| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_HEAP_SPACES_H_ |
| #define V8_HEAP_SPACES_H_ |
| |
| #include <list> |
| #include <map> |
| #include <memory> |
| #include <unordered_map> |
| #include <unordered_set> |
| #include <vector> |
| |
| #include "src/allocation.h" |
| #include "src/base/atomic-utils.h" |
| #include "src/base/iterator.h" |
| #include "src/base/platform/mutex.h" |
| #include "src/cancelable-task.h" |
| #include "src/flags.h" |
| #include "src/globals.h" |
| #include "src/heap/heap.h" |
| #include "src/heap/invalidated-slots.h" |
| #include "src/heap/marking.h" |
| #include "src/objects.h" |
| #include "src/objects/map.h" |
| #include "src/utils.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| namespace heap { |
| class HeapTester; |
| class TestCodeRangeScope; |
| } // namespace heap |
| |
| class AllocationObserver; |
| class CompactionSpace; |
| class CompactionSpaceCollection; |
| class FreeList; |
| class Isolate; |
| class LinearAllocationArea; |
| class LocalArrayBufferTracker; |
| class MemoryAllocator; |
| class MemoryChunk; |
| class Page; |
| class PagedSpace; |
| class SemiSpace; |
| class SkipList; |
| class SlotsBuffer; |
| class SlotSet; |
| class TypedSlotSet; |
| class Space; |
| |
| // ----------------------------------------------------------------------------- |
| // Heap structures: |
| // |
| // A JS heap consists of a young generation, an old generation, and a large |
| // object space. The young generation is divided into two semispaces. A |
| // scavenger implements Cheney's copying algorithm. The old generation is |
| // separated into a map space and an old object space. The map space contains |
| // all (and only) map objects, the rest of old objects go into the old space. |
| // The old generation is collected by a mark-sweep-compact collector. |
| // |
| // The semispaces of the young generation are contiguous. The old and map |
| // spaces consists of a list of pages. A page has a page header and an object |
| // area. |
| // |
| // There is a separate large object space for objects larger than |
| // kMaxRegularHeapObjectSize, so that they do not have to move during |
| // collection. The large object space is paged. Pages in large object space |
| // may be larger than the page size. |
| // |
| // A store-buffer based write barrier is used to keep track of intergenerational |
| // references. See heap/store-buffer.h. |
| // |
| // During scavenges and mark-sweep collections we sometimes (after a store |
| // buffer overflow) iterate intergenerational pointers without decoding heap |
| // object maps so if the page belongs to old space or large object space |
| // it is essential to guarantee that the page does not contain any |
| // garbage pointers to new space: every pointer aligned word which satisfies |
| // the Heap::InNewSpace() predicate must be a pointer to a live heap object in |
| // new space. Thus objects in old space and large object spaces should have a |
| // special layout (e.g. no bare integer fields). This requirement does not |
| // apply to map space which is iterated in a special fashion. However we still |
| // require pointer fields of dead maps to be cleaned. |
| // |
| // To enable lazy cleaning of old space pages we can mark chunks of the page |
| // as being garbage. Garbage sections are marked with a special map. These |
| // sections are skipped when scanning the page, even if we are otherwise |
| // scanning without regard for object boundaries. Garbage sections are chained |
| // together to form a free list after a GC. Garbage sections created outside |
| // of GCs by object trunctation etc. may not be in the free list chain. Very |
