| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_HEAP_HEAP_INL_H_ |
| #define V8_HEAP_HEAP_INL_H_ |
| |
| #include <cmath> |
| |
| // Clients of this interface shouldn't depend on lots of heap internals. |
| // Do not include anything from src/heap other than src/heap/heap.h here! |
| #include "src/heap/heap.h" |
| |
| #include "src/base/platform/platform.h" |
| #include "src/counters-inl.h" |
| #include "src/feedback-vector.h" |
| // TODO(mstarzinger): There are 3 more includes to remove in order to no longer |
| // leak heap internals to users of this interface! |
| #include "src/heap/incremental-marking-inl.h" |
| #include "src/heap/spaces-inl.h" |
| #include "src/heap/store-buffer.h" |
| #include "src/isolate.h" |
| #include "src/log.h" |
| #include "src/msan.h" |
| #include "src/objects-inl.h" |
| #include "src/objects/scope-info.h" |
| #include "src/objects/script-inl.h" |
| #include "src/profiler/heap-profiler.h" |
| #include "src/string-hasher.h" |
| #include "src/zone/zone-list-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| AllocationSpace AllocationResult::RetrySpace() { |
| DCHECK(IsRetry()); |
| return static_cast<AllocationSpace>(Smi::ToInt(object_)); |
| } |
| |
| HeapObject* AllocationResult::ToObjectChecked() { |
| CHECK(!IsRetry()); |
| return HeapObject::cast(object_); |
| } |
| |
| #define ROOT_ACCESSOR(type, name, camel_name) \ |
| type* Heap::name() { return type::cast(roots_[k##camel_name##RootIndex]); } |
| ROOT_LIST(ROOT_ACCESSOR) |
| #undef ROOT_ACCESSOR |
| |
| #define STRUCT_MAP_ACCESSOR(NAME, Name, name) \ |
| Map* Heap::name##_map() { return Map::cast(roots_[k##Name##MapRootIndex]); } |
| STRUCT_LIST(STRUCT_MAP_ACCESSOR) |
| #undef STRUCT_MAP_ACCESSOR |
| |
| #define DATA_HANDLER_MAP_ACCESSOR(NAME, Name, Size, name) \ |
| Map* Heap::name##_map() { \ |
| return Map::cast(roots_[k##Name##Size##MapRootIndex]); \ |
| } |
| DATA_HANDLER_LIST(DATA_HANDLER_MAP_ACCESSOR) |
| #undef DATA_HANDLER_MAP_ACCESSOR |
| |
| #define STRING_ACCESSOR(name, str) \ |
| String* Heap::name() { return String::cast(roots_[k##name##RootIndex]); } |
| INTERNALIZED_STRING_LIST(STRING_ACCESSOR) |
| #undef STRING_ACCESSOR |
| |
| #define SYMBOL_ACCESSOR(name) \ |
| Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); } |
| PRIVATE_SYMBOL_LIST(SYMBOL_ACCESSOR) |
| #undef SYMBOL_ACCESSOR |
| |
| #define SYMBOL_ACCESSOR(name, description) \ |
| Symbol* Heap::name() { return Symbol::cast(roots_[k##name##RootIndex]); } |
| PUBLIC_SYMBOL_LIST(SYMBOL_ACCESSOR) |
| WELL_KNOWN_SYMBOL_LIST(SYMBOL_ACCESSOR) |
| #undef SYMBOL_ACCESSOR |
| |
| #define ACCESSOR_INFO_ACCESSOR(accessor_name, AccessorName) \ |
| AccessorInfo* Heap::accessor_name##_accessor() { \ |
| return AccessorInfo::cast(roots_[k##AccessorName##AccessorRootIndex]); \ |
| } |
| ACCESSOR_INFO_LIST(ACCESSOR_INFO_ACCESSOR) |
| #undef ACCESSOR_INFO_ACCESSOR |
| |
| #define ROOT_ACCESSOR(type, name, camel_name) \ |
| void Heap::set_##name(type* value) { \ |
| /* The deserializer makes use of the fact that these common roots are */ \ |
| /* never in new space and never on a page that is being compacted. */ \ |
| DCHECK(!deserialization_complete() || \ |
| RootCanBeWrittenAfterInitialization(k##camel_name##RootIndex)); \ |
