blob: d5a04ad933038f08ca2b7506072f38227f7fbe40 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/frames.h"
#include <memory>
#include <sstream>
#include "src/base/bits.h"
#include "src/deoptimizer.h"
#include "src/frames-inl.h"
#include "src/ic/ic-stats.h"
#include "src/register-configuration.h"
#include "src/safepoint-table.h"
#include "src/string-stream.h"
#include "src/visitors.h"
#include "src/vm-state-inl.h"
#include "src/wasm/wasm-code-manager.h"
#include "src/wasm/wasm-engine.h"
#include "src/wasm/wasm-objects-inl.h"
#include "src/zone/zone-containers.h"
namespace v8 {
namespace internal {
ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ =
nullptr;
// Iterator that supports traversing the stack handlers of a
// particular frame. Needs to know the top of the handler chain.
class StackHandlerIterator BASE_EMBEDDED {
public:
StackHandlerIterator(const StackFrame* frame, StackHandler* handler)
: limit_(frame->fp()), handler_(handler) {
// Make sure the handler has already been unwound to this frame.
DCHECK(frame->sp() <= handler->address());
}
StackHandler* handler() const { return handler_; }
bool done() { return handler_ == nullptr || handler_->address() > limit_; }
void Advance() {
DCHECK(!done());
handler_ = handler_->next();
}
private:
const Address limit_;
StackHandler* handler_;
};
// -------------------------------------------------------------------------
#define INITIALIZE_SINGLETON(type, field) field##_(this),
StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate,
bool can_access_heap_objects)
: isolate_(isolate),
STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr),
handler_(nullptr),
can_access_heap_objects_(can_access_heap_objects) {}
#undef INITIALIZE_SINGLETON
StackFrameIterator::StackFrameIterator(Isolate* isolate)
: StackFrameIterator(isolate, isolate->thread_local_top()) {}
StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t)
: StackFrameIteratorBase(isolate, true) {
Reset(t);
}
void StackFrameIterator::Advance() {
DCHECK(!done());
// Compute the state of the calling frame before restoring
// callee-saved registers and unwinding handlers. This allows the
// frame code that computes the caller state to access the top
// handler and the value of any callee-saved register if needed.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
// Unwind handlers corresponding to the current frame.
StackHandlerIterator it(frame_, handler_);
while (!it.done()) it.Advance();
handler_ = it.handler();
// Advance to the calling frame.
frame_ = SingletonFor(type, &state);
// When we're done iterating over the stack frames, the handler
// chain must have been completely unwound.
DCHECK(!done() || handler_ == nullptr);
}
void StackFrameIterator::Reset(ThreadLocalTop* top) {
StackFrame::State state;
StackFrame::Type type = ExitFrame::GetStateForFramePointer(
Isolate::c_entry_fp(top), &state);
handler_ = StackHandler::FromAddress(Isolate::handler(top));
frame_ = SingletonFor(type, &state);
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type,
StackFrame::State* state) {
StackFrame* result = SingletonFor(type);
DCHECK((!result) == (type == StackFrame::NONE));
if (result) result->state_ = *state;
return result;
}
StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: \
return &field##_;
switch (type) {
case StackFrame::NONE:
return nullptr;
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: break;
}
return nullptr;
#undef FRAME_TYPE_CASE
}
// -------------------------------------------------------------------------
void JavaScriptFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!iterator_.done() && !iterator_.frame()->is_java_script());
}
// -------------------------------------------------------------------------
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate)
: iterator_(isolate) {
if (!done() && !IsValidFrame(iterator_.frame())) Advance();
}
StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate,
StackFrame::Id id)
: StackTraceFrameIterator(isolate) {
while (!done() && frame()->id() != id) Advance();
}
void StackTraceFrameIterator::Advance() {
do {
iterator_.Advance();
} while (!done() && !IsValidFrame(iterator_.frame()));
}
bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) const {
if (frame->is_java_script()) {
JavaScriptFrame* jsFrame = static_cast<JavaScriptFrame*>(frame);
if (!jsFrame->function()->IsJSFunction()) return false;
return jsFrame->function()->shared()->IsSubjectToDebugging();
}
// apart from javascript, only wasm is valid
return frame->is_wasm();
}
// -------------------------------------------------------------------------
namespace {
bool IsInterpreterFramePc(Isolate* isolate, Address pc) {
Code* interpreter_entry_trampoline =
isolate->builtins()->builtin(Builtins::kInterpreterEntryTrampoline);
Code* interpreter_bytecode_advance =
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeAdvance);
Code* interpreter_bytecode_dispatch =
isolate->builtins()->builtin(Builtins::kInterpreterEnterBytecodeDispatch);
return (pc >= interpreter_entry_trampoline->instruction_start() &&
pc < interpreter_entry_trampoline->instruction_end()) ||
(pc >= interpreter_bytecode_advance->instruction_start() &&
pc < interpreter_bytecode_advance->instruction_end()) ||
(pc >= interpreter_bytecode_dispatch->instruction_start() &&
pc < interpreter_bytecode_dispatch->instruction_end());
}
DISABLE_ASAN Address ReadMemoryAt(Address address) {
return Memory::Address_at(address);
}
} // namespace
SafeStackFrameIterator::SafeStackFrameIterator(
Isolate* isolate,
Address fp, Address sp, Address js_entry_sp)
: StackFrameIteratorBase(isolate, false),
low_bound_(sp),
high_bound_(js_entry_sp),
top_frame_type_(StackFrame::NONE),
external_callback_scope_(isolate->external_callback_scope()) {
StackFrame::State state;
StackFrame::Type type;
ThreadLocalTop* top = isolate->thread_local_top();
bool advance_frame = true;
if (IsValidTop(top)) {
type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state);
top_frame_type_ = type;
} else if (IsValidStackAddress(fp)) {
DCHECK_NOT_NULL(fp);
state.fp = fp;
state.sp = sp;
state.pc_address = StackFrame::ResolveReturnAddressLocation(
reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp)));
// If the top of stack is a return address to the interpreter trampoline,
// then we are likely in a bytecode handler with elided frame. In that
// case, set the PC properly and make sure we do not drop the frame.
if (IsValidStackAddress(sp)) {
MSAN_MEMORY_IS_INITIALIZED(sp, kPointerSize);
Address tos = ReadMemoryAt(reinterpret_cast<Address>(sp));
if (IsInterpreterFramePc(isolate, tos)) {
state.pc_address = reinterpret_cast<Address*>(sp);
advance_frame = false;
}
}
// StackFrame::ComputeType will read both kContextOffset and kMarkerOffset,
// we check only that kMarkerOffset is within the stack bounds and do
// compile time check that kContextOffset slot is pushed on the stack before
// kMarkerOffset.
STATIC_ASSERT(StandardFrameConstants::kFunctionOffset <
StandardFrameConstants::kContextOffset);
Address frame_marker = fp + StandardFrameConstants::kFunctionOffset;
if (IsValidStackAddress(frame_marker)) {
type = StackFrame::ComputeType(this, &state);
top_frame_type_ = type;
// We only keep the top frame if we believe it to be interpreted frame.
if (type != StackFrame::INTERPRETED) {
advance_frame = true;
}
} else {
// Mark the frame as OPTIMIZED if we cannot determine its type.
// We chose OPTIMIZED rather than INTERPRETED because it's closer to
// the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT
// referred to full-codegen frames (now removed from the tree), and
// OPTIMIZED refers to turbofan frames, both of which are generated
// code. INTERPRETED frames refer to bytecode.
// The frame anyways will be skipped.
type = StackFrame::OPTIMIZED;
// Top frame is incomplete so we cannot reliably determine its type.
top_frame_type_ = StackFrame::NONE;
}
} else {
return;
}
frame_ = SingletonFor(type, &state);
if (advance_frame && frame_) Advance();
}
bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const {
Address c_entry_fp = Isolate::c_entry_fp(top);
if (!IsValidExitFrame(c_entry_fp)) return false;
// There should be at least one JS_ENTRY stack handler.
Address handler = Isolate::handler(top);
if (handler == nullptr) return false;
// Check that there are no js frames on top of the native frames.
return c_entry_fp < handler;
}
void SafeStackFrameIterator::AdvanceOneFrame() {
DCHECK(!done());
StackFrame* last_frame = frame_;
Address last_sp = last_frame->sp(), last_fp = last_frame->fp();
// Before advancing to the next stack frame, perform pointer validity tests.
if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) {
frame_ = nullptr;
return;
}
// Advance to the previous frame.
StackFrame::State state;
StackFrame::Type type = frame_->GetCallerState(&state);
frame_ = SingletonFor(type, &state);
if (!frame_) return;
// Check that we have actually moved to the previous frame in the stack.
if (frame_->sp() < last_sp || frame_->fp() < last_fp) {
frame_ = nullptr;
}
}
bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const {
return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp());
}
bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) {
StackFrame::State state;
if (frame->is_entry() || frame->is_construct_entry()) {
// See EntryFrame::GetCallerState. It computes the caller FP address
// and calls ExitFrame::GetStateForFramePointer on it. We need to be
// sure that caller FP address is valid.
