; |
| Limits result(lhs); |
| if (lhs.min < rhs.min) result.min = rhs.min; |
| if (lhs.max > rhs.max) result.max = rhs.max; |
| return result; |
| } |
| |
| RangeType::Limits RangeType::Limits::Union(Limits lhs, Limits rhs) { |
| DisallowHeapAllocation no_allocation; |
| if (lhs.IsEmpty()) return rhs; |
| if (rhs.IsEmpty()) return lhs; |
| Limits result(lhs); |
| if (lhs.min > rhs.min) result.min = rhs.min; |
| if (lhs.max < rhs.max) result.max = rhs.max; |
| return result; |
| } |
| |
| bool Type::Overlap(RangeType* lhs, RangeType* rhs) { |
| DisallowHeapAllocation no_allocation; |
| return !RangeType::Limits::Intersect(RangeType::Limits(lhs), |
| RangeType::Limits(rhs)) |
| .IsEmpty(); |
| } |
| |
| bool Type::Contains(RangeType* lhs, RangeType* rhs) { |
| DisallowHeapAllocation no_allocation; |
| return lhs->Min() <= rhs->Min() && rhs->Max() <= lhs->Max(); |
| } |
| |
| bool Type::Contains(RangeType* range, i::Object* val) { |
| DisallowHeapAllocation no_allocation; |
| return IsInteger(val) && range->Min() <= val->Number() && |
| val->Number() <= range->Max(); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Min and Max computation. |
| |
| double Type::Min() { |
| DCHECK(this->Is(Number())); |
| DCHECK(!this->Is(NaN())); |
| if (this->IsBitset()) return BitsetType::Min(this->AsBitset()); |
| if (this->IsUnion()) { |
| double min = +V8_INFINITY; |
| for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) { |
| min = std::min(min, this->AsUnion()->Get(i)->Min()); |
| } |
| Type* bitset = this->AsUnion()->Get(0); |
| if (!bitset->Is(NaN())) min = std::min(min, bitset->Min()); |
| return min; |
| } |
| if (this->IsRange()) return this->AsRange()->Min(); |
| DCHECK(this->IsOtherNumberConstant()); |
| return this->AsOtherNumberConstant()->Value(); |
| } |
| |
| double Type::Max() { |
| DCHECK(this->Is(Number())); |
| DCHECK(!this->Is(NaN())); |
| if (this->IsBitset()) return BitsetType::Max(this->AsBitset()); |
| if (this->IsUnion()) { |
| double max = -V8_INFINITY; |
| for (int i = 1, n = this->AsUnion()->Length(); i < n; ++i) { |
| max = std::max(max, this->AsUnion()->Get(i)->Max()); |
| } |
| Type* bitset = this->AsUnion()->Get(0); |
| if (!bitset->Is(NaN())) max = std::max(max, bitset->Max()); |
| return max; |
| } |
| if (this->IsRange()) return this->AsRange()->Max(); |
| DCHECK(this->IsOtherNumberConstant()); |
| return this->AsOtherNumberConstant()->Value(); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Glb and lub computation. |
| |
| // The largest bitset subsumed by this type. |
| Type::bitset BitsetType::Glb(Type* type) { |
| DisallowHeapAllocation no_allocation; |
| // Fast case. |
| if (IsBitset(type)) { |
| return type->AsBitset(); |
| } else if (type->IsUnion()) { |
| SLOW_DCHECK(type->AsUnion()->Wellformed()); |
| return type->AsUnion()->Get(0)->BitsetGlb() | |
| type->AsUnion()->Get(1)->BitsetGlb(); // Shortcut. |
| } else if (type->IsRange()) { |
| bitset glb = |
| BitsetType::Glb(type->AsRange()->Min(), type->AsRange()->Max()); |
| return glb; |
| } else { |
| return kNone; |
| } |
| } |
| |
| // The smallest bitset subsuming this type, possibly not a proper one. |
| Type::bitset BitsetType::Lub(Type* type) { |
| DisallowHeapAllocation no_allocation; |
| if (IsBitset(type)) return type->AsBitset(); |
| if (type->IsUnion()) { |
| // Take the representation from the first element, which is always |
| // a bitset. |
| int bitset = type->AsUnion()->Get(0)->BitsetLub(); |
| for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { |
| // Other elements only contribute their semantic part. |
| bitset |= type->AsUnion()->Get(i)->BitsetLub(); |
| } |
| return bitset; |
| } |
| if (type->IsHeapConstant()) return type->AsHeapConstant()->Lub(); |
| if (type->IsOtherNumberConstant()) |
| return type->AsOtherNumberConstant()->Lub(); |
| if (type->IsRange()) return type->AsRange()->Lub(); |
| if (type->IsTuple()) return kOtherInternal; |
| UNREACHABLE(); |
| } |
| |
| Type::bitset BitsetType::Lub(i::Map* map) { |
| DisallowHeapAllocation no_allocation; |
| switch (map->instance_type()) { |
| case CONS_STRING_TYPE: |