| DCHECK(k##camel_name##RootIndex >= kOldSpaceRoots || !InNewSpace(value)); \ |
| roots_[k##camel_name##RootIndex] = value; \ |
| } |
| ROOT_LIST(ROOT_ACCESSOR) |
| #undef ROOT_ACCESSOR |
| |
| PagedSpace* Heap::paged_space(int idx) { |
| DCHECK_NE(idx, LO_SPACE); |
| DCHECK_NE(idx, NEW_SPACE); |
| return static_cast<PagedSpace*>(space_[idx]); |
| } |
| |
| Space* Heap::space(int idx) { return space_[idx]; } |
| |
| Address* Heap::NewSpaceAllocationTopAddress() { |
| return new_space_->allocation_top_address(); |
| } |
| |
| Address* Heap::NewSpaceAllocationLimitAddress() { |
| return new_space_->allocation_limit_address(); |
| } |
| |
| Address* Heap::OldSpaceAllocationTopAddress() { |
| return old_space_->allocation_top_address(); |
| } |
| |
| Address* Heap::OldSpaceAllocationLimitAddress() { |
| return old_space_->allocation_limit_address(); |
| } |
| |
| void Heap::UpdateNewSpaceAllocationCounter() { |
| new_space_allocation_counter_ = NewSpaceAllocationCounter(); |
| } |
| |
| size_t Heap::NewSpaceAllocationCounter() { |
| return new_space_allocation_counter_ + new_space()->AllocatedSinceLastGC(); |
| } |
| |
| template <> |
| bool inline Heap::IsOneByte(Vector<const char> str, int chars) { |
| // TODO(dcarney): incorporate Latin-1 check when Latin-1 is supported? |
| return chars == str.length(); |
| } |
| |
| |
| template <> |
| bool inline Heap::IsOneByte(String* str, int chars) { |
| return str->IsOneByteRepresentation(); |
| } |
| |
| |
| AllocationResult Heap::AllocateInternalizedStringFromUtf8( |
| Vector<const char> str, int chars, uint32_t hash_field) { |
| if (IsOneByte(str, chars)) { |
| return AllocateOneByteInternalizedString(Vector<const uint8_t>::cast(str), |
| hash_field); |
| } |
| return AllocateInternalizedStringImpl<false>(str, chars, hash_field); |
| } |
| |
| |
| template <typename T> |
| AllocationResult Heap::AllocateInternalizedStringImpl(T t, int chars, |
| uint32_t hash_field) { |
| if (IsOneByte(t, chars)) { |
| return AllocateInternalizedStringImpl<true>(t, chars, hash_field); |
| } |
| return AllocateInternalizedStringImpl<false>(t, chars, hash_field); |
| } |
| |
| |
| AllocationResult Heap::AllocateOneByteInternalizedString( |
| Vector<const uint8_t> str, uint32_t hash_field) { |
| CHECK_GE(String::kMaxLength, str.length()); |
| // The canonical empty_string is the only zero-length string we allow. |
| DCHECK_IMPLIES(str.length() == 0, roots_[kempty_stringRootIndex] == nullptr); |
| // Compute map and object size. |
| Map* map = one_byte_internalized_string_map(); |
| int size = SeqOneByteString::SizeFor(str.length()); |
| |
| // Allocate string. |
| HeapObject* result = nullptr; |
| { |
| AllocationResult allocation = AllocateRaw(size, OLD_SPACE); |
| if (!allocation.To(&result)) return allocation; |
| } |
| |
| // String maps are all immortal immovable objects. |
| result->set_map_after_allocation(map, SKIP_WRITE_BARRIER); |
| // Set length and hash fields of the allocated string. |
| String* answer = String::cast(result); |
| answer->set_length(str.length()); |
| answer->set_hash_field(hash_field); |
| |
| DCHECK_EQ(size, answer->Size()); |
| |
| // Fill in the characters. |
| MemCopy(answer->address() + SeqOneByteString::kHeaderSize, str.start(), |
| str.length()); |
| |
| return answer; |
| } |