Address caller_fp = Memory::Address_at(
frame->fp() + EntryFrameConstants::kCallerFPOffset);
if (!IsValidExitFrame(caller_fp)) return false;
} else if (frame->is_arguments_adaptor()) {
// See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that
// the number of arguments is stored on stack as Smi. We need to check
// that it really an Smi.
Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)->
GetExpression(0);
if (!number_of_args->IsSmi()) {
return false;
}
}
frame->ComputeCallerState(&state);
return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) &&
SingletonFor(frame->GetCallerState(&state)) != nullptr;
}
bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const {
if (!IsValidStackAddress(fp)) return false;
Address sp = ExitFrame::ComputeStackPointer(fp);
if (!IsValidStackAddress(sp)) return false;
StackFrame::State state;
ExitFrame::FillState(fp, sp, &state);
MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address));
return *state.pc_address != nullptr;
}
void SafeStackFrameIterator::Advance() {
while (true) {
AdvanceOneFrame();
if (done()) break;
ExternalCallbackScope* last_callback_scope = nullptr;
while (external_callback_scope_ != nullptr &&
external_callback_scope_->scope_address() < frame_->fp()) {
// As long as the setup of a frame is not atomic, we may happen to be
// in an interval where an ExternalCallbackScope is already created,
// but the frame is not yet entered. So we are actually observing
// the previous frame.
// Skip all the ExternalCallbackScope's that are below the current fp.
last_callback_scope = external_callback_scope_;
external_callback_scope_ = external_callback_scope_->previous();
}
if (frame_->is_java_script()) break;
if (frame_->is_exit() || frame_->is_builtin_exit()) {
// Some of the EXIT frames may have ExternalCallbackScope allocated on
// top of them. In that case the scope corresponds to the first EXIT
// frame beneath it. There may be other EXIT frames on top of the
// ExternalCallbackScope, just skip them as we cannot collect any useful
// information about them.
if (last_callback_scope) {
frame_->state_.pc_address =
last_callback_scope->callback_entrypoint_address();
}
break;
}
}
}
// -------------------------------------------------------------------------
namespace {
Code* GetContainingCode(Isolate* isolate, Address pc) {
return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code;
}
} // namespace
Code* StackFrame::LookupCode() const {
Code* result = GetContainingCode(isolate(), pc());
DCHECK_GE(pc(), result->instruction_start());
DCHECK_LT(pc(), result->instruction_end());
return result;
}
void StackFrame::IteratePc(RootVisitor* v, Address* pc_address,
Address* constant_pool_address, Code* holder) {
Address pc = *pc_address;
DCHECK(holder->GetHeap()->GcSafeCodeContains(holder, pc));
unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start());
Object* code = holder;
v->VisitRootPointer(Root::kTop, &code);
if (code == holder) return;
holder = reinterpret_cast<Code*>(code);
pc = holder->instruction_start() + pc_offset;
*pc_address = pc;
if (FLAG_enable_embedded_constant_pool && constant_pool_address) {
*constant_pool_address = holder->constant_pool();
}
}
void StackFrame::SetReturnAddressLocationResolver(
ReturnAddressLocationResolver resolver) {
DCHECK_NULL(return_address_location_resolver_);
return_address_location_resolver_ = resolver;
}
StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator,
State* state) {
DCHECK_NOT_NULL(state->fp);
MSAN_MEMORY_IS_INITIALIZED(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset,
kPointerSize);
intptr_t marker = Memory::intptr_at(
state->fp + CommonFrameConstants::kContextOrFrameTypeOffset);
if (!iterator->can_access_heap_objects_) {
// TODO(titzer): "can_access_heap_objects" is kind of bogus. It really
// means that we are being called from the profiler, which can interrupt
// the VM with a signal at any arbitrary instruction, with essentially
// anything on the stack. So basically none of these checks are 100%
// reliable.
MSAN_MEMORY_IS_INITIALIZED(
state->fp + StandardFrameConstants::kFunctionOffset, kPointerSize);
Object* maybe_function =
Memory::Object_at(state->fp + StandardFrameConstants::kFunctionOffset);
if (!StackFrame::IsTypeMarker(marker)) {
if (maybe_function->IsSmi()) {
return NATIVE;
} else if (IsInterpreterFramePc(iterator->isolate(),
*(state->pc_address))) {
return INTERPRETED;
} else {
return OPTIMIZED;
}
}
} else {
Address pc = *(state->pc_address);
// If FLAG_wasm_jit_to_native is disabled, we still have an empty
// wasm_code_manager, and this test will be false. This is easier to read
// than checking the flag, then getting the code, and then, if both are true
// (non-null, respectivelly), going down the wasm_code path.
wasm::WasmCode* wasm_code =
iterator->isolate()->wasm_engine()->code_manager()->LookupCode(pc);
if (wasm_code != nullptr) {
switch (wasm_code->kind()) {
case wasm::WasmCode::kInterpreterStub:
return WASM_INTERPRETER_ENTRY;
case wasm::WasmCode::kFunction:
case wasm::WasmCode::kCopiedStub:
return WASM_COMPILED;
case wasm::WasmCode::kLazyStub:
if (StackFrame::IsTypeMarker(marker)) break;
return BUILTIN;
case wasm::WasmCode::kWasmToJsWrapper:
case wasm::WasmCode::kWasmToWasmWrapper:
return WASM_TO_JS;
default:
UNREACHABLE();
}
} else {
// Look up the code object to figure out the type of the stack frame.
Code* code_obj = GetContainingCode(iterator->isolate(), pc);
if (code_obj != nullptr) {
switch (code_obj->kind()) {
case Code::BUILTIN:
if (StackFrame::IsTypeMarker(marker)) break;
if (code_obj->is_interpreter_trampoline_builtin()) {
return INTERPRETED;
}
if (code_obj->is_turbofanned()) {
// TODO(bmeurer): We treat frames for BUILTIN Code objects as
// OptimizedFrame for now (all the builtins with JavaScript
// linkage are actually generated with TurboFan currently, so
// this is sound).
return OPTIMIZED;
}
return BUILTIN;
case Code::OPTIMIZED_FUNCTION:
return OPTIMIZED;
case Code::WASM_FUNCTION:
return WASM_COMPILED;
case Code::WASM_TO_JS_FUNCTION:
return WASM_TO_JS;
case Code::JS_TO_WASM_FUNCTION:
return JS_TO_WASM;
case Code::WASM_INTERPRETER_ENTRY:
return WASM_INTERPRETER_ENTRY;
case Code::C_WASM_ENTRY:
return C_WASM_ENTRY;
default:
// All other types should have an explicit marker
break;
}
} else {
return NATIVE;
}
}
}
DCHECK(StackFrame::IsTypeMarker(marker));
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
switch (candidate) {
case ENTRY:
case CONSTRUCT_ENTRY:
case EXIT:
case BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
case BUILTIN_EXIT:
case STUB:
case INTERNAL:
case CONSTRUCT:
case ARGUMENTS_ADAPTOR:
case WASM_TO_JS:
case WASM_COMPILED:
return candidate;
case JS_TO_WASM:
case OPTIMIZED:
case INTERPRETED:
default:
// Unoptimized and optimized JavaScript frames, including
// interpreted frames, should never have a StackFrame::Type
// marker. If we find one, we're likely being called from the
// profiler in a bogus stack frame.
return NATIVE;
}
}
#ifdef DEBUG
bool StackFrame::can_access_heap_objects() const {
return iterator_->can_access_heap_objects_;
}
#endif
StackFrame::Type StackFrame::GetCallerState(State* state) const {
ComputeCallerState(state);
return ComputeType(iterator_, state);
}
Address StackFrame::UnpaddedFP() const {
return fp();
}
void NativeFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = Memory::Address_at(fp() + CommonFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + CommonFrameConstants::kCallerPCOffset));
state->callee_pc_address = nullptr;
state->constant_pool_address = nullptr;
}
Code* EntryFrame::unchecked_code() const {
return isolate()->heap()->js_entry_code();
}
void EntryFrame::ComputeCallerState(State* state) const {
GetCallerState(state);
}
StackFrame::Type EntryFrame::GetCallerState(State* state) const {
const int offset = EntryFrameConstants::kCallerFPOffset;
Address fp = Memory::Address_at(this->fp() + offset);
return ExitFrame::GetStateForFramePointer(fp, state);
}
Code* ConstructEntryFrame::unchecked_code() const {
return isolate()->heap()->js_construct_entry_code();
}
Object*& ExitFrame::code_slot() const {
const int offset = ExitFrameConstants::kCodeOffset;
return Memory::Object_at(fp() + offset);
}
Code* ExitFrame::unchecked_code() const {
return reinterpret_cast<Code*>(code_slot());
}
void ExitFrame::ComputeCallerState(State* state) const {
// Set up the caller state.
state->sp = caller_sp();
state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset);
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset));
state->callee_pc_address = nullptr;
if (FLAG_enable_embedded_constant_pool) {
state->constant_pool_address = reinterpret_cast<Address*>(
fp() + ExitFrameConstants::kConstantPoolOffset);
}
}
void ExitFrame::Iterate(RootVisitor* v) const {
// The arguments are traversed as part of the expression stack of
// the calling frame.