| case CONS_ONE_BYTE_STRING_TYPE: |
| case THIN_STRING_TYPE: |
| case THIN_ONE_BYTE_STRING_TYPE: |
| case SLICED_STRING_TYPE: |
| case SLICED_ONE_BYTE_STRING_TYPE: |
| case EXTERNAL_STRING_TYPE: |
| case EXTERNAL_ONE_BYTE_STRING_TYPE: |
| case EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: |
| case SHORT_EXTERNAL_STRING_TYPE: |
| case SHORT_EXTERNAL_ONE_BYTE_STRING_TYPE: |
| case SHORT_EXTERNAL_STRING_WITH_ONE_BYTE_DATA_TYPE: |
| return kOtherNonSeqString; |
| case STRING_TYPE: |
| case ONE_BYTE_STRING_TYPE: |
| return kOtherSeqString; |
| case EXTERNAL_INTERNALIZED_STRING_TYPE: |
| case EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: |
| case EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: |
| case SHORT_EXTERNAL_INTERNALIZED_STRING_TYPE: |
| case SHORT_EXTERNAL_ONE_BYTE_INTERNALIZED_STRING_TYPE: |
| case SHORT_EXTERNAL_INTERNALIZED_STRING_WITH_ONE_BYTE_DATA_TYPE: |
| return kInternalizedNonSeqString; |
| case INTERNALIZED_STRING_TYPE: |
| case ONE_BYTE_INTERNALIZED_STRING_TYPE: |
| return kInternalizedSeqString; |
| case SYMBOL_TYPE: |
| return kSymbol; |
| case BIGINT_TYPE: |
| return kBigInt; |
| case ODDBALL_TYPE: { |
| Heap* heap = map->GetHeap(); |
| if (map == heap->undefined_map()) return kUndefined; |
| if (map == heap->null_map()) return kNull; |
| if (map == heap->boolean_map()) return kBoolean; |
| if (map == heap->the_hole_map()) return kHole; |
| DCHECK(map == heap->uninitialized_map() || |
| map == heap->termination_exception_map() || |
| map == heap->arguments_marker_map() || |
| map == heap->optimized_out_map() || |
| map == heap->stale_register_map()); |
| return kOtherInternal; |
| } |
| case HEAP_NUMBER_TYPE: |
| return kNumber; |
| case JS_OBJECT_TYPE: |
| case JS_ARGUMENTS_TYPE: |
| case JS_ERROR_TYPE: |
| case JS_GLOBAL_OBJECT_TYPE: |
| case JS_GLOBAL_PROXY_TYPE: |
| case JS_API_OBJECT_TYPE: |
| case JS_SPECIAL_API_OBJECT_TYPE: |
| if (map->is_undetectable()) { |
| // Currently we assume that every undetectable receiver is also |
| // callable, which is what we need to support document.all. We |
| // could add another Type bit to support other use cases in the |
| // future if necessary. |
| DCHECK(map->is_callable()); |
| return kOtherUndetectable; |
| } |
| if (map->is_callable()) { |
| return kOtherCallable; |
| } |
| return kOtherObject; |
| case JS_ARRAY_TYPE: |
| return kArray; |
| case JS_VALUE_TYPE: |
| case JS_MESSAGE_OBJECT_TYPE: |
| case JS_DATE_TYPE: |
| case JS_CONTEXT_EXTENSION_OBJECT_TYPE: |
| case JS_GENERATOR_OBJECT_TYPE: |
| case JS_ASYNC_GENERATOR_OBJECT_TYPE: |
| case JS_MODULE_NAMESPACE_TYPE: |
| case JS_ARRAY_BUFFER_TYPE: |
| case JS_REGEXP_TYPE: // TODO(rossberg): there should be a RegExp type. |
| case JS_TYPED_ARRAY_TYPE: |
| case JS_DATA_VIEW_TYPE: |
| case JS_SET_TYPE: |
| case JS_MAP_TYPE: |
| case JS_SET_KEY_VALUE_ITERATOR_TYPE: |
| case JS_SET_VALUE_ITERATOR_TYPE: |
| case JS_MAP_KEY_ITERATOR_TYPE: |
| case JS_MAP_KEY_VALUE_ITERATOR_TYPE: |
| case JS_MAP_VALUE_ITERATOR_TYPE: |
| case JS_STRING_ITERATOR_TYPE: |
| case JS_ASYNC_FROM_SYNC_ITERATOR_TYPE: |
| |
| #define ARRAY_ITERATOR_CASE(type) case type: |
| ARRAY_ITERATOR_TYPE_LIST(ARRAY_ITERATOR_CASE) |
| #undef ARRAY_ITERATOR_CASE |
| |
| case JS_WEAK_MAP_TYPE: |
| case JS_WEAK_SET_TYPE: |
| case JS_PROMISE_TYPE: |
| case WASM_MODULE_TYPE: |
| case WASM_INSTANCE_TYPE: |
| case WASM_MEMORY_TYPE: |
| case WASM_TABLE_TYPE: |
| DCHECK(!map->is_callable()); |
| DCHECK(!map->is_undetectable()); |
| return kOtherObject; |
| case JS_BOUND_FUNCTION_TYPE: |
| DCHECK(!map->is_undetectable()); |
| return kBoundFunction; |
| case JS_FUNCTION_TYPE: |
| DCHECK(!map->is_undetectable()); |
| return kFunction; |
| case JS_PROXY_TYPE: |
| DCHECK(!map->is_undetectable()); |
| if (map->is_callable()) return kCallableProxy; |
| return kOtherProxy; |
| case MAP_TYPE: |
| case ALLOCATION_SITE_TYPE: |
| case ACCESSOR_INFO_TYPE: |
| case SHARED_FUNCTION_INFO_TYPE: |
| case FUNCTION_TEMPLATE_INFO_TYPE: |
| case ACCESSOR_PAIR_TYPE: |
| case FIXED_ARRAY_TYPE: |
| case HASH_TABLE_TYPE: |
| case FIXED_DOUBLE_ARRAY_TYPE: |
| case BYTE_ARRAY_TYPE: |