| |
| |
| AllocationResult Heap::AllocateTwoByteInternalizedString(Vector<const uc16> str, |
| uint32_t hash_field) { |
| CHECK_GE(String::kMaxLength, str.length()); |
| DCHECK_NE(0, str.length()); // Use Heap::empty_string() instead. |
| // Compute map and object size. |
| Map* map = internalized_string_map(); |
| int size = SeqTwoByteString::SizeFor(str.length()); |
| |
| // Allocate string. |
| HeapObject* result = nullptr; |
| { |
| AllocationResult allocation = AllocateRaw(size, OLD_SPACE); |
| if (!allocation.To(&result)) return allocation; |
| } |
| |
| result->set_map_after_allocation(map); |
| // Set length and hash fields of the allocated string. |
| String* answer = String::cast(result); |
| answer->set_length(str.length()); |
| answer->set_hash_field(hash_field); |
| |
| DCHECK_EQ(size, answer->Size()); |
| |
| // Fill in the characters. |
| MemCopy(answer->address() + SeqTwoByteString::kHeaderSize, str.start(), |
| str.length() * kUC16Size); |
| |
| return answer; |
| } |
| |
| AllocationResult Heap::CopyFixedArray(FixedArray* src) { |
| if (src->length() == 0) return src; |
| return CopyFixedArrayWithMap(src, src->map()); |
| } |
| |
| |
| AllocationResult Heap::CopyFixedDoubleArray(FixedDoubleArray* src) { |
| if (src->length() == 0) return src; |
| return CopyFixedDoubleArrayWithMap(src, src->map()); |
| } |
| |
| AllocationResult Heap::AllocateFixedArrayWithMap(RootListIndex map_root_index, |
| int length, |
| PretenureFlag pretenure) { |
| return AllocateFixedArrayWithFiller(map_root_index, length, pretenure, |
| undefined_value()); |
| } |
| |
| AllocationResult Heap::AllocateFixedArray(int length, PretenureFlag pretenure) { |
| return AllocateFixedArrayWithFiller(Heap::kFixedArrayMapRootIndex, length, |
| pretenure, undefined_value()); |
| } |
| |
| AllocationResult Heap::AllocateRaw(int size_in_bytes, AllocationSpace space, |
| AllocationAlignment alignment) { |
| DCHECK(AllowHandleAllocation::IsAllowed()); |
| DCHECK(AllowHeapAllocation::IsAllowed()); |
| DCHECK(gc_state_ == NOT_IN_GC); |
| #ifdef V8_ENABLE_ALLOCATION_TIMEOUT |
| if (FLAG_random_gc_interval > 0 || FLAG_gc_interval >= 0) { |
| if (!always_allocate() && Heap::allocation_timeout_-- <= 0) { |
| return AllocationResult::Retry(space); |
| } |
| } |
| #endif |
| #ifdef DEBUG |
| isolate_->counters()->objs_since_last_full()->Increment(); |
| isolate_->counters()->objs_since_last_young()->Increment(); |
| #endif |
| |
| bool large_object = size_in_bytes > kMaxRegularHeapObjectSize; |
| HeapObject* object = nullptr; |
| AllocationResult allocation; |
| if (NEW_SPACE == space) { |
| if (large_object) { |
| space = LO_SPACE; |
| } else { |
| allocation = new_space_->AllocateRaw(size_in_bytes, alignment); |
| if (allocation.To(&object)) { |
| OnAllocationEvent(object, size_in_bytes); |
| } |
| return allocation; |
| } |
| } |
| |
| // Here we only allocate in the old generation. |
| if (OLD_SPACE == space) { |
| if (large_object) { |
| allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); |
| } else { |
| allocation = old_space_->AllocateRaw(size_in_bytes, alignment); |
| } |
| } else if (CODE_SPACE == space) { |
| if (size_in_bytes <= code_space()->AreaSize()) { |
| allocation = code_space_->AllocateRawUnaligned(size_in_bytes); |