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
v->VisitRootPointer(Root::kTop, &code_slot());
}
Address ExitFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) {
if (fp == 0) return NONE;
Address sp = ComputeStackPointer(fp);
FillState(fp, sp, state);
DCHECK_NOT_NULL(*state->pc_address);
return ComputeFrameType(fp);
}
StackFrame::Type ExitFrame::ComputeFrameType(Address fp) {
// Distinguish between between regular and builtin exit frames.
// Default to EXIT in all hairy cases (e.g., when called from profiler).
const int offset = ExitFrameConstants::kFrameTypeOffset;
Object* marker = Memory::Object_at(fp + offset);
if (!marker->IsSmi()) {
return EXIT;
}
intptr_t marker_int = bit_cast<intptr_t>(marker);
StackFrame::Type frame_type = static_cast<StackFrame::Type>(marker_int >> 1);
if (frame_type == EXIT || frame_type == BUILTIN_EXIT) {
return frame_type;
}
return EXIT;
}
Address ExitFrame::ComputeStackPointer(Address fp) {
MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kPointerSize);
return Memory::Address_at(fp + ExitFrameConstants::kSPOffset);
}
void ExitFrame::FillState(Address fp, Address sp, State* state) {
state->sp = sp;
state->fp = fp;
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(sp - 1 * kPCOnStackSize));
state->callee_pc_address = nullptr;
// The constant pool recorded in the exit frame is not associated
// with the pc in this state (the return address into a C entry
// stub). ComputeCallerState will retrieve the constant pool
// together with the associated caller pc.
state->constant_pool_address = nullptr;
}
JSFunction* BuiltinExitFrame::function() const {
return JSFunction::cast(target_slot_object());
}
Object* BuiltinExitFrame::receiver() const { return receiver_slot_object(); }
bool BuiltinExitFrame::IsConstructor() const {
return !new_target_slot_object()->IsUndefined(isolate());
}
Object* BuiltinExitFrame::GetParameter(int i) const {
DCHECK(i >= 0 && i < ComputeParametersCount());
int offset =
BuiltinExitFrameConstants::kFirstArgumentOffset + i * kPointerSize;
return Memory::Object_at(fp() + offset);
}
int BuiltinExitFrame::ComputeParametersCount() const {
Object* argc_slot = argc_slot_object();
DCHECK(argc_slot->IsSmi());
// Argc also counts the receiver, target, new target, and argc itself as args,
// therefore the real argument count is argc - 4.
int argc = Smi::ToInt(argc_slot) - 4;
DCHECK_GE(argc, 0);
return argc;
}
namespace {
void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode,
int index) {
accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index);
}
} // namespace
void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
DisallowHeapAllocation no_gc;
Object* receiver = this->receiver();
JSFunction* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
accumulator->Add("builtin exit frame: ");
Code* code = nullptr;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",%o", GetParameter(i));
}
accumulator->Add(")\n\n");
}
Address StandardFrame::GetExpressionAddress(int n) const {
const int offset = StandardFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
Address InterpretedFrame::GetExpressionAddress(int n) const {
const int offset = InterpreterFrameConstants::kExpressionsOffset;
return fp() + offset - n * kPointerSize;
}
Script* StandardFrame::script() const {
// This should only be called on frames which override this method.
DCHECK(false);
return nullptr;
}
Object* StandardFrame::receiver() const {
return isolate()->heap()->undefined_value();
}
Object* StandardFrame::context() const {
return isolate()->heap()->undefined_value();
}
int StandardFrame::position() const {
AbstractCode* code = AbstractCode::cast(LookupCode());
int code_offset = static_cast<int>(pc() - code->instruction_start());
return code->SourcePosition(code_offset);
}
int StandardFrame::ComputeExpressionsCount() const {
Address base = GetExpressionAddress(0);
Address limit = sp() - kPointerSize;
DCHECK(base >= limit); // stack grows downwards
// Include register-allocated locals in number of expressions.
return static_cast<int>((base - limit) / kPointerSize);
}
Object* StandardFrame::GetParameter(int index) const {
// StandardFrame does not define any parameters.
UNREACHABLE();
}
int StandardFrame::ComputeParametersCount() const { return 0; }
void StandardFrame::ComputeCallerState(State* state) const {
state->sp = caller_sp();
state->fp = caller_fp();
state->pc_address = ResolveReturnAddressLocation(
reinterpret_cast<Address*>(ComputePCAddress(fp())));
state->callee_pc_address = pc_address();
state->constant_pool_address =
reinterpret_cast<Address*>(ComputeConstantPoolAddress(fp()));
}
bool StandardFrame::IsConstructor() const { return false; }
void StandardFrame::Summarize(std::vector<FrameSummary>* functions) const {
// This should only be called on frames which override this method.
UNREACHABLE();
}
void StandardFrame::IterateCompiledFrame(RootVisitor* v) const {
// Make sure that we're not doing "safe" stack frame iteration. We cannot
// possibly find pointers in optimized frames in that state.
DCHECK(can_access_heap_objects());
// Find the code and compute the safepoint information.
Address inner_pointer = pc();
const wasm::WasmCode* wasm_code =
FLAG_wasm_jit_to_native
? isolate()->wasm_engine()->code_manager()->LookupCode(inner_pointer)
: nullptr;
SafepointEntry safepoint_entry;
uint32_t stack_slots;
Code* code = nullptr;
bool has_tagged_params = false;
if (wasm_code != nullptr) {
SafepointTable table(wasm_code->instructions().start(),
wasm_code->safepoint_table_offset(),
wasm_code->stack_slots());
safepoint_entry = table.FindEntry(inner_pointer);
stack_slots = wasm_code->stack_slots();
has_tagged_params = wasm_code->kind() != wasm::WasmCode::kFunction;
} else {
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry =
isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer);
if (!entry->safepoint_entry.is_valid()) {
entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer);
DCHECK(entry->safepoint_entry.is_valid());
} else {
DCHECK(entry->safepoint_entry.Equals(
entry->code->GetSafepointEntry(inner_pointer)));
}
code = entry->code;
safepoint_entry = entry->safepoint_entry;
stack_slots = code->stack_slots();
has_tagged_params = code->has_tagged_params();
}
uint32_t slot_space = stack_slots * kPointerSize;
// Determine the fixed header and spill slot area size.
int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp;
intptr_t marker =
Memory::intptr_at(fp() + CommonFrameConstants::kContextOrFrameTypeOffset);
if (StackFrame::IsTypeMarker(marker)) {
StackFrame::Type candidate = StackFrame::MarkerToType(marker);
switch (candidate) {
case ENTRY:
case CONSTRUCT_ENTRY:
case EXIT:
case BUILTIN_CONTINUATION:
case JAVA_SCRIPT_BUILTIN_CONTINUATION:
case BUILTIN_EXIT:
case ARGUMENTS_ADAPTOR:
case STUB:
case INTERNAL:
case CONSTRUCT:
case JS_TO_WASM:
case WASM_TO_JS:
case WASM_TO_WASM:
case WASM_COMPILED:
case WASM_INTERPRETER_ENTRY:
case C_WASM_ENTRY:
frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp;
break;
case OPTIMIZED:
case INTERPRETED:
case BUILTIN:
// These frame types have a context, but they are actually stored
// in the place on the stack that one finds the frame type.
UNREACHABLE();
break;
case NATIVE:
case NONE:
case NUMBER_OF_TYPES:
case MANUAL:
UNREACHABLE();
break;
}
}
slot_space -=
(frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp);
Object** frame_header_base = &Memory::Object_at(fp() - frame_header_size);
Object** frame_header_limit =
&Memory::Object_at(fp() - StandardFrameConstants::kCPSlotSize);
Object** parameters_base = &Memory::Object_at(sp());
Object** parameters_limit = frame_header_base - slot_space / kPointerSize;
// Visit the parameters that may be on top of the saved registers.
if (safepoint_entry.argument_count() > 0) {
v->VisitRootPointers(Root::kTop, parameters_base,
parameters_base + safepoint_entry.argument_count());
parameters_base += safepoint_entry.argument_count();
}
// Skip saved double registers.
if (safepoint_entry.has_doubles()) {
// Number of doubles not known at snapshot time.