| // small free spaces are ignored, they need only be cleaned of bogus pointers |
| // into new space. |
| // |
| // Each page may have up to one special garbage section. The start of this |
| // section is denoted by the top field in the space. The end of the section |
| // is denoted by the limit field in the space. This special garbage section |
| // is not marked with a free space map in the data. The point of this section |
| // is to enable linear allocation without having to constantly update the byte |
| // array every time the top field is updated and a new object is created. The |
| // special garbage section is not in the chain of garbage sections. |
| // |
| // Since the top and limit fields are in the space, not the page, only one page |
| // has a special garbage section, and if the top and limit are equal then there |
| // is no special garbage section. |
| |
| // Some assertion macros used in the debugging mode. |
| |
| #define DCHECK_PAGE_ALIGNED(address) \ |
| DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0) |
| |
| #define DCHECK_OBJECT_ALIGNED(address) \ |
| DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0) |
| |
| #define DCHECK_OBJECT_SIZE(size) \ |
| DCHECK((0 < size) && (size <= kMaxRegularHeapObjectSize)) |
| |
| #define DCHECK_CODEOBJECT_SIZE(size, code_space) \ |
| DCHECK((0 < size) && (size <= code_space->AreaSize())) |
| |
| #define DCHECK_PAGE_OFFSET(offset) \ |
| DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize)) |
| |
| enum FreeListCategoryType { |
| kTiniest, |
| kTiny, |
| kSmall, |
| kMedium, |
| kLarge, |
| kHuge, |
| |
| kFirstCategory = kTiniest, |
| kLastCategory = kHuge, |
| kNumberOfCategories = kLastCategory + 1, |
| kInvalidCategory |
| }; |
| |
| enum FreeMode { kLinkCategory, kDoNotLinkCategory }; |
| |
| enum RememberedSetType { |
| OLD_TO_NEW, |
| OLD_TO_OLD, |
| NUMBER_OF_REMEMBERED_SET_TYPES = OLD_TO_OLD + 1 |
| }; |
| |
| // A free list category maintains a linked list of free memory blocks. |
| class FreeListCategory { |
| public: |
| static const int kSize = kIntSize + // FreeListCategoryType type_ |
| kIntSize + // padding for type_ |
| kSizetSize + // size_t available_ |
| kPointerSize + // FreeSpace* top_ |
| kPointerSize + // FreeListCategory* prev_ |
| kPointerSize; // FreeListCategory* next_ |
| |
| FreeListCategory() |
| : type_(kInvalidCategory), |
| available_(0), |
| top_(nullptr), |
| prev_(nullptr), |
| next_(nullptr) {} |
| |
| void Initialize(FreeListCategoryType type) { |
| type_ = type; |
| available_ = 0; |
| top_ = nullptr; |
| prev_ = nullptr; |
| next_ = nullptr; |
| } |
| |
| void Reset(); |
| |
| void ResetStats() { Reset(); } |
| |
| void RepairFreeList(Heap* heap); |
| |
| // Relinks the category into the currently owning free list. Requires that the |
| // category is currently unlinked. |
| void Relink(); |
| |
| void Free(FreeSpace* node, size_t size_in_bytes, FreeMode mode); |
| |
| // Picks a node from the list and stores its size in |node_size|. Returns |
| // nullptr if the category is empty. |
| FreeSpace* PickNodeFromList(size_t* node_size); |
| |
| // Performs a single try to pick a node of at least |minimum_size| from the |
| // category. Stores the actual size in |node_size|. Returns nullptr if no |
| // node is found. |
| FreeSpace* TryPickNodeFromList(size_t minimum_size, size_t* node_size); |
| |
| // Picks a node of at least |minimum_size| from the category. Stores the |
| // actual size in |node_size|. Returns nullptr if no node is found. |
| FreeSpace* SearchForNodeInList(size_t minimum_size, size_t* node_size); |
| |
| inline FreeList* owner(); |
| inline Page* page() const; |
| inline bool is_linked(); |