| } else { |
| allocation = lo_space_->AllocateRaw(size_in_bytes, EXECUTABLE); |
| } |
| } else if (LO_SPACE == space) { |
| DCHECK(large_object); |
| allocation = lo_space_->AllocateRaw(size_in_bytes, NOT_EXECUTABLE); |
| } else if (MAP_SPACE == space) { |
| allocation = map_space_->AllocateRawUnaligned(size_in_bytes); |
| } else { |
| // NEW_SPACE is not allowed here. |
| UNREACHABLE(); |
| } |
| if (allocation.To(&object)) { |
| OnAllocationEvent(object, size_in_bytes); |
| } |
| |
| return allocation; |
| } |
| |
| |
| void Heap::OnAllocationEvent(HeapObject* object, int size_in_bytes) { |
| HeapProfiler* profiler = isolate_->heap_profiler(); |
| if (profiler->is_tracking_allocations()) { |
| profiler->AllocationEvent(object->address(), size_in_bytes); |
| } |
| |
| if (FLAG_verify_predictable) { |
| ++allocations_count_; |
| // Advance synthetic time by making a time request. |
| MonotonicallyIncreasingTimeInMs(); |
| |
| UpdateAllocationsHash(object); |
| UpdateAllocationsHash(size_in_bytes); |
| |
| if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) { |
| PrintAllocationsHash(); |
| } |
| } else if (FLAG_fuzzer_gc_analysis) { |
| ++allocations_count_; |
| } else if (FLAG_trace_allocation_stack_interval > 0) { |
| ++allocations_count_; |
| if (allocations_count_ % FLAG_trace_allocation_stack_interval == 0) { |
| isolate()->PrintStack(stdout, Isolate::kPrintStackConcise); |
| } |
| } |
| } |
| |
| |
| void Heap::OnMoveEvent(HeapObject* target, HeapObject* source, |
| int size_in_bytes) { |
| HeapProfiler* heap_profiler = isolate_->heap_profiler(); |
| if (heap_profiler->is_tracking_object_moves()) { |
| heap_profiler->ObjectMoveEvent(source->address(), target->address(), |
| size_in_bytes); |
| } |
| if (target->IsSharedFunctionInfo()) { |
| LOG_CODE_EVENT(isolate_, SharedFunctionInfoMoveEvent(source->address(), |
| target->address())); |
| } |
| |
| if (FLAG_verify_predictable) { |
| ++allocations_count_; |
| // Advance synthetic time by making a time request. |
| MonotonicallyIncreasingTimeInMs(); |
| |
| UpdateAllocationsHash(source); |
| UpdateAllocationsHash(target); |
| UpdateAllocationsHash(size_in_bytes); |
| |
| if (allocations_count_ % FLAG_dump_allocations_digest_at_alloc == 0) { |
| PrintAllocationsHash(); |
| } |
| } else if (FLAG_fuzzer_gc_analysis) { |
| ++allocations_count_; |
| } |
| } |
| |
| void Heap::UpdateAllocationsHash(HeapObject* object) { |
| Address object_address = object->address(); |
| MemoryChunk* memory_chunk = MemoryChunk::FromAddress(object_address); |
| AllocationSpace allocation_space = memory_chunk->owner()->identity(); |
| |
| STATIC_ASSERT(kSpaceTagSize + kPageSizeBits <= 32); |
| uint32_t value = |
| static_cast<uint32_t>(object_address - memory_chunk->address()) | |
| (static_cast<uint32_t>(allocation_space) << kPageSizeBits); |
| |
| UpdateAllocationsHash(value); |
| } |
| |
| |
| void Heap::UpdateAllocationsHash(uint32_t value) { |
| uint16_t c1 = static_cast<uint16_t>(value); |
| uint16_t c2 = static_cast<uint16_t>(value >> 16); |
| raw_allocations_hash_ = |
| StringHasher::AddCharacterCore(raw_allocations_hash_, c1); |
| raw_allocations_hash_ = |
| StringHasher::AddCharacterCore(raw_allocations_hash_, c2); |
| } |
| |
| |
| void Heap::RegisterExternalString(String* string) { |