| case BYTECODE_ARRAY_TYPE: |
| case DESCRIPTOR_ARRAY_TYPE: |
| case TRANSITION_ARRAY_TYPE: |
| case FEEDBACK_VECTOR_TYPE: |
| case PROPERTY_ARRAY_TYPE: |
| case FOREIGN_TYPE: |
| case SCRIPT_TYPE: |
| case CODE_TYPE: |
| case PROPERTY_CELL_TYPE: |
| case MODULE_TYPE: |
| case MODULE_INFO_ENTRY_TYPE: |
| case CELL_TYPE: |
| return kOtherInternal; |
| |
| // Remaining instance types are unsupported for now. If any of them do |
| // require bit set types, they should get kOtherInternal. |
| case MUTABLE_HEAP_NUMBER_TYPE: |
| case FREE_SPACE_TYPE: |
| #define FIXED_TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \ |
| case FIXED_##TYPE##_ARRAY_TYPE: |
| |
| TYPED_ARRAYS(FIXED_TYPED_ARRAY_CASE) |
| #undef FIXED_TYPED_ARRAY_CASE |
| case FILLER_TYPE: |
| case ACCESS_CHECK_INFO_TYPE: |
| case INTERCEPTOR_INFO_TYPE: |
| case OBJECT_TEMPLATE_INFO_TYPE: |
| case ALLOCATION_MEMENTO_TYPE: |
| case ALIASED_ARGUMENTS_ENTRY_TYPE: |
| case PROMISE_RESOLVE_THENABLE_JOB_INFO_TYPE: |
| case PROMISE_REACTION_JOB_INFO_TYPE: |
| case DEBUG_INFO_TYPE: |
| case STACK_FRAME_INFO_TYPE: |
| case WEAK_CELL_TYPE: |
| case SMALL_ORDERED_HASH_MAP_TYPE: |
| case SMALL_ORDERED_HASH_SET_TYPE: |
| case PROTOTYPE_INFO_TYPE: |
| case TUPLE2_TYPE: |
| case TUPLE3_TYPE: |
| case LOAD_HANDLER_TYPE: |
| case STORE_HANDLER_TYPE: |
| case CONTEXT_EXTENSION_TYPE: |
| case ASYNC_GENERATOR_REQUEST_TYPE: |
| case CODE_DATA_CONTAINER_TYPE: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| Type::bitset BitsetType::Lub(i::Object* value) { |
| DisallowHeapAllocation no_allocation; |
| if (value->IsNumber()) { |
| return Lub(value->Number()); |
| } |
| return Lub(i::HeapObject::cast(value)->map()); |
| } |
| |
| Type::bitset BitsetType::Lub(double value) { |
| DisallowHeapAllocation no_allocation; |
| if (i::IsMinusZero(value)) return kMinusZero; |
| if (std::isnan(value)) return kNaN; |
| if (IsUint32Double(value) || IsInt32Double(value)) return Lub(value, value); |
| return kOtherNumber; |
| } |
| |
| // Minimum values of plain numeric bitsets. |
| const BitsetType::Boundary BitsetType::BoundariesArray[] = { |
| {kOtherNumber, kPlainNumber, -V8_INFINITY}, |
| {kOtherSigned32, kNegative32, kMinInt}, |
| {kNegative31, kNegative31, -0x40000000}, |
| {kUnsigned30, kUnsigned30, 0}, |
| {kOtherUnsigned31, kUnsigned31, 0x40000000}, |
| {kOtherUnsigned32, kUnsigned32, 0x80000000}, |
| {kOtherNumber, kPlainNumber, static_cast<double>(kMaxUInt32) + 1}}; |
| |
| const BitsetType::Boundary* BitsetType::Boundaries() { return BoundariesArray; } |
| |
| size_t BitsetType::BoundariesSize() { |
| // Windows doesn't like arraysize here. |
| // return arraysize(BoundariesArray); |
| return 7; |
| } |
| |
| Type::bitset BitsetType::ExpandInternals(Type::bitset bits) { |
| DisallowHeapAllocation no_allocation; |
| if (!(bits & kPlainNumber)) return bits; // Shortcut. |
| const Boundary* boundaries = Boundaries(); |
| for (size_t i = 0; i < BoundariesSize(); ++i) { |
| DCHECK(BitsetType::Is(boundaries[i].internal, boundaries[i].external)); |
| if (bits & boundaries[i].internal) bits |= boundaries[i].external; |
| } |
| return bits; |
| } |
| |
| Type::bitset BitsetType::Lub(double min, double max) { |
| DisallowHeapAllocation no_allocation; |
| int lub = kNone; |
| const Boundary* mins = Boundaries(); |
| |
| for (size_t i = 1; i < BoundariesSize(); ++i) { |
| if (min < mins[i].min) { |
| lub |= mins[i - 1].internal; |
| if (max < mins[i].min) return lub; |
| } |
| } |
| return lub | mins[BoundariesSize() - 1].internal; |
| } |
| |
| Type::bitset BitsetType::NumberBits(bitset bits) { return bits & kPlainNumber; } |
| |
| Type::bitset BitsetType::Glb(double min, double max) { |
| DisallowHeapAllocation no_allocation; |
| int glb = kNone; |
| const Boundary* mins = Boundaries(); |
| |
| // If the range does not touch 0, the bound is empty. |
| if (max < -1 || min > 0) return glb; |
| |
| for (size_t i = 1; i + 1 < BoundariesSize(); ++i) { |
| if (min <= mins[i].min) { |
| if (max + 1 < mins[i + 1].min) break; |
| glb |= mins[i].external; |
| } |
| } |
| // OtherNumber also contains float numbers, so it can never be |