| bool is_empty() { return top() == nullptr; } |
| size_t available() const { return available_; } |
| |
| #ifdef DEBUG |
| size_t SumFreeList(); |
| int FreeListLength(); |
| #endif |
| |
| private: |
| // For debug builds we accurately compute free lists lengths up until |
| // {kVeryLongFreeList} by manually walking the list. |
| static const int kVeryLongFreeList = 500; |
| |
| FreeSpace* top() { return top_; } |
| void set_top(FreeSpace* top) { top_ = top; } |
| FreeListCategory* prev() { return prev_; } |
| void set_prev(FreeListCategory* prev) { prev_ = prev; } |
| FreeListCategory* next() { return next_; } |
| void set_next(FreeListCategory* next) { next_ = next; } |
| |
| // |type_|: The type of this free list category. |
| FreeListCategoryType type_; |
| |
| // |available_|: Total available bytes in all blocks of this free list |
| // category. |
| size_t available_; |
| |
| // |top_|: Points to the top FreeSpace* in the free list category. |
| FreeSpace* top_; |
| |
| FreeListCategory* prev_; |
| FreeListCategory* next_; |
| |
| friend class FreeList; |
| friend class PagedSpace; |
| }; |
| |
| // MemoryChunk represents a memory region owned by a specific space. |
| // It is divided into the header and the body. Chunk start is always |
| // 1MB aligned. Start of the body is aligned so it can accommodate |
| // any heap object. |
| class MemoryChunk { |
| public: |
| // Use with std data structures. |
| struct Hasher { |
| size_t operator()(MemoryChunk* const chunk) const { |
| return reinterpret_cast<size_t>(chunk) >> kPageSizeBits; |
| } |
| }; |
| |
| enum Flag { |
| NO_FLAGS = 0u, |
| IS_EXECUTABLE = 1u << 0, |
| POINTERS_TO_HERE_ARE_INTERESTING = 1u << 1, |
| POINTERS_FROM_HERE_ARE_INTERESTING = 1u << 2, |
| // A page in new space has one of the next to flags set. |
| IN_FROM_SPACE = 1u << 3, |
| IN_TO_SPACE = 1u << 4, |
| NEW_SPACE_BELOW_AGE_MARK = 1u << 5, |
| EVACUATION_CANDIDATE = 1u << 6, |
| NEVER_EVACUATE = 1u << 7, |
| |
| // Large objects can have a progress bar in their page header. These object |
| // are scanned in increments and will be kept black while being scanned. |
| // Even if the mutator writes to them they will be kept black and a white |
| // to grey transition is performed in the value. |
| HAS_PROGRESS_BAR = 1u << 8, |
| |
| // |PAGE_NEW_OLD_PROMOTION|: A page tagged with this flag has been promoted |
| // from new to old space during evacuation. |
| PAGE_NEW_OLD_PROMOTION = 1u << 9, |
| |
| // |PAGE_NEW_NEW_PROMOTION|: A page tagged with this flag has been moved |
| // within the new space during evacuation. |
| PAGE_NEW_NEW_PROMOTION = 1u << 10, |
| |
| // This flag is intended to be used for testing. Works only when both |
| // FLAG_stress_compaction and FLAG_manual_evacuation_candidates_selection |
| // are set. It forces the page to become an evacuation candidate at next |
| // candidates selection cycle. |
| FORCE_EVACUATION_CANDIDATE_FOR_TESTING = 1u << 11, |
| |
| // This flag is intended to be used for testing. |
| NEVER_ALLOCATE_ON_PAGE = 1u << 12, |
| |
| // The memory chunk is already logically freed, however the actual freeing |
| // still has to be performed. |
| PRE_FREED = 1u << 13, |
| |
| // |POOLED|: When actually freeing this chunk, only uncommit and do not |
| // give up the reservation as we still reuse the chunk at some point. |
| POOLED = 1u << 14, |
| |
| // |COMPACTION_WAS_ABORTED|: Indicates that the compaction in this page |
| // has been aborted and needs special handling by the sweeper. |
| COMPACTION_WAS_ABORTED = 1u << 15, |
| |
| // |COMPACTION_WAS_ABORTED_FOR_TESTING|: During stress testing evacuation |
| // on pages is sometimes aborted. The flag is used to avoid repeatedly |