| external_string_table_.AddString(string); |
| } |
| |
| |
| void Heap::FinalizeExternalString(String* string) { |
| DCHECK(string->IsExternalString()); |
| v8::String::ExternalStringResourceBase** resource_addr = |
| reinterpret_cast<v8::String::ExternalStringResourceBase**>( |
| reinterpret_cast<byte*>(string) + ExternalString::kResourceOffset - |
| kHeapObjectTag); |
| |
| // Dispose of the C++ object if it has not already been disposed. |
| if (*resource_addr != nullptr) { |
| (*resource_addr)->Dispose(); |
| *resource_addr = nullptr; |
| } |
| } |
| |
| Address Heap::NewSpaceTop() { return new_space_->top(); } |
| |
| bool Heap::InNewSpace(Object* object) { |
| // Inlined check from NewSpace::Contains. |
| bool result = |
| object->IsHeapObject() && |
| Page::FromAddress(HeapObject::cast(object)->address())->InNewSpace(); |
| DCHECK(!result || // Either not in new space |
| gc_state_ != NOT_IN_GC || // ... or in the middle of GC |
| InToSpace(object)); // ... or in to-space (where we allocate). |
| return result; |
| } |
| |
| bool Heap::InFromSpace(Object* object) { |
| return object->IsHeapObject() && |
| MemoryChunk::FromAddress(HeapObject::cast(object)->address()) |
| ->IsFlagSet(Page::IN_FROM_SPACE); |
| } |
| |
| |
| bool Heap::InToSpace(Object* object) { |
| return object->IsHeapObject() && |
| MemoryChunk::FromAddress(HeapObject::cast(object)->address()) |
| ->IsFlagSet(Page::IN_TO_SPACE); |
| } |
| |
| bool Heap::InOldSpace(Object* object) { return old_space_->Contains(object); } |
| |
| bool Heap::InNewSpaceSlow(Address address) { |
| return new_space_->ContainsSlow(address); |
| } |
| |
| bool Heap::InOldSpaceSlow(Address address) { |
| return old_space_->ContainsSlow(address); |
| } |
| |
| bool Heap::ShouldBePromoted(Address old_address) { |
| Page* page = Page::FromAddress(old_address); |
| Address age_mark = new_space_->age_mark(); |
| return page->IsFlagSet(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK) && |
| (!page->ContainsLimit(age_mark) || old_address < age_mark); |
| } |
| |
| void Heap::RecordWrite(Object* object, Object** slot, Object* value) { |
| if (!InNewSpace(value) || !object->IsHeapObject() || InNewSpace(object)) { |
| return; |
| } |
| store_buffer()->InsertEntry(reinterpret_cast<Address>(slot)); |
| } |
| |
| void Heap::RecordWriteIntoCode(Code* host, RelocInfo* rinfo, Object* value) { |
| if (InNewSpace(value)) { |
| RecordWriteIntoCodeSlow(host, rinfo, value); |
| } |
| } |
| |
| void Heap::RecordFixedArrayElements(FixedArray* array, int offset, int length) { |
| if (InNewSpace(array)) return; |
| for (int i = 0; i < length; i++) { |
| if (!InNewSpace(array->get(offset + i))) continue; |
| store_buffer()->InsertEntry( |
| reinterpret_cast<Address>(array->RawFieldOfElementAt(offset + i))); |
| } |
| } |
| |
| Address* Heap::store_buffer_top_address() { |
| return store_buffer()->top_address(); |
| } |
| |
| void Heap::CopyBlock(Address dst, Address src, int byte_size) { |
| CopyWords(reinterpret_cast<Object**>(dst), reinterpret_cast<Object**>(src), |
| static_cast<size_t>(byte_size / kPointerSize)); |
| } |
| |
| template <Heap::FindMementoMode mode> |
| AllocationMemento* Heap::FindAllocationMemento(Map* map, HeapObject* object) { |