| // in the greatest lower bound. |
| return glb & ~(kOtherNumber); |
| } |
| |
| double BitsetType::Min(bitset bits) { |
| DisallowHeapAllocation no_allocation; |
| DCHECK(Is(bits, kNumber)); |
| DCHECK(!Is(bits, kNaN)); |
| const Boundary* mins = Boundaries(); |
| bool mz = bits & kMinusZero; |
| for (size_t i = 0; i < BoundariesSize(); ++i) { |
| if (Is(mins[i].internal, bits)) { |
| return mz ? std::min(0.0, mins[i].min) : mins[i].min; |
| } |
| } |
| DCHECK(mz); |
| return 0; |
| } |
| |
| double BitsetType::Max(bitset bits) { |
| DisallowHeapAllocation no_allocation; |
| DCHECK(Is(bits, kNumber)); |
| DCHECK(!Is(bits, kNaN)); |
| const Boundary* mins = Boundaries(); |
| bool mz = bits & kMinusZero; |
| if (BitsetType::Is(mins[BoundariesSize() - 1].internal, bits)) { |
| return +V8_INFINITY; |
| } |
| for (size_t i = BoundariesSize() - 1; i-- > 0;) { |
| if (Is(mins[i].internal, bits)) { |
| return mz ? std::max(0.0, mins[i + 1].min - 1) : mins[i + 1].min - 1; |
| } |
| } |
| DCHECK(mz); |
| return 0; |
| } |
| |
| // static |
| bool OtherNumberConstantType::IsOtherNumberConstant(double value) { |
| // Not an integer, not NaN, and not -0. |
| return !std::isnan(value) && !Type::IsInteger(value) && |
| !i::IsMinusZero(value); |
| } |
| |
| // static |
| bool OtherNumberConstantType::IsOtherNumberConstant(Object* value) { |
| return value->IsHeapNumber() && |
| IsOtherNumberConstant(HeapNumber::cast(value)->value()); |
| } |
| |
| HeapConstantType::HeapConstantType(BitsetType::bitset bitset, |
| i::Handle<i::HeapObject> object) |
| : TypeBase(kHeapConstant), bitset_(bitset), object_(object) { |
| DCHECK(!object->IsHeapNumber()); |
| DCHECK_IMPLIES(object->IsString(), object->IsInternalizedString()); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Predicates. |
| |
| bool Type::SimplyEquals(Type* that) { |
| DisallowHeapAllocation no_allocation; |
| if (this->IsHeapConstant()) { |
| return that->IsHeapConstant() && |
| this->AsHeapConstant()->Value().address() == |
| that->AsHeapConstant()->Value().address(); |
| } |
| if (this->IsOtherNumberConstant()) { |
| return that->IsOtherNumberConstant() && |
| this->AsOtherNumberConstant()->Value() == |
| that->AsOtherNumberConstant()->Value(); |
| } |
| if (this->IsRange()) { |
| if (that->IsHeapConstant() || that->IsOtherNumberConstant()) return false; |
| } |
| if (this->IsTuple()) { |
| if (!that->IsTuple()) return false; |
| TupleType* this_tuple = this->AsTuple(); |
| TupleType* that_tuple = that->AsTuple(); |
| if (this_tuple->Arity() != that_tuple->Arity()) { |
| return false; |
| } |
| for (int i = 0, n = this_tuple->Arity(); i < n; ++i) { |
| if (!this_tuple->Element(i)->Equals(that_tuple->Element(i))) return false; |
| } |
| return true; |
| } |
| UNREACHABLE(); |
| } |
| |
| // Check if [this] <= [that]. |
| bool Type::SlowIs(Type* that) { |
| DisallowHeapAllocation no_allocation; |
| |
| // Fast bitset cases |
| if (that->IsBitset()) { |
| return BitsetType::Is(this->BitsetLub(), that->AsBitset()); |
| } |
| |
| if (this->IsBitset()) { |
| return BitsetType::Is(this->AsBitset(), that->BitsetGlb()); |
| } |
| |
| // (T1 \/ ... \/ Tn) <= T if (T1 <= T) /\ ... /\ (Tn <= T) |
| if (this->IsUnion()) { |
| for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { |
| if (!this->AsUnion()->Get(i)->Is(that)) return false; |
| } |
| return true; |
| } |
| |
| // T <= (T1 \/ ... \/ Tn) if (T <= T1) \/ ... \/ (T <= Tn) |
| if (that->IsUnion()) { |
| for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { |
| if (this->Is(that->AsUnion()->Get(i))) return true; |
| if (i > 1 && this->IsRange()) return false; // Shortcut. |
| } |
| return false; |
| } |
| |
| if (that->IsRange()) { |
| return (this->IsRange() && Contains(that->AsRange(), this->AsRange())); |
| } |
| if (this->IsRange()) return false; |
| |
| return this->SimplyEquals(that); |
| } |
| |
| // Check if [this] and [that] overlap. |
| bool Type::Maybe(Type* that) { |
| DisallowHeapAllocation no_allocation; |
| |
| if (BitsetType::IsNone(this->BitsetLub() & that->BitsetLub())) return false; |
| |