DCHECK(!isolate()->serializer_enabled());
parameters_base +=
RegisterConfiguration::Default()->num_allocatable_double_registers() *
kDoubleSize / kPointerSize;
}
// Visit the registers that contain pointers if any.
if (safepoint_entry.HasRegisters()) {
for (int i = kNumSafepointRegisters - 1; i >=0; i--) {
if (safepoint_entry.HasRegisterAt(i)) {
int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i);
v->VisitRootPointer(Root::kTop, parameters_base + reg_stack_index);
}
}
// Skip the words containing the register values.
parameters_base += kNumSafepointRegisters;
}
// We're done dealing with the register bits.
uint8_t* safepoint_bits = safepoint_entry.bits();
safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2;
// Visit the rest of the parameters if they are tagged.
if (has_tagged_params) {
v->VisitRootPointers(Root::kTop, parameters_base, parameters_limit);
}
// Visit pointer spill slots and locals.
for (unsigned index = 0; index < stack_slots; index++) {
int byte_index = index >> kBitsPerByteLog2;
int bit_index = index & (kBitsPerByte - 1);
if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) {
v->VisitRootPointer(Root::kTop, parameters_limit + index);
}
}
// For wasm-to-js cases, we can skip this.
if (code != nullptr) {
// Visit the return address in the callee and incoming arguments.
IteratePc(v, pc_address(), constant_pool_address(), code);
}
if (!is_wasm() && !is_wasm_to_js()) {
// If this frame has JavaScript ABI, visit the context (in stub and JS
// frames) and the function (in JS frames).
v->VisitRootPointers(Root::kTop, frame_header_base, frame_header_limit);
}
}
void StubFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
Code* StubFrame::unchecked_code() const {
return isolate()->FindCodeObject(pc());
}
Address StubFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
int StubFrame::GetNumberOfIncomingArguments() const {
return 0;
}
int StubFrame::LookupExceptionHandlerInTable(int* stack_slots) {
Code* code = LookupCode();
DCHECK(code->is_turbofanned());
DCHECK_EQ(code->kind(), Code::BUILTIN);
HandlerTable* table = HandlerTable::cast(code->handler_table());
int pc_offset = static_cast<int>(pc() - code->entry());
*stack_slots = code->stack_slots();
return table->LookupReturn(pc_offset);
}
void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); }
void JavaScriptFrame::SetParameterValue(int index, Object* value) const {
Memory::Object_at(GetParameterSlot(index)) = value;
}
bool JavaScriptFrame::IsConstructor() const {
Address fp = caller_fp();
if (has_adapted_arguments()) {
// Skip the arguments adaptor frame and look at the real caller.
fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset);
}
return IsConstructFrame(fp);
}
bool JavaScriptFrame::HasInlinedFrames() const {
std::vector<SharedFunctionInfo*> functions;
GetFunctions(&functions);
return functions.size() > 1;
}
Code* JavaScriptFrame::unchecked_code() const {
return function()->code();
}
int JavaScriptFrame::GetNumberOfIncomingArguments() const {
DCHECK(can_access_heap_objects() &&
isolate()->heap()->gc_state() == Heap::NOT_IN_GC);
return function()->shared()->internal_formal_parameter_count();
}
Address JavaScriptFrame::GetCallerStackPointer() const {
return fp() + StandardFrameConstants::kCallerSPOffset;
}
void JavaScriptFrame::GetFunctions(
std::vector<SharedFunctionInfo*>* functions) const {
DCHECK(functions->empty());
functions->push_back(function()->shared());
}
void JavaScriptFrame::GetFunctions(
std::vector<Handle<SharedFunctionInfo>>* functions) const {
DCHECK(functions->empty());
std::vector<SharedFunctionInfo*> raw_functions;
GetFunctions(&raw_functions);
for (const auto& raw_function : raw_functions) {
functions->push_back(Handle<SharedFunctionInfo>(raw_function));
}
}
void JavaScriptFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
Code* code = LookupCode();
int offset = static_cast<int>(pc() - code->instruction_start());
AbstractCode* abstract_code = AbstractCode::cast(code);
FrameSummary::JavaScriptFrameSummary summary(isolate(), receiver(),
function(), abstract_code,
offset, IsConstructor());
functions->push_back(summary);
}
JSFunction* JavaScriptFrame::function() const {
return JSFunction::cast(function_slot_object());
}
Object* JavaScriptFrame::unchecked_function() const {
// During deoptimization of an optimized function, we may have yet to
// materialize some closures on the stack. The arguments marker object
// marks this case.
DCHECK(function_slot_object()->IsJSFunction() ||
isolate()->heap()->arguments_marker() == function_slot_object());
return function_slot_object();
}
Object* JavaScriptFrame::receiver() const { return GetParameter(-1); }
Object* JavaScriptFrame::context() const {
const int offset = StandardFrameConstants::kContextOffset;
Object* maybe_result = Memory::Object_at(fp() + offset);
DCHECK(!maybe_result->IsSmi());
return maybe_result;
}
Script* JavaScriptFrame::script() const {
return Script::cast(function()->shared()->script());
}
int JavaScriptFrame::LookupExceptionHandlerInTable(
int* stack_depth, HandlerTable::CatchPrediction* prediction) {
DCHECK_EQ(0, LookupCode()->handler_table()->length());
DCHECK(!LookupCode()->is_optimized_code());
return -1;
}
void JavaScriptFrame::PrintFunctionAndOffset(JSFunction* function,
AbstractCode* code,
int code_offset, FILE* file,
bool print_line_number) {
PrintF(file, "%s", function->IsOptimized() ? "*" : "~");
function->PrintName(file);
PrintF(file, "+%d", code_offset);
if (print_line_number) {
SharedFunctionInfo* shared = function->shared();
int source_pos = code->SourcePosition(code_offset);
Object* maybe_script = shared->script();
if (maybe_script->IsScript()) {
Script* script = Script::cast(maybe_script);
int line = script->GetLineNumber(source_pos) + 1;
Object* script_name_raw = script->name();
if (script_name_raw->IsString()) {
String* script_name = String::cast(script->name());
std::unique_ptr<char[]> c_script_name =
script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
PrintF(file, " at %s:%d", c_script_name.get(), line);
} else {
PrintF(file, " at <unknown>:%d", line);
}
} else {
PrintF(file, " at <unknown>:<unknown>");
}
}
}
void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args,
bool print_line_number) {
// constructor calls
DisallowHeapAllocation no_allocation;
JavaScriptFrameIterator it(isolate);
while (!it.done()) {
if (it.frame()->is_java_script()) {
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) PrintF(file, "new ");
JSFunction* function = frame->function();
int code_offset = 0;
if (frame->is_interpreted()) {
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
code_offset = iframe->GetBytecodeOffset();
} else {
Code* code = frame->unchecked_code();
code_offset = static_cast<int>(frame->pc() - code->instruction_start());
}
PrintFunctionAndOffset(function, function->abstract_code(), code_offset,
file, print_line_number);
if (print_args) {
// function arguments
// (we are intentionally only printing the actually
// supplied parameters, not all parameters required)
PrintF(file, "(this=");
frame->receiver()->ShortPrint(file);
const int length = frame->ComputeParametersCount();
for (int i = 0; i < length; i++) {
PrintF(file, ", ");
frame->GetParameter(i)->ShortPrint(file);
}
PrintF(file, ")");
}
break;
}
it.Advance();
}
}
void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction* function,
AbstractCode* code,
int code_offset) {
auto ic_stats = ICStats::instance();
ICInfo& ic_info = ic_stats->Current();
SharedFunctionInfo* shared = function->shared();
ic_info.function_name = ic_stats->GetOrCacheFunctionName(function);
ic_info.script_offset = code_offset;
int source_pos = code->SourcePosition(code_offset);
Object* maybe_script = shared->script();
if (maybe_script->IsScript()) {
Script* script = Script::cast(maybe_script);
ic_info.line_num = script->GetLineNumber(source_pos) + 1;
ic_info.script_name = ic_stats->GetOrCacheScriptName(script);
}
}
void JavaScriptFrame::CollectTopFrameForICStats(Isolate* isolate) {
// constructor calls
DisallowHeapAllocation no_allocation;
JavaScriptFrameIterator it(isolate);
ICInfo& ic_info = ICStats::instance()->Current();
while (!it.done()) {
if (it.frame()->is_java_script()) {
JavaScriptFrame* frame = it.frame();
if (frame->IsConstructor()) ic_info.is_constructor = true;
JSFunction* function = frame->function();
int code_offset = 0;
if (frame->is_interpreted()) {
InterpretedFrame* iframe = reinterpret_cast<InterpretedFrame*>(frame);
code_offset = iframe->GetBytecodeOffset();
} else {
Code* code = frame->unchecked_code();
code_offset = static_cast<int>(frame->pc() - code->instruction_start());
}
CollectFunctionAndOffsetForICStats(function, function->abstract_code(),
code_offset);
return;
}
it.Advance();
}
}
Object* JavaScriptFrame::GetParameter(int index) const {
return Memory::Object_at(GetParameterSlot(index));
}
int JavaScriptFrame::ComputeParametersCount() const {
return GetNumberOfIncomingArguments();
}
int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const {
// Assert that the first allocatable register is also the argument count
// register.
DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0),
kJavaScriptCallArgCountRegister.code());
Object* argc_object =
Memory::Object_at(fp() + BuiltinContinuationFrameConstants::kArgCOffset);
return Smi::ToInt(argc_object);
}
FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary(
Isolate* isolate, Object* receiver, JSFunction* function,
AbstractCode* abstract_code, int code_offset, bool is_constructor)
: FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT),
receiver_(receiver, isolate),
function_(function, isolate),
abstract_code_(abstract_code, isolate),
code_offset_(code_offset),
is_constructor_(is_constructor) {
DCHECK(abstract_code->IsBytecodeArray() ||
Code::cast(abstract_code)->kind() != Code::OPTIMIZED_FUNCTION);
}
bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const {
return function()->shared()->IsSubjectToDebugging();
}
int FrameSummary::JavaScriptFrameSummary::SourcePosition() const {
return abstract_code()->SourcePosition(code_offset());
}
int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const {
return abstract_code()->SourceStatementPosition(code_offset());
}
Handle<Object> FrameSummary::JavaScriptFrameSummary::script() const {
return handle(function_->shared()->script(), isolate());
}
Handle<String> FrameSummary::JavaScriptFrameSummary::FunctionName() const {
return JSFunction::GetDebugName(function_);
}
Handle<Context> FrameSummary::JavaScriptFrameSummary::native_context() const {
return handle(function_->context()->native_context(), isolate());
}
FrameSummary::WasmFrameSummary::WasmFrameSummary(
Isolate* isolate, FrameSummary::Kind kind,
Handle<WasmInstanceObject> instance, bool at_to_number_conversion)
: FrameSummaryBase(isolate, kind),
wasm_instance_(instance),
at_to_number_conversion_(at_to_number_conversion) {}
Handle<Object> FrameSummary::WasmFrameSummary::receiver() const {
return wasm_instance_->GetIsolate()->global_proxy();
}
#define WASM_SUMMARY_DISPATCH(type, name) \
type FrameSummary::WasmFrameSummary::name() const { \
DCHECK(kind() == Kind::WASM_COMPILED || kind() == Kind::WASM_INTERPRETED); \
return kind() == Kind::WASM_COMPILED \
? static_cast<const WasmCompiledFrameSummary*>(this)->name() \
: static_cast<const WasmInterpretedFrameSummary*>(this) \
->name(); \
}
WASM_SUMMARY_DISPATCH(uint32_t, function_index)
WASM_SUMMARY_DISPATCH(int, byte_offset)
#undef WASM_SUMMARY_DISPATCH
int FrameSummary::WasmFrameSummary::SourcePosition() const {
Handle<WasmSharedModuleData> shared(
wasm_instance()->compiled_module()->shared(), isolate());
return WasmSharedModuleData::GetSourcePosition(
shared, function_index(), byte_offset(), at_to_number_conversion());
}
Handle<Script> FrameSummary::WasmFrameSummary::script() const {
return handle(wasm_instance()->compiled_module()->shared()->script());
}
Handle<String> FrameSummary::WasmFrameSummary::FunctionName() const {
Handle<WasmSharedModuleData> shared(
wasm_instance()->compiled_module()->shared(), isolate());
return WasmSharedModuleData::GetFunctionName(isolate(), shared,
function_index());
}
Handle<Context> FrameSummary::WasmFrameSummary::native_context() const {
return handle(wasm_instance()->compiled_module()->native_context(),
isolate());
}
FrameSummary::WasmCompiledFrameSummary::WasmCompiledFrameSummary(
Isolate* isolate, Handle<WasmInstanceObject> instance, WasmCodeWrapper code,
int code_offset, bool at_to_number_conversion)
: WasmFrameSummary(isolate, WASM_COMPILED, instance,
at_to_number_conversion),
code_(code),
code_offset_(code_offset) {}
uint32_t FrameSummary::WasmCompiledFrameSummary::function_index() const {
if (code().IsCodeObject()) {
FixedArray* deopt_data = code().GetCode()->deoptimization_data();
DCHECK_EQ(2, deopt_data->length());
DCHECK(deopt_data->get(1)->IsSmi());
int val = Smi::ToInt(deopt_data->get(1));
DCHECK_LE(0, val);
return static_cast<uint32_t>(val);
}
return code().GetWasmCode()->index();
}
int FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(
const wasm::WasmCode* code, int offset) {
int position = 0;
// Subtract one because the current PC is one instruction after the call site.
offset--;
Handle<ByteArray> source_position_table(
ByteArray::cast(code->owner()->compiled_module()->source_positions()->get(
code->index())));
for (SourcePositionTableIterator iterator(source_position_table);
!iterator.done() && iterator.code_offset() <= offset;
iterator.Advance()) {
position = iterator.source_position().ScriptOffset();
}
return position;
}
int FrameSummary::WasmCompiledFrameSummary::byte_offset() const {
if (code().IsCodeObject()) {
return AbstractCode::cast(*code().GetCode())->SourcePosition(code_offset());
}
return GetWasmSourcePosition(code_.GetWasmCode(), code_offset());
}
FrameSummary::WasmInterpretedFrameSummary::WasmInterpretedFrameSummary(
Isolate* isolate, Handle<WasmInstanceObject> instance,
uint32_t function_index, int byte_offset)
: WasmFrameSummary(isolate, WASM_INTERPRETED, instance, false),
function_index_(function_index),
byte_offset_(byte_offset) {}
FrameSummary::~FrameSummary() {
#define FRAME_SUMMARY_DESTR(kind, type, field, desc) \
case kind: \
field.~type(); \
break;
switch (base_.kind()) {
FRAME_SUMMARY_VARIANTS(FRAME_SUMMARY_DESTR)
default:
UNREACHABLE();
}
#undef FRAME_SUMMARY_DESTR
}
FrameSummary FrameSummary::GetTop(const StandardFrame* frame) {
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_LT(0, frames.size());
return frames.back();
}
FrameSummary FrameSummary::GetBottom(const StandardFrame* frame) {
return Get(frame, 0);
}
FrameSummary FrameSummary::GetSingle(const StandardFrame* frame) {
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_EQ(1, frames.size());
return frames.front();
}
FrameSummary FrameSummary::Get(const StandardFrame* frame, int index) {
DCHECK_LE(0, index);
std::vector<FrameSummary> frames;
frame->Summarize(&frames);
DCHECK_GT(frames.size(), index);
return frames[index];
}
#define FRAME_SUMMARY_DISPATCH(ret, name) \
ret FrameSummary::name() const { \
switch (base_.kind()) { \
case JAVA_SCRIPT: \
return java_script_summary_.name(); \
case WASM_COMPILED: \
return wasm_compiled_summary_.name(); \
case WASM_INTERPRETED: \
return wasm_interpreted_summary_.name(); \
default: \
UNREACHABLE(); \
return ret{}; \
} \
}
FRAME_SUMMARY_DISPATCH(Handle<Object>, receiver)
FRAME_SUMMARY_DISPATCH(int, code_offset)
FRAME_SUMMARY_DISPATCH(bool, is_constructor)
FRAME_SUMMARY_DISPATCH(bool, is_subject_to_debugging)
FRAME_SUMMARY_DISPATCH(Handle<Object>, script)
FRAME_SUMMARY_DISPATCH(int, SourcePosition)
FRAME_SUMMARY_DISPATCH(int, SourceStatementPosition)
FRAME_SUMMARY_DISPATCH(Handle<String>, FunctionName)
FRAME_SUMMARY_DISPATCH(Handle<Context>, native_context)
#undef FRAME_SUMMARY_DISPATCH
void OptimizedFrame::Summarize(std::vector<FrameSummary>* frames) const {
DCHECK(frames->empty());
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code* code = LookupCode();
if (code->kind() == Code::BUILTIN) {
return JavaScriptFrame::Summarize(frames);
}
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData* const data = GetDeoptimizationData(&deopt_index);
if (deopt_index == Safepoint::kNoDeoptimizationIndex) {
CHECK_NULL(data);
FATAL("Missing deoptimization information for OptimizedFrame::Summarize.");
}
// Prepare iteration over translation. Note that the below iteration might
// materialize objects without storing them back to the Isolate, this will
// lead to objects being re-materialized again for each summary.