| Address object_address = object->address(); |
| Address memento_address = object_address + object->SizeFromMap(map); |
| Address last_memento_word_address = memento_address + kPointerSize; |
| // If the memento would be on another page, bail out immediately. |
| if (!Page::OnSamePage(object_address, last_memento_word_address)) { |
| return nullptr; |
| } |
| HeapObject* candidate = HeapObject::FromAddress(memento_address); |
| Map* candidate_map = candidate->map(); |
| // This fast check may peek at an uninitialized word. However, the slow check |
| // below (memento_address == top) ensures that this is safe. Mark the word as |
| // initialized to silence MemorySanitizer warnings. |
| MSAN_MEMORY_IS_INITIALIZED(&candidate_map, sizeof(candidate_map)); |
| if (candidate_map != allocation_memento_map()) { |
| return nullptr; |
| } |
| |
| // Bail out if the memento is below the age mark, which can happen when |
| // mementos survived because a page got moved within new space. |
| Page* object_page = Page::FromAddress(object_address); |
| if (object_page->IsFlagSet(Page::NEW_SPACE_BELOW_AGE_MARK)) { |
| Address age_mark = |
| reinterpret_cast<SemiSpace*>(object_page->owner())->age_mark(); |
| if (!object_page->Contains(age_mark)) { |
| return nullptr; |
| } |
| // Do an exact check in the case where the age mark is on the same page. |
| if (object_address < age_mark) { |
| return nullptr; |
| } |
| } |
| |
| AllocationMemento* memento_candidate = AllocationMemento::cast(candidate); |
| |
| // Depending on what the memento is used for, we might need to perform |
| // additional checks. |
| Address top; |
| switch (mode) { |
| case Heap::kForGC: |
| return memento_candidate; |
| case Heap::kForRuntime: |
| if (memento_candidate == nullptr) return nullptr; |
| // Either the object is the last object in the new space, or there is |
| // another object of at least word size (the header map word) following |
| // it, so suffices to compare ptr and top here. |
| top = NewSpaceTop(); |
| DCHECK(memento_address == top || |
| memento_address + HeapObject::kHeaderSize <= top || |
| !Page::OnSamePage(memento_address, top - 1)); |
| if ((memento_address != top) && memento_candidate->IsValid()) { |
| return memento_candidate; |
| } |
| return nullptr; |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| void Heap::UpdateAllocationSite(Map* map, HeapObject* object, |
| PretenuringFeedbackMap* pretenuring_feedback) { |
| DCHECK_NE(pretenuring_feedback, &global_pretenuring_feedback_); |
| DCHECK(InFromSpace(object) || |
| (InToSpace(object) && |
| Page::FromAddress(object->address()) |
| ->IsFlagSet(Page::PAGE_NEW_NEW_PROMOTION)) || |
| (!InNewSpace(object) && |
| Page::FromAddress(object->address()) |
| ->IsFlagSet(Page::PAGE_NEW_OLD_PROMOTION))); |
| if (!FLAG_allocation_site_pretenuring || |
| !AllocationSite::CanTrack(map->instance_type())) |
| return; |
| AllocationMemento* memento_candidate = |
| FindAllocationMemento<kForGC>(map, object); |
| if (memento_candidate == nullptr) return; |
| |
| // Entering cached feedback is used in the parallel case. We are not allowed |
| // to dereference the allocation site and rather have to postpone all checks |
| // till actually merging the data. |
| Address key = memento_candidate->GetAllocationSiteUnchecked(); |