| // triggering on the same page. |
| COMPACTION_WAS_ABORTED_FOR_TESTING = 1u << 16, |
| |
| // |ANCHOR|: Flag is set if page is an anchor. |
| ANCHOR = 1u << 17, |
| |
| // |SWEEP_TO_ITERATE|: The page requires sweeping using external markbits |
| // to iterate the page. |
| SWEEP_TO_ITERATE = 1u << 18 |
| }; |
| |
| using Flags = uintptr_t; |
| |
| static const Flags kPointersToHereAreInterestingMask = |
| POINTERS_TO_HERE_ARE_INTERESTING; |
| |
| static const Flags kPointersFromHereAreInterestingMask = |
| POINTERS_FROM_HERE_ARE_INTERESTING; |
| |
| static const Flags kEvacuationCandidateMask = EVACUATION_CANDIDATE; |
| |
| static const Flags kIsInNewSpaceMask = IN_FROM_SPACE | IN_TO_SPACE; |
| |
| static const Flags kSkipEvacuationSlotsRecordingMask = |
| kEvacuationCandidateMask | kIsInNewSpaceMask; |
| |
| // |kSweepingDone|: The page state when sweeping is complete or sweeping must |
| // not be performed on that page. Sweeper threads that are done with their |
| // work will set this value and not touch the page anymore. |
| // |kSweepingPending|: This page is ready for parallel sweeping. |
| // |kSweepingInProgress|: This page is currently swept by a sweeper thread. |
| enum ConcurrentSweepingState { |
| kSweepingDone, |
| kSweepingPending, |
| kSweepingInProgress, |
| }; |
| |
| static const intptr_t kAlignment = |
| (static_cast<uintptr_t>(1) << kPageSizeBits); |
| |
| static const intptr_t kAlignmentMask = kAlignment - 1; |
| |
| static const intptr_t kSizeOffset = 0; |
| static const intptr_t kFlagsOffset = kSizeOffset + kSizetSize; |
| static const intptr_t kAreaStartOffset = kFlagsOffset + kIntptrSize; |
| static const intptr_t kAreaEndOffset = kAreaStartOffset + kPointerSize; |
| static const intptr_t kReservationOffset = kAreaEndOffset + kPointerSize; |
| static const intptr_t kOwnerOffset = kReservationOffset + 2 * kPointerSize; |
| |
| static const size_t kMinHeaderSize = |
| kSizeOffset // NOLINT |
| + kSizetSize // size_t size |
| + kUIntptrSize // uintptr_t flags_ |
| + kPointerSize // Address area_start_ |
| + kPointerSize // Address area_end_ |
| + 2 * kPointerSize // VirtualMemory reservation_ |
| + kPointerSize // Address owner_ |
| + kPointerSize // Heap* heap_ |
| + kIntptrSize // intptr_t progress_bar_ |
| + kIntptrSize // intptr_t live_byte_count_ |
| + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // SlotSet* array |
| + kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // TypedSlotSet* array |
| + kPointerSize // InvalidatedSlots* invalidated_slots_ |
| + kPointerSize // SkipList* skip_list_ |
| + kPointerSize // AtomicValue high_water_mark_ |
| + kPointerSize // base::Mutex* mutex_ |
| + kPointerSize // base::AtomicWord concurrent_sweeping_ |
| + kPointerSize // base::Mutex* page_protection_change_mutex_ |
| + kPointerSize // unitptr_t write_unprotect_counter_ |
| + kSizetSize // size_t allocated_bytes_ |
| + kSizetSize // size_t wasted_memory_ |
| + kPointerSize // AtomicValue next_chunk_ |
| + kPointerSize // AtomicValue prev_chunk_ |
| + FreeListCategory::kSize * kNumberOfCategories |
| // FreeListCategory categories_[kNumberOfCategories] |
| + kPointerSize // LocalArrayBufferTracker* local_tracker_ |
| + kIntptrSize // intptr_t young_generation_live_byte_count_ |
| + kPointerSize; // Bitmap* young_generation_bitmap_ |
| |
| // We add some more space to the computed header size to amount for missing |
| // alignment requirements in our computation. |
| // Try to get kHeaderSize properly aligned on 32-bit and 64-bit machines. |
| static const size_t kHeaderSize = kMinHeaderSize; |
| |
| static const int kBodyOffset = |
| CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize); |
| |