| // (T1 \/ ... \/ Tn) overlaps T if (T1 overlaps T) \/ ... \/ (Tn overlaps T) |
| if (this->IsUnion()) { |
| for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { |
| if (this->AsUnion()->Get(i)->Maybe(that)) return true; |
| } |
| return false; |
| } |
| |
| // T overlaps (T1 \/ ... \/ Tn) if (T overlaps T1) \/ ... \/ (T overlaps Tn) |
| if (that->IsUnion()) { |
| for (int i = 0, n = that->AsUnion()->Length(); i < n; ++i) { |
| if (this->Maybe(that->AsUnion()->Get(i))) return true; |
| } |
| return false; |
| } |
| |
| if (this->IsBitset() && that->IsBitset()) return true; |
| |
| if (this->IsRange()) { |
| if (that->IsRange()) { |
| return Overlap(this->AsRange(), that->AsRange()); |
| } |
| if (that->IsBitset()) { |
| bitset number_bits = BitsetType::NumberBits(that->AsBitset()); |
| if (number_bits == BitsetType::kNone) { |
| return false; |
| } |
| double min = std::max(BitsetType::Min(number_bits), this->Min()); |
| double max = std::min(BitsetType::Max(number_bits), this->Max()); |
| return min <= max; |
| } |
| } |
| if (that->IsRange()) { |
| return that->Maybe(this); // This case is handled above. |
| } |
| |
| if (this->IsBitset() || that->IsBitset()) return true; |
| |
| return this->SimplyEquals(that); |
| } |
| |
| // Return the range in [this], or [nullptr]. |
| Type* Type::GetRange() { |
| DisallowHeapAllocation no_allocation; |
| if (this->IsRange()) return this; |
| if (this->IsUnion() && this->AsUnion()->Get(1)->IsRange()) { |
| return this->AsUnion()->Get(1); |
| } |
| return nullptr; |
| } |
| |
| bool UnionType::Wellformed() { |
| DisallowHeapAllocation no_allocation; |
| // This checks the invariants of the union representation: |
| // 1. There are at least two elements. |
| // 2. The first element is a bitset, no other element is a bitset. |
| // 3. At most one element is a range, and it must be the second one. |
| // 4. No element is itself a union. |
| // 5. No element (except the bitset) is a subtype of any other. |
| // 6. If there is a range, then the bitset type does not contain |
| // plain number bits. |
| DCHECK_LE(2, this->Length()); // (1) |
| DCHECK(this->Get(0)->IsBitset()); // (2a) |
| |
| for (int i = 0; i < this->Length(); ++i) { |
| if (i != 0) DCHECK(!this->Get(i)->IsBitset()); // (2b) |
| if (i != 1) DCHECK(!this->Get(i)->IsRange()); // (3) |
| DCHECK(!this->Get(i)->IsUnion()); // (4) |
| for (int j = 0; j < this->Length(); ++j) { |
| if (i != j && i != 0) DCHECK(!this->Get(i)->Is(this->Get(j))); // (5) |
| } |
| } |
| DCHECK(!this->Get(1)->IsRange() || |
| (BitsetType::NumberBits(this->Get(0)->AsBitset()) == |
| BitsetType::kNone)); // (6) |
| return true; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Union and intersection |
| |
| static bool AddIsSafe(int x, int y) { |
| return x >= 0 ? y <= std::numeric_limits<int>::max() - x |
| : y >= std::numeric_limits<int>::min() - x; |
| } |
| |
| Type* Type::Intersect(Type* type1, Type* type2, Zone* zone) { |
| // Fast case: bit sets. |
| if (type1->IsBitset() && type2->IsBitset()) { |
| return BitsetType::New(type1->AsBitset() & type2->AsBitset()); |
| } |
| |
| // Fast case: top or bottom types. |
| if (type1->IsNone() || type2->IsAny()) return type1; // Shortcut. |
| if (type2->IsNone() || type1->IsAny()) return type2; // Shortcut. |
| |
| // Semi-fast case. |
| if (type1->Is(type2)) return type1; |
| if (type2->Is(type1)) return type2; |
| |
| // Slow case: create union. |
| |
| // Semantic subtyping check - this is needed for consistency with the |
| // semi-fast case above. |
| if (type1->Is(type2)) { |
| type2 = Any(); |
| } else if (type2->Is(type1)) { |
| type1 = Any(); |
| } |
| |
| bitset bits = type1->BitsetGlb() & type2->BitsetGlb(); |
| int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; |
| int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; |
| if (!AddIsSafe(size1, size2)) return Any(); |
| int size = size1 + size2; |
| if (!AddIsSafe(size, 2)) return Any(); |
| size += 2; |
| Type* result_type = UnionType::New(size, zone); |
| UnionType* result = result_type->AsUnion(); |
| size = 0; |
| |
| // Deal with bitsets. |