| (*pretenuring_feedback)[reinterpret_cast<AllocationSite*>(key)]++; |
| } |
| |
| Isolate* Heap::isolate() { |
| return reinterpret_cast<Isolate*>( |
| reinterpret_cast<intptr_t>(this) - |
| reinterpret_cast<size_t>(reinterpret_cast<Isolate*>(16)->heap()) + 16); |
| } |
| |
| void Heap::ExternalStringTable::AddString(String* string) { |
| DCHECK(string->IsExternalString()); |
| if (heap_->InNewSpace(string)) { |
| new_space_strings_.push_back(string); |
| } else { |
| old_space_strings_.push_back(string); |
| } |
| } |
| |
| Oddball* Heap::ToBoolean(bool condition) { |
| return condition ? true_value() : false_value(); |
| } |
| |
| uint32_t Heap::HashSeed() { |
| uint32_t seed = static_cast<uint32_t>(hash_seed()->value()); |
| DCHECK(FLAG_randomize_hashes || seed == 0); |
| return seed; |
| } |
| |
| |
| int Heap::NextScriptId() { |
| int last_id = last_script_id()->value(); |
| if (last_id == Smi::kMaxValue) { |
| last_id = 1; |
| } else { |
| last_id++; |
| } |
| set_last_script_id(Smi::FromInt(last_id)); |
| return last_id; |
| } |
| |
| int Heap::GetNextTemplateSerialNumber() { |
| int next_serial_number = next_template_serial_number()->value() + 1; |
| set_next_template_serial_number(Smi::FromInt(next_serial_number)); |
| return next_serial_number; |
| } |
| |
| AlwaysAllocateScope::AlwaysAllocateScope(Isolate* isolate) |
| : heap_(isolate->heap()) { |
| heap_->always_allocate_scope_count_.Increment(1); |
| } |
| |
| AlwaysAllocateScope::~AlwaysAllocateScope() { |
| heap_->always_allocate_scope_count_.Decrement(1); |
| } |
| |
| CodeSpaceMemoryModificationScope::CodeSpaceMemoryModificationScope(Heap* heap) |
| : heap_(heap) { |
| if (heap_->write_protect_code_memory()) { |
| heap_->increment_code_space_memory_modification_scope_depth(); |
| heap_->code_space()->SetReadAndWritable(); |
| LargePage* page = heap_->lo_space()->first_page(); |
| while (page != nullptr) { |
| if (page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) { |
| page->SetReadAndWritable(); |
| } |
| page = page->next_page(); |
| } |
| } |
| } |
| |
| CodeSpaceMemoryModificationScope::~CodeSpaceMemoryModificationScope() { |
| if (heap_->write_protect_code_memory()) { |
| heap_->decrement_code_space_memory_modification_scope_depth(); |
| heap_->code_space()->SetReadAndExecutable(); |
| LargePage* page = heap_->lo_space()->first_page(); |
| while (page != nullptr) { |
| if (page->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) { |
| page->SetReadAndExecutable(); |
| } |
| page = page->next_page(); |
| } |
| } |
| } |
| |
| CodePageMemoryModificationScope::CodePageMemoryModificationScope( |
| MemoryChunk* chunk) |
| : chunk_(chunk), |
| scope_active_(chunk_->heap()->write_protect_code_memory() && |
| chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE)) { |
| if (scope_active_) { |
| DCHECK(chunk_->owner()->identity() == CODE_SPACE || |
| (chunk_->owner()->identity() == LO_SPACE && |
| chunk_->IsFlagSet(MemoryChunk::IS_EXECUTABLE))); |
| chunk_->SetReadAndWritable(); |
| } |
| } |
| |
| CodePageMemoryModificationScope::~CodePageMemoryModificationScope() { |
| if (scope_active_) { |
| chunk_->SetReadAndExecutable(); |
| } |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_HEAP_HEAP_INL_H_ |