TranslatedState translated(this);
translated.Prepare(fp());
// We create the summary in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
bool is_constructor = IsConstructor();
for (auto it = translated.begin(); it != translated.end(); it++) {
if (it->kind() == TranslatedFrame::kInterpretedFunction ||
it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
Handle<SharedFunctionInfo> shared_info = it->shared_info();
// The translation commands are ordered and the function is always
// at the first position, and the receiver is next.
TranslatedFrame::iterator translated_values = it->begin();
// Get or materialize the correct function in the optimized frame.
Handle<JSFunction> function =
Handle<JSFunction>::cast(translated_values->GetValue());
translated_values++;
// Get or materialize the correct receiver in the optimized frame.
Handle<Object> receiver = translated_values->GetValue();
translated_values++;
// Determine the underlying code object and the position within it from
// the translation corresponding to the frame type in question.
Handle<AbstractCode> abstract_code;
unsigned code_offset;
if (it->kind() == TranslatedFrame::kJavaScriptBuiltinContinuation) {
code_offset = 0;
abstract_code =
handle(AbstractCode::cast(isolate()->builtins()->builtin(
Builtins::GetBuiltinFromBailoutId(it->node_id()))),
isolate());
} else {
DCHECK_EQ(it->kind(), TranslatedFrame::kInterpretedFunction);
code_offset = it->node_id().ToInt(); // Points to current bytecode.
abstract_code = handle(shared_info->abstract_code(), isolate());
}
// Append full summary of the encountered JS frame.
FrameSummary::JavaScriptFrameSummary summary(isolate(), *receiver,
*function, *abstract_code,
code_offset, is_constructor);
frames->push_back(summary);
is_constructor = false;
} else if (it->kind() == TranslatedFrame::kConstructStub) {
// The next encountered JS frame will be marked as a constructor call.
DCHECK(!is_constructor);
is_constructor = true;
}
}
}
int OptimizedFrame::LookupExceptionHandlerInTable(
int* stack_slots, HandlerTable::CatchPrediction* prediction) {
// We cannot perform exception prediction on optimized code. Instead, we need
// to use FrameSummary to find the corresponding code offset in unoptimized
// code to perform prediction there.
DCHECK_NULL(prediction);
Code* code = LookupCode();
HandlerTable* table = HandlerTable::cast(code->handler_table());
int pc_offset = static_cast<int>(pc() - code->entry());
if (stack_slots) *stack_slots = code->stack_slots();
// When the return pc has been replaced by a trampoline there won't be
// a handler for this trampoline. Thus we need to use the return pc that
// _used to be_ on the stack to get the right ExceptionHandler.
if (code->kind() == Code::OPTIMIZED_FUNCTION &&
code->marked_for_deoptimization()) {
SafepointTable safepoints(code);
pc_offset = safepoints.find_return_pc(pc_offset);
}
return table->LookupReturn(pc_offset);
}
DeoptimizationData* OptimizedFrame::GetDeoptimizationData(
int* deopt_index) const {
DCHECK(is_optimized());
JSFunction* opt_function = function();
Code* code = opt_function->code();
// The code object may have been replaced by lazy deoptimization. Fall
// back to a slow search in this case to find the original optimized
// code object.
if (!code->contains(pc())) {
code = isolate()->heap()->GcSafeFindCodeForInnerPointer(pc());
}
DCHECK_NOT_NULL(code);
DCHECK(code->kind() == Code::OPTIMIZED_FUNCTION);
SafepointEntry safepoint_entry = code->GetSafepointEntry(pc());
*deopt_index = safepoint_entry.deoptimization_index();
if (*deopt_index != Safepoint::kNoDeoptimizationIndex) {
return DeoptimizationData::cast(code->deoptimization_data());
}
return nullptr;
}
Object* OptimizedFrame::receiver() const {
Code* code = LookupCode();
if (code->kind() == Code::BUILTIN) {
Address argc_ptr = fp() + OptimizedBuiltinFrameConstants::kArgCOffset;
intptr_t argc = *reinterpret_cast<intptr_t*>(argc_ptr);
intptr_t args_size =
(StandardFrameConstants::kFixedSlotCountAboveFp + argc) * kPointerSize;
Address receiver_ptr = fp() + args_size;
return *reinterpret_cast<Object**>(receiver_ptr);
} else {
return JavaScriptFrame::receiver();
}
}
void OptimizedFrame::GetFunctions(
std::vector<SharedFunctionInfo*>* functions) const {
DCHECK(functions->empty());
DCHECK(is_optimized());
// Delegate to JS frame in absence of turbofan deoptimization.
// TODO(turbofan): Revisit once we support deoptimization across the board.
Code* code = LookupCode();
if (code->kind() == Code::BUILTIN) {
return JavaScriptFrame::GetFunctions(functions);
}
DisallowHeapAllocation no_gc;
int deopt_index = Safepoint::kNoDeoptimizationIndex;
DeoptimizationData* const data = GetDeoptimizationData(&deopt_index);
DCHECK_NOT_NULL(data);
DCHECK_NE(Safepoint::kNoDeoptimizationIndex, deopt_index);
FixedArray* const literal_array = data->LiteralArray();
TranslationIterator it(data->TranslationByteArray(),
data->TranslationIndex(deopt_index)->value());
Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next());
DCHECK_EQ(Translation::BEGIN, opcode);
it.Next(); // Skip frame count.
int jsframe_count = it.Next();
it.Next(); // Skip update feedback count.
// We insert the frames in reverse order because the frames
// in the deoptimization translation are ordered bottom-to-top.
while (jsframe_count != 0) {
opcode = static_cast<Translation::Opcode>(it.Next());
if (opcode == Translation::INTERPRETED_FRAME ||
opcode == Translation::JAVA_SCRIPT_BUILTIN_CONTINUATION_FRAME) {
it.Next(); // Skip bailout id.
jsframe_count--;
// The second operand of the frame points to the function.
Object* shared = literal_array->get(it.Next());
functions->push_back(SharedFunctionInfo::cast(shared));
// Skip over remaining operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode) - 2);
} else {
// Skip over operands to advance to the next opcode.
it.Skip(Translation::NumberOfOperandsFor(opcode));
}
}
}
int OptimizedFrame::StackSlotOffsetRelativeToFp(int slot_index) {
return StandardFrameConstants::kCallerSPOffset -
((slot_index + 1) * kPointerSize);
}
Object* OptimizedFrame::StackSlotAt(int index) const {
return Memory::Object_at(fp() + StackSlotOffsetRelativeToFp(index));
}
int InterpretedFrame::position() const {
AbstractCode* code = AbstractCode::cast(GetBytecodeArray());
int code_offset = GetBytecodeOffset();
return code->SourcePosition(code_offset);
}
int InterpretedFrame::LookupExceptionHandlerInTable(
int* context_register, HandlerTable::CatchPrediction* prediction) {
BytecodeArray* bytecode = function()->shared()->bytecode_array();
HandlerTable* table = HandlerTable::cast(bytecode->handler_table());
return table->LookupRange(GetBytecodeOffset(), context_register, prediction);
}
int InterpretedFrame::GetBytecodeOffset() const {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
int raw_offset = Smi::ToInt(GetExpression(index));
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}
int InterpretedFrame::GetBytecodeOffset(Address fp) {
const int offset = InterpreterFrameConstants::kExpressionsOffset;
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
Address expression_offset = fp + offset - index * kPointerSize;
int raw_offset = Smi::ToInt(Memory::Object_at(expression_offset));
return raw_offset - BytecodeArray::kHeaderSize + kHeapObjectTag;
}
void InterpretedFrame::PatchBytecodeOffset(int new_offset) {
const int index = InterpreterFrameConstants::kBytecodeOffsetExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeOffsetFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
int raw_offset = new_offset + BytecodeArray::kHeaderSize - kHeapObjectTag;
SetExpression(index, Smi::FromInt(raw_offset));
}
BytecodeArray* InterpretedFrame::GetBytecodeArray() const {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return BytecodeArray::cast(GetExpression(index));
}
void InterpretedFrame::PatchBytecodeArray(BytecodeArray* bytecode_array) {
const int index = InterpreterFrameConstants::kBytecodeArrayExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kBytecodeArrayFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
SetExpression(index, bytecode_array);
}
Object* InterpretedFrame::ReadInterpreterRegister(int register_index) const {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return GetExpression(index + register_index);
}
void InterpretedFrame::WriteInterpreterRegister(int register_index,
Object* value) {
const int index = InterpreterFrameConstants::kRegisterFileExpressionIndex;
DCHECK_EQ(
InterpreterFrameConstants::kRegisterFileFromFp,
InterpreterFrameConstants::kExpressionsOffset - index * kPointerSize);
return SetExpression(index + register_index, value);
}
void InterpretedFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
AbstractCode* abstract_code =
AbstractCode::cast(function()->shared()->bytecode_array());
FrameSummary::JavaScriptFrameSummary summary(
isolate(), receiver(), function(), abstract_code, GetBytecodeOffset(),
IsConstructor());
functions->push_back(summary);
}
int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const {
return Smi::ToInt(GetExpression(0));
}
Code* ArgumentsAdaptorFrame::unchecked_code() const {
return isolate()->builtins()->builtin(
Builtins::kArgumentsAdaptorTrampoline);
}
int BuiltinFrame::GetNumberOfIncomingArguments() const {
return Smi::ToInt(GetExpression(0));
}
void BuiltinFrame::PrintFrameKind(StringStream* accumulator) const {
accumulator->Add("builtin frame: ");
}
Address InternalFrame::GetCallerStackPointer() const {
// Internal frames have no arguments. The stack pointer of the
// caller is at a fixed offset from the frame pointer.