| result->Set(size++, BitsetType::New(bits)); |
| |
| RangeType::Limits lims = RangeType::Limits::Empty(); |
| size = IntersectAux(type1, type2, result, size, &lims, zone); |
| |
| // If the range is not empty, then insert it into the union and |
| // remove the number bits from the bitset. |
| if (!lims.IsEmpty()) { |
| size = UpdateRange(RangeType::New(lims, zone), result, size, zone); |
| |
| // Remove the number bits. |
| bitset number_bits = BitsetType::NumberBits(bits); |
| bits &= ~number_bits; |
| result->Set(0, BitsetType::New(bits)); |
| } |
| return NormalizeUnion(result_type, size, zone); |
| } |
| |
| int Type::UpdateRange(Type* range, UnionType* result, int size, Zone* zone) { |
| if (size == 1) { |
| result->Set(size++, range); |
| } else { |
| // Make space for the range. |
| result->Set(size++, result->Get(1)); |
| result->Set(1, range); |
| } |
| |
| // Remove any components that just got subsumed. |
| for (int i = 2; i < size;) { |
| if (result->Get(i)->Is(range)) { |
| result->Set(i, result->Get(--size)); |
| } else { |
| ++i; |
| } |
| } |
| return size; |
| } |
| |
| RangeType::Limits Type::ToLimits(bitset bits, Zone* zone) { |
| bitset number_bits = BitsetType::NumberBits(bits); |
| |
| if (number_bits == BitsetType::kNone) { |
| return RangeType::Limits::Empty(); |
| } |
| |
| return RangeType::Limits(BitsetType::Min(number_bits), |
| BitsetType::Max(number_bits)); |
| } |
| |
| RangeType::Limits Type::IntersectRangeAndBitset(Type* range, Type* bitset, |
| Zone* zone) { |
| RangeType::Limits range_lims(range->AsRange()); |
| RangeType::Limits bitset_lims = ToLimits(bitset->AsBitset(), zone); |
| return RangeType::Limits::Intersect(range_lims, bitset_lims); |
| } |
| |
| int Type::IntersectAux(Type* lhs, Type* rhs, UnionType* result, int size, |
| RangeType::Limits* lims, Zone* zone) { |
| if (lhs->IsUnion()) { |
| for (int i = 0, n = lhs->AsUnion()->Length(); i < n; ++i) { |
| size = |
| IntersectAux(lhs->AsUnion()->Get(i), rhs, result, size, lims, zone); |
| } |
| return size; |
| } |
| if (rhs->IsUnion()) { |
| for (int i = 0, n = rhs->AsUnion()->Length(); i < n; ++i) { |
| size = |
| IntersectAux(lhs, rhs->AsUnion()->Get(i), result, size, lims, zone); |
| } |
| return size; |
| } |
| |
| if (BitsetType::IsNone(lhs->BitsetLub() & rhs->BitsetLub())) return size; |
| |
| if (lhs->IsRange()) { |
| if (rhs->IsBitset()) { |
| RangeType::Limits lim = IntersectRangeAndBitset(lhs, rhs, zone); |
| |
| if (!lim.IsEmpty()) { |
| *lims = RangeType::Limits::Union(lim, *lims); |
| } |
| return size; |
| } |
| if (rhs->IsRange()) { |
| RangeType::Limits lim = RangeType::Limits::Intersect( |
| RangeType::Limits(lhs->AsRange()), RangeType::Limits(rhs->AsRange())); |
| if (!lim.IsEmpty()) { |
| *lims = RangeType::Limits::Union(lim, *lims); |
| } |
| } |
| return size; |
| } |
| if (rhs->IsRange()) { |
| // This case is handled symmetrically above. |
| return IntersectAux(rhs, lhs, result, size, lims, zone); |
| } |
| if (lhs->IsBitset() || rhs->IsBitset()) { |
| return AddToUnion(lhs->IsBitset() ? rhs : lhs, result, size, zone); |
| } |
| if (lhs->SimplyEquals(rhs)) { |
| return AddToUnion(lhs, result, size, zone); |
| } |
| return size; |
| } |
| |
| // Make sure that we produce a well-formed range and bitset: |
| // If the range is non-empty, the number bits in the bitset should be |
| // clear. Moreover, if we have a canonical range (such as Signed32), |
| // we want to produce a bitset rather than a range. |
| Type* Type::NormalizeRangeAndBitset(Type* range, bitset* bits, Zone* zone) { |
| // Fast path: If the bitset does not mention numbers, we can just keep the |
| // range. |
| bitset number_bits = BitsetType::NumberBits(*bits); |
| if (number_bits == 0) { |
| return range; |
| } |
| |
| // If the range is semantically contained within the bitset, return None and |
| // leave the bitset untouched. |
| bitset range_lub = range->BitsetLub(); |
| if (BitsetType::Is(range_lub, *bits)) { |
| return None(); |
| } |
| |
| // Slow path: reconcile the bitset range and the range. |
| double bitset_min = BitsetType::Min(number_bits); |