| // The start offset of the object area in a page. Aligned to both maps and |
| // code alignment to be suitable for both. Also aligned to 32 words because |
| // the marking bitmap is arranged in 32 bit chunks. |
| static const int kObjectStartAlignment = 32 * kPointerSize; |
| static const int kObjectStartOffset = |
| kBodyOffset - 1 + |
| (kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment); |
| |
| // Page size in bytes. This must be a multiple of the OS page size. |
| static const int kPageSize = 1 << kPageSizeBits; |
| static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1; |
| |
| static const int kAllocatableMemory = kPageSize - kObjectStartOffset; |
| |
| // Maximum number of nested code memory modification scopes. |
| // TODO(6792,mstarzinger): Drop to 3 or lower once WebAssembly is off heap. |
| static const int kMaxWriteUnprotectCounter = 4; |
| |
| // Only works if the pointer is in the first kPageSize of the MemoryChunk. |
| static MemoryChunk* FromAddress(Address a) { |
| return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask); |
| } |
| |
| static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr); |
| |
| static inline void UpdateHighWaterMark(Address mark) { |
| if (mark == nullptr) return; |
| // Need to subtract one from the mark because when a chunk is full the |
| // top points to the next address after the chunk, which effectively belongs |
| // to another chunk. See the comment to Page::FromTopOrLimit. |
| MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1); |
| intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address()); |
| intptr_t old_mark = 0; |
| do { |
| old_mark = chunk->high_water_mark_.Value(); |
| } while ((new_mark > old_mark) && |
| !chunk->high_water_mark_.TrySetValue(old_mark, new_mark)); |
| } |
| |
| Address address() const { |
| return reinterpret_cast<Address>(const_cast<MemoryChunk*>(this)); |
| } |
| |
| base::Mutex* mutex() { return mutex_; } |
| |
| bool Contains(Address addr) { |
| return addr >= area_start() && addr < area_end(); |
| } |
| |
| // Checks whether |addr| can be a limit of addresses in this page. It's a |
| // limit if it's in the page, or if it's just after the last byte of the page. |
| bool ContainsLimit(Address addr) { |
| return addr >= area_start() && addr <= area_end(); |
| } |
| |
| base::AtomicValue<ConcurrentSweepingState>& concurrent_sweeping_state() { |
| return concurrent_sweeping_; |
| } |
| |
| bool SweepingDone() { |
| return concurrent_sweeping_state().Value() == kSweepingDone; |
| } |
| |
| size_t size() const { return size_; } |
| void set_size(size_t size) { size_ = size; } |
| |
| inline Heap* heap() const { return heap_; } |
| |
| Heap* synchronized_heap(); |
| |
| inline SkipList* skip_list() { return skip_list_; } |
| |
| inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; } |
| |
| template <RememberedSetType type> |
| bool ContainsSlots() { |
| return slot_set<type>() != nullptr || typed_slot_set<type>() != nullptr || |
| invalidated_slots() != nullptr; |
| } |
| |
| template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> |
| SlotSet* slot_set() { |
| if (access_mode == AccessMode::ATOMIC) |
| return base::AsAtomicPointer::Acquire_Load(&slot_set_[type]); |
| return slot_set_[type]; |
| } |
| |
| template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC> |
| TypedSlotSet* typed_slot_set() { |
| if (access_mode == AccessMode::ATOMIC) |
| return base::AsAtomicPointer::Acquire_Load(&typed_slot_set_[type]); |
| return typed_slot_set_[type]; |
| } |
| |
| template <RememberedSetType type> |
| SlotSet* AllocateSlotSet(); |
| // Not safe to be called concurrently. |
| template <RememberedSetType type> |