return fp() + StandardFrameConstants::kCallerSPOffset;
}
Code* InternalFrame::unchecked_code() const {
const int offset = InternalFrameConstants::kCodeOffset;
Object* code = Memory::Object_at(fp() + offset);
DCHECK_NOT_NULL(code);
return reinterpret_cast<Code*>(code);
}
void WasmCompiledFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
PrintIndex(accumulator, mode, index);
accumulator->Add("WASM [");
Script* script = this->script();
accumulator->PrintName(script->name());
Address instruction_start = FLAG_wasm_jit_to_native
? isolate()
->wasm_engine()
->code_manager()
->LookupCode(pc())
->instructions()
.start()
: LookupCode()->instruction_start();
int pc = static_cast<int>(this->pc() - instruction_start);
WasmSharedModuleData* shared = wasm_instance()->compiled_module()->shared();
Vector<const uint8_t> raw_func_name =
shared->GetRawFunctionName(this->function_index());
const int kMaxPrintedFunctionName = 64;
char func_name[kMaxPrintedFunctionName + 1];
int func_name_len = std::min(kMaxPrintedFunctionName, raw_func_name.length());
memcpy(func_name, raw_func_name.start(), func_name_len);
func_name[func_name_len] = '\0';
accumulator->Add("], function #%u ('%s'), pc=%p, pos=%d\n",
this->function_index(), func_name, pc, this->position());
if (mode != OVERVIEW) accumulator->Add("\n");
}
Code* WasmCompiledFrame::unchecked_code() const {
return isolate()->FindCodeObject(pc());
}
void WasmCompiledFrame::Iterate(RootVisitor* v) const {
IterateCompiledFrame(v);
}
Address WasmCompiledFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
WasmCodeWrapper WasmCompiledFrame::wasm_code() const {
return FLAG_wasm_jit_to_native
? WasmCodeWrapper(
isolate()->wasm_engine()->code_manager()->LookupCode(pc()))
: WasmCodeWrapper(Handle<Code>(LookupCode(), isolate()));
}
WasmInstanceObject* WasmCompiledFrame::wasm_instance() const {
WasmInstanceObject* obj =
FLAG_wasm_jit_to_native
? WasmInstanceObject::GetOwningInstance(
isolate()->wasm_engine()->code_manager()->LookupCode(pc()))
: WasmInstanceObject::GetOwningInstanceGC(LookupCode());
// This is a live stack frame; it must have a live instance.
DCHECK_NOT_NULL(obj);
return obj;
}
uint32_t WasmCompiledFrame::function_index() const {
return FrameSummary::GetSingle(this).AsWasmCompiled().function_index();
}
Script* WasmCompiledFrame::script() const {
return wasm_instance()->compiled_module()->shared()->script();
}
int WasmCompiledFrame::position() const {
return FrameSummary::GetSingle(this).SourcePosition();
}
void WasmCompiledFrame::Summarize(std::vector<FrameSummary>* functions) const {
DCHECK(functions->empty());
WasmCodeWrapper code = wasm_code();
int offset = static_cast<int>(pc() - code.instructions().start());
Handle<WasmInstanceObject> instance = code.wasm_instance();
FrameSummary::WasmCompiledFrameSummary summary(
isolate(), instance, code, offset, at_to_number_conversion());
functions->push_back(summary);
}
bool WasmCompiledFrame::at_to_number_conversion() const {
// Check whether our callee is a WASM_TO_JS frame, and this frame is at the
// ToNumber conversion call.
Address callee_pc = reinterpret_cast<Address>(this->callee_pc());
int pos = -1;
if (FLAG_wasm_jit_to_native) {
wasm::WasmCode* code =
callee_pc
? isolate()->wasm_engine()->code_manager()->LookupCode(callee_pc)
: nullptr;
if (!code || code->kind() != wasm::WasmCode::kWasmToJsWrapper) return false;
int offset = static_cast<int>(callee_pc - code->instructions().start());
pos = FrameSummary::WasmCompiledFrameSummary::GetWasmSourcePosition(code,
offset);
} else {
Code* code = callee_pc ? isolate()->FindCodeObject(callee_pc) : nullptr;
if (!code || code->kind() != Code::WASM_TO_JS_FUNCTION) return false;
int offset = static_cast<int>(callee_pc - code->instruction_start());
pos = AbstractCode::cast(code)->SourcePosition(offset);
}
DCHECK(pos == 0 || pos == 1);
// The imported call has position 0, ToNumber has position 1.
return !!pos;
}
int WasmCompiledFrame::LookupExceptionHandlerInTable(int* stack_slots) {
DCHECK_NOT_NULL(stack_slots);
if (!FLAG_wasm_jit_to_native) {
Code* code = LookupCode();
HandlerTable* table = HandlerTable::cast(code->handler_table());
int pc_offset = static_cast<int>(pc() - code->entry());
*stack_slots = code->stack_slots();
return table->LookupReturn(pc_offset);
}
wasm::WasmCode* code =
isolate()->wasm_engine()->code_manager()->LookupCode(pc());
if (!code->IsAnonymous()) {
Object* table_entry =
code->owner()->compiled_module()->handler_table()->get(code->index());
if (table_entry->IsHandlerTable()) {
HandlerTable* table = HandlerTable::cast(table_entry);
int pc_offset = static_cast<int>(pc() - code->instructions().start());
*stack_slots = static_cast<int>(code->stack_slots());
return table->LookupReturn(pc_offset);
}
}
return -1;
}
void WasmInterpreterEntryFrame::Iterate(RootVisitor* v) const {
IterateCompiledFrame(v);
}
void WasmInterpreterEntryFrame::Print(StringStream* accumulator, PrintMode mode,
int index) const {
PrintIndex(accumulator, mode, index);
accumulator->Add("WASM INTERPRETER ENTRY [");
Script* script = this->script();
accumulator->PrintName(script->name());
accumulator->Add("]");
if (mode != OVERVIEW) accumulator->Add("\n");
}
void WasmInterpreterEntryFrame::Summarize(
std::vector<FrameSummary>* functions) const {
Handle<WasmInstanceObject> instance(wasm_instance(), isolate());
std::vector<std::pair<uint32_t, int>> interpreted_stack =
instance->debug_info()->GetInterpretedStack(fp());
for (auto& e : interpreted_stack) {
FrameSummary::WasmInterpretedFrameSummary summary(isolate(), instance,
e.first, e.second);
functions->push_back(summary);
}
}
Code* WasmInterpreterEntryFrame::unchecked_code() const {
if (FLAG_wasm_jit_to_native) {
UNIMPLEMENTED();
} else {
return isolate()->FindCodeObject(pc());
}
}
WasmInstanceObject* WasmInterpreterEntryFrame::wasm_instance() const {
WasmInstanceObject* ret =
FLAG_wasm_jit_to_native
? WasmInstanceObject::GetOwningInstance(
isolate()->wasm_engine()->code_manager()->LookupCode(pc()))
: WasmInstanceObject::GetOwningInstanceGC(LookupCode());
// This is a live stack frame, there must be a live wasm instance available.
DCHECK_NOT_NULL(ret);
return ret;
}
Script* WasmInterpreterEntryFrame::script() const {
return wasm_instance()->compiled_module()->shared()->script();
}
int WasmInterpreterEntryFrame::position() const {
return FrameSummary::GetBottom(this).AsWasmInterpreted().SourcePosition();
}
Object* WasmInterpreterEntryFrame::context() const {
return wasm_instance()->compiled_module()->native_context();
}
Address WasmInterpreterEntryFrame::GetCallerStackPointer() const {
return fp() + ExitFrameConstants::kCallerSPOffset;
}
namespace {
void PrintFunctionSource(StringStream* accumulator, SharedFunctionInfo* shared,
Code* code) {
if (FLAG_max_stack_trace_source_length != 0 && code != nullptr) {
std::ostringstream os;
os << "--------- s o u r c e c o d e ---------\n"
<< SourceCodeOf(shared, FLAG_max_stack_trace_source_length)
<< "\n-----------------------------------------\n";
accumulator->Add(os.str().c_str());
}
}
} // namespace
void JavaScriptFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
DisallowHeapAllocation no_gc;
Object* receiver = this->receiver();
JSFunction* function = this->function();
accumulator->PrintSecurityTokenIfChanged(function);
PrintIndex(accumulator, mode, index);
PrintFrameKind(accumulator);
Code* code = nullptr;
if (IsConstructor()) accumulator->Add("new ");
accumulator->PrintFunction(function, receiver, &code);
// Get scope information for nicer output, if possible. If code is nullptr, or
// doesn't contain scope info, scope_info will return 0 for the number of
// parameters, stack local variables, context local variables, stack slots,
// or context slots.