| double bitset_max = BitsetType::Max(number_bits); |
| |
| double range_min = range->Min(); |
| double range_max = range->Max(); |
| |
| // Remove the number bits from the bitset, they would just confuse us now. |
| // NOTE: bits contains OtherNumber iff bits contains PlainNumber, in which |
| // case we already returned after the subtype check above. |
| *bits &= ~number_bits; |
| |
| if (range_min <= bitset_min && range_max >= bitset_max) { |
| // Bitset is contained within the range, just return the range. |
| return range; |
| } |
| |
| if (bitset_min < range_min) { |
| range_min = bitset_min; |
| } |
| if (bitset_max > range_max) { |
| range_max = bitset_max; |
| } |
| return RangeType::New(range_min, range_max, zone); |
| } |
| |
| Type* Type::NewConstant(double value, Zone* zone) { |
| if (IsInteger(value)) { |
| return Range(value, value, zone); |
| } else if (i::IsMinusZero(value)) { |
| return Type::MinusZero(); |
| } else if (std::isnan(value)) { |
| return Type::NaN(); |
| } |
| |
| DCHECK(OtherNumberConstantType::IsOtherNumberConstant(value)); |
| return OtherNumberConstant(value, zone); |
| } |
| |
| Type* Type::NewConstant(i::Handle<i::Object> value, Zone* zone) { |
| if (IsInteger(*value)) { |
| double v = value->Number(); |
| return Range(v, v, zone); |
| } else if (value->IsHeapNumber()) { |
| return NewConstant(value->Number(), zone); |
| } else if (value->IsString() && !value->IsInternalizedString()) { |
| return Type::OtherString(); |
| } |
| return HeapConstant(i::Handle<i::HeapObject>::cast(value), zone); |
| } |
| |
| Type* Type::Union(Type* type1, Type* type2, Zone* zone) { |
| // Fast case: bit sets. |
| if (type1->IsBitset() && type2->IsBitset()) { |
| return BitsetType::New(type1->AsBitset() | type2->AsBitset()); |
| } |
| |
| // Fast case: top or bottom types. |
| if (type1->IsAny() || type2->IsNone()) return type1; |
| if (type2->IsAny() || type1->IsNone()) return type2; |
| |
| // Semi-fast case. |
| if (type1->Is(type2)) return type2; |
| if (type2->Is(type1)) return type1; |
| |
| // Slow case: create union. |
| int size1 = type1->IsUnion() ? type1->AsUnion()->Length() : 1; |
| int size2 = type2->IsUnion() ? type2->AsUnion()->Length() : 1; |
| if (!AddIsSafe(size1, size2)) return Any(); |
| int size = size1 + size2; |
| if (!AddIsSafe(size, 2)) return Any(); |
| size += 2; |
| Type* result_type = UnionType::New(size, zone); |
| UnionType* result = result_type->AsUnion(); |
| size = 0; |
| |
| // Compute the new bitset. |
| bitset new_bitset = type1->BitsetGlb() | type2->BitsetGlb(); |
| |
| // Deal with ranges. |
| Type* range = None(); |
| Type* range1 = type1->GetRange(); |
| Type* range2 = type2->GetRange(); |
| if (range1 != nullptr && range2 != nullptr) { |
| RangeType::Limits lims = |
| RangeType::Limits::Union(RangeType::Limits(range1->AsRange()), |
| RangeType::Limits(range2->AsRange())); |
| Type* union_range = RangeType::New(lims, zone); |
| range = NormalizeRangeAndBitset(union_range, &new_bitset, zone); |
| } else if (range1 != nullptr) { |
| range = NormalizeRangeAndBitset(range1, &new_bitset, zone); |
| } else if (range2 != nullptr) { |
| range = NormalizeRangeAndBitset(range2, &new_bitset, zone); |
| } |
| Type* bits = BitsetType::New(new_bitset); |
| result->Set(size++, bits); |
| if (!range->IsNone()) result->Set(size++, range); |
| |
| size = AddToUnion(type1, result, size, zone); |
| size = AddToUnion(type2, result, size, zone); |
| return NormalizeUnion(result_type, size, zone); |
| } |
| |
| // Add [type] to [result] unless [type] is bitset, range, or already subsumed. |
| // Return new size of [result]. |
| int Type::AddToUnion(Type* type, UnionType* result, int size, Zone* zone) { |
| if (type->IsBitset() || type->IsRange()) return size; |
| if (type->IsUnion()) { |
| for (int i = 0, n = type->AsUnion()->Length(); i < n; ++i) { |
| size = AddToUnion(type->AsUnion()->Get(i), result, size, zone); |
| } |
| return size; |
| } |
| for (int i = 0; i < size; ++i) { |
| if (type->Is(result->Get(i))) return size; |
| } |
| result->Set(size++, type); |
| return size; |
| } |
| |