SharedFunctionInfo* shared = function->shared();
ScopeInfo* scope_info = shared->scope_info();
Object* script_obj = shared->script();
if (script_obj->IsScript()) {
Script* script = Script::cast(script_obj);
accumulator->Add(" [");
accumulator->PrintName(script->name());
Address pc = this->pc();
if (is_interpreted()) {
const InterpretedFrame* iframe =
reinterpret_cast<const InterpretedFrame*>(this);
BytecodeArray* bytecodes = iframe->GetBytecodeArray();
int offset = iframe->GetBytecodeOffset();
int source_pos = AbstractCode::cast(bytecodes)->SourcePosition(offset);
int line = script->GetLineNumber(source_pos) + 1;
accumulator->Add(":%d] [bytecode=%p offset=%d]", line, bytecodes, offset);
} else {
int function_start_pos = shared->start_position();
int line = script->GetLineNumber(function_start_pos) + 1;
accumulator->Add(":~%d] [pc=%p]", line, pc);
}
}
accumulator->Add("(this=%o", receiver);
// Print the parameters.
int parameters_count = ComputeParametersCount();
for (int i = 0; i < parameters_count; i++) {
accumulator->Add(",");
// If we have a name for the parameter we print it. Nameless
// parameters are either because we have more actual parameters
// than formal parameters or because we have no scope information.
if (i < scope_info->ParameterCount()) {
accumulator->PrintName(scope_info->ParameterName(i));
accumulator->Add("=");
}
accumulator->Add("%o", GetParameter(i));
}
accumulator->Add(")");
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
if (is_optimized()) {
accumulator->Add(" {\n// optimized frame\n");
PrintFunctionSource(accumulator, shared, code);
accumulator->Add("}\n");
return;
}
accumulator->Add(" {\n");
// Compute the number of locals and expression stack elements.
int stack_locals_count = scope_info->StackLocalCount();
int heap_locals_count = scope_info->ContextLocalCount();
int expressions_count = ComputeExpressionsCount();
// Print stack-allocated local variables.
if (stack_locals_count > 0) {
accumulator->Add(" // stack-allocated locals\n");
}
for (int i = 0; i < stack_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->StackLocalName(i));
accumulator->Add(" = ");
if (i < expressions_count) {
accumulator->Add("%o", GetExpression(i));
} else {
accumulator->Add("// no expression found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Try to get hold of the context of this frame.
Context* context = nullptr;
if (this->context() != nullptr && this->context()->IsContext()) {
context = Context::cast(this->context());
while (context->IsWithContext()) {
context = context->previous();
DCHECK_NOT_NULL(context);
}
}
// Print heap-allocated local variables.
if (heap_locals_count > 0) {
accumulator->Add(" // heap-allocated locals\n");
}
for (int i = 0; i < heap_locals_count; i++) {
accumulator->Add(" var ");
accumulator->PrintName(scope_info->ContextLocalName(i));
accumulator->Add(" = ");
if (context != nullptr) {
int index = Context::MIN_CONTEXT_SLOTS + i;
if (index < context->length()) {
accumulator->Add("%o", context->get(index));
} else {
accumulator->Add(
"// warning: missing context slot - inconsistent frame?");
}
} else {
accumulator->Add("// warning: no context found - inconsistent frame?");
}
accumulator->Add("\n");
}
// Print the expression stack.
int expressions_start = stack_locals_count;
if (expressions_start < expressions_count) {
accumulator->Add(" // expression stack (top to bottom)\n");
}
for (int i = expressions_count - 1; i >= expressions_start; i--) {
accumulator->Add(" [%02d] : %o\n", i, GetExpression(i));
}
PrintFunctionSource(accumulator, shared, code);
accumulator->Add("}\n\n");
}
void ArgumentsAdaptorFrame::Print(StringStream* accumulator,
PrintMode mode,
int index) const {
int actual = ComputeParametersCount();
int expected = -1;
JSFunction* function = this->function();
expected = function->shared()->internal_formal_parameter_count();
PrintIndex(accumulator, mode, index);
accumulator->Add("arguments adaptor frame: %d->%d", actual, expected);
if (mode == OVERVIEW) {
accumulator->Add("\n");
return;
}
accumulator->Add(" {\n");
// Print actual arguments.
if (actual > 0) accumulator->Add(" // actual arguments\n");
for (int i = 0; i < actual; i++) {
accumulator->Add(" [%02d] : %o", i, GetParameter(i));
if (expected != -1 && i >= expected) {
accumulator->Add(" // not passed to callee");
}
accumulator->Add("\n");
}
accumulator->Add("}\n\n");
}
void EntryFrame::Iterate(RootVisitor* v) const {
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void StandardFrame::IterateExpressions(RootVisitor* v) const {
const int offset = StandardFrameConstants::kLastObjectOffset;
Object** base = &Memory::Object_at(sp());
Object** limit = &Memory::Object_at(fp() + offset) + 1;
v->VisitRootPointers(Root::kTop, base, limit);
}
void JavaScriptFrame::Iterate(RootVisitor* v) const {
IterateExpressions(v);
IteratePc(v, pc_address(), constant_pool_address(), LookupCode());
}
void InternalFrame::Iterate(RootVisitor* v) const {
wasm::WasmCode* wasm_code =
FLAG_wasm_jit_to_native
? isolate()->wasm_engine()->code_manager()->LookupCode(pc())
: nullptr;
if (wasm_code != nullptr) {
DCHECK(wasm_code->kind() == wasm::WasmCode::kLazyStub);
} else {
Code* code = LookupCode();
IteratePc(v, pc_address(), constant_pool_address(), code);
// Internal frames typically do not receive any arguments, hence their stack
// only contains tagged pointers.
// We are misusing the has_tagged_params flag here to tell us whether
// the full stack frame contains only tagged pointers or only raw values.
// This is used for the WasmCompileLazy builtin, where we actually pass
// untagged arguments and also store untagged values on the stack.
if (code->has_tagged_params()) IterateExpressions(v);
}
}
// -------------------------------------------------------------------------
InnerPointerToCodeCache::InnerPointerToCodeCacheEntry*
InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) {
isolate_->counters()->pc_to_code()->Increment();
DCHECK(base::bits::IsPowerOfTwo(kInnerPointerToCodeCacheSize));
uint32_t hash = ComputeIntegerHash(ObjectAddressForHashing(inner_pointer));
uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1);
InnerPointerToCodeCacheEntry* entry = cache(index);
if (entry->inner_pointer == inner_pointer) {
isolate_->counters()->pc_to_code_cached()->Increment();
DCHECK(entry->code ==
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer));
} else {
// Because this code may be interrupted by a profiling signal that
// also queries the cache, we cannot update inner_pointer before the code
// has been set. Otherwise, we risk trying to use a cache entry before
// the code has been computed.
entry->code =
isolate_->heap()->GcSafeFindCodeForInnerPointer(inner_pointer);
entry->safepoint_entry.Reset();
entry->inner_pointer = inner_pointer;
}
return entry;
}
// -------------------------------------------------------------------------
#define DEFINE_WRAPPER(type, field) \
class field##_Wrapper : public ZoneObject { \
public: /* NOLINT */ \
field##_Wrapper(const field& original) : frame_(original) { \
} \
field frame_; \
};
STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER)
#undef DEFINE_WRAPPER
static StackFrame* AllocateFrameCopy(StackFrame* frame, Zone* zone) {
#define FRAME_TYPE_CASE(type, field) \
case StackFrame::type: { \
field##_Wrapper* wrapper = \
new(zone) field##_Wrapper(*(reinterpret_cast<field*>(frame))); \
return &wrapper->frame_; \
}
switch (frame->type()) {
STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE)
default: UNREACHABLE();
}
#undef FRAME_TYPE_CASE
return nullptr;
}
Vector<StackFrame*> CreateStackMap(Isolate* isolate, Zone* zone) {
ZoneVector<StackFrame*> frames(zone);
for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
StackFrame* frame = AllocateFrameCopy(it.frame(), zone);
frames.push_back(frame);
}
return Vector<StackFrame*>(frames.data(), frames.size());
}
} // namespace internal
} // namespace v8