| Type* Type::NormalizeUnion(Type* union_type, int size, Zone* zone) { |
| UnionType* unioned = union_type->AsUnion(); |
| DCHECK_LE(1, size); |
| DCHECK(unioned->Get(0)->IsBitset()); |
| // If the union has just one element, return it. |
| if (size == 1) { |
| return unioned->Get(0); |
| } |
| bitset bits = unioned->Get(0)->AsBitset(); |
| // If the union only consists of a range, we can get rid of the union. |
| if (size == 2 && bits == BitsetType::kNone) { |
| if (unioned->Get(1)->IsRange()) { |
| return RangeType::New(unioned->Get(1)->AsRange()->Min(), |
| unioned->Get(1)->AsRange()->Max(), zone); |
| } |
| } |
| unioned->Shrink(size); |
| SLOW_DCHECK(unioned->Wellformed()); |
| return union_type; |
| } |
| |
| int Type::NumConstants() { |
| DisallowHeapAllocation no_allocation; |
| if (this->IsHeapConstant() || this->IsOtherNumberConstant()) { |
| return 1; |
| } else if (this->IsUnion()) { |
| int result = 0; |
| for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { |
| if (this->AsUnion()->Get(i)->IsHeapConstant()) ++result; |
| } |
| return result; |
| } else { |
| return 0; |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Printing. |
| |
| const char* BitsetType::Name(bitset bits) { |
| switch (bits) { |
| #define RETURN_NAMED_TYPE(type, value) \ |
| case k##type: \ |
| return #type; |
| PROPER_BITSET_TYPE_LIST(RETURN_NAMED_TYPE) |
| INTERNAL_BITSET_TYPE_LIST(RETURN_NAMED_TYPE) |
| #undef RETURN_NAMED_TYPE |
| |
| default: |
| return nullptr; |
| } |
| } |
| |
| void BitsetType::Print(std::ostream& os, // NOLINT |
| bitset bits) { |
| DisallowHeapAllocation no_allocation; |
| const char* name = Name(bits); |
| if (name != nullptr) { |
| os << name; |
| return; |
| } |
| |
| // clang-format off |
| static const bitset named_bitsets[] = { |
| #define BITSET_CONSTANT(type, value) k##type, |
| INTERNAL_BITSET_TYPE_LIST(BITSET_CONSTANT) |
| PROPER_BITSET_TYPE_LIST(BITSET_CONSTANT) |
| #undef BITSET_CONSTANT |
| }; |
| // clang-format on |
| |
| bool is_first = true; |
| os << "("; |
| for (int i(arraysize(named_bitsets) - 1); bits != 0 && i >= 0; --i) { |
| bitset subset = named_bitsets[i]; |
| if ((bits & subset) == subset) { |
| if (!is_first) os << " | "; |
| is_first = false; |
| os << Name(subset); |
| bits -= subset; |
| } |
| } |
| DCHECK_EQ(0, bits); |
| os << ")"; |
| } |
| |
| void Type::PrintTo(std::ostream& os) { |
| DisallowHeapAllocation no_allocation; |
| if (this->IsBitset()) { |
| BitsetType::Print(os, this->AsBitset()); |
| } else if (this->IsHeapConstant()) { |
| os << "HeapConstant(" << Brief(*this->AsHeapConstant()->Value()) << ")"; |
| } else if (this->IsOtherNumberConstant()) { |
| os << "OtherNumberConstant(" << this->AsOtherNumberConstant()->Value() |
| << ")"; |
| } else if (this->IsRange()) { |
| std::ostream::fmtflags saved_flags = os.setf(std::ios::fixed); |
| std::streamsize saved_precision = os.precision(0); |
| os << "Range(" << this->AsRange()->Min() << ", " << this->AsRange()->Max() |
| << ")"; |
| os.flags(saved_flags); |
| os.precision(saved_precision); |
| } else if (this->IsUnion()) { |
| os << "("; |
| for (int i = 0, n = this->AsUnion()->Length(); i < n; ++i) { |
| Type* type_i = this->AsUnion()->Get(i); |
| if (i > 0) os << " | "; |
| type_i->PrintTo(os); |
| } |
| os << ")"; |
| } else if (this->IsTuple()) { |
| os << "<"; |
| for (int i = 0, n = this->AsTuple()->Arity(); i < n; ++i) { |
| Type* type_i = this->AsTuple()->Element(i); |
| if (i > 0) os << ", "; |
| type_i->PrintTo(os); |
| } |
| os << ">"; |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| #ifdef DEBUG |
| void Type::Print() { |
| OFStream os(stdout); |
| PrintTo(os); |
| os << std::endl; |
| } |
| void BitsetType::Print(bitset bits) { |
| OFStream os(stdout); |
| Print(os, bits); |
| os << std::endl; |
| } |
| #endif |
| |
| BitsetType::bitset BitsetType::SignedSmall() { |
| return i::SmiValuesAre31Bits() ? kSigned31 : kSigned32; |
| } |
| |
| BitsetType::bitset BitsetType::UnsignedSmall() { |
| return i::SmiValuesAre31Bits() ? kUnsigned30 : kUnsigned31; |
| } |
| |
| } // namespace compiler |
| } // namespace internal |
| } // namespace v8 |