| void ReleaseSlotSet(); |
| template <RememberedSetType type> |
| TypedSlotSet* AllocateTypedSlotSet(); |
| // Not safe to be called concurrently. |
| template <RememberedSetType type> |
| void ReleaseTypedSlotSet(); |
| |
| InvalidatedSlots* AllocateInvalidatedSlots(); |
| void ReleaseInvalidatedSlots(); |
| void RegisterObjectWithInvalidatedSlots(HeapObject* object, int size); |
| InvalidatedSlots* invalidated_slots() { return invalidated_slots_; } |
| |
| void AllocateLocalTracker(); |
| void ReleaseLocalTracker(); |
| inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; } |
| bool contains_array_buffers(); |
| |
| void AllocateYoungGenerationBitmap(); |
| void ReleaseYoungGenerationBitmap(); |
| |
| Address area_start() { return area_start_; } |
| Address area_end() { return area_end_; } |
| size_t area_size() { return static_cast<size_t>(area_end() - area_start()); } |
| |
| // Approximate amount of physical memory committed for this chunk. |
| size_t CommittedPhysicalMemory(); |
| |
| Address HighWaterMark() { return address() + high_water_mark_.Value(); } |
| |
| int progress_bar() { |
| DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); |
| return static_cast<int>(progress_bar_); |
| } |
| |
| void set_progress_bar(int progress_bar) { |
| DCHECK(IsFlagSet(HAS_PROGRESS_BAR)); |
| progress_bar_ = progress_bar; |
| } |
| |
| void ResetProgressBar() { |
| if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) { |
| set_progress_bar(0); |
| } |
| } |
| |
| inline uint32_t AddressToMarkbitIndex(Address addr) const { |
| return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2; |
| } |
| |
| inline Address MarkbitIndexToAddress(uint32_t index) const { |
| return this->address() + (index << kPointerSizeLog2); |
| } |
| |
| template <AccessMode access_mode = AccessMode::NON_ATOMIC> |
| void SetFlag(Flag flag) { |
| if (access_mode == AccessMode::NON_ATOMIC) { |
| flags_ |= flag; |
| } else { |
| base::AsAtomicWord::SetBits<uintptr_t>(&flags_, flag, flag); |
| } |
| } |
| |
| template <AccessMode access_mode = AccessMode::NON_ATOMIC> |
| bool IsFlagSet(Flag flag) { |
| return (GetFlags<access_mode>() & flag) != 0; |
| } |
| |
| void ClearFlag(Flag flag) { flags_ &= ~flag; } |
| // Set or clear multiple flags at a time. The flags in the mask are set to |
| // the value in "flags", the rest retain the current value in |flags_|. |
| void SetFlags(uintptr_t flags, uintptr_t mask) { |
| flags_ = (flags_ & ~mask) | (flags & mask); |
| } |
| |
| // Return all current flags. |
| template <AccessMode access_mode = AccessMode::NON_ATOMIC> |
| uintptr_t GetFlags() { |
| if (access_mode == AccessMode::NON_ATOMIC) { |
| return flags_; |
| } else { |
| return base::AsAtomicWord::Relaxed_Load(&flags_); |
| } |
| } |
| |
| bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); } |
| |
| void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); } |
| |
| bool CanAllocate() { |
| return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE); |
| } |
| |
| template <AccessMode access_mode = AccessMode::NON_ATOMIC> |
| bool IsEvacuationCandidate() { |
| DCHECK(!(IsFlagSet<access_mode>(NEVER_EVACUATE) && |
| IsFlagSet<access_mode>(EVACUATION_CANDIDATE))); |
| return IsFlagSet<access_mode>(EVACUATION_CANDIDATE); |
| } |
| |
| template <AccessMode access_mode = AccessMode::NON_ATOMIC> |
| bool ShouldSkipEvacuationSlotRecording() { |
| uintptr_t flags = GetFlags<access_mode>(); |
| return ((flags & kSkipEvacuationSlotsRecordingMask) != 0) && |
| ((flags & COMPACTION_WAS_ABORTED) == 0); |
| } |
| |
| Executability executable() { |
| return IsFlagSet(IS_EXECUTABLE) ? EXECUTABLE : NOT_EXECUTABLE; |
| } |
| |
| bool InNewSpace() { return (flags_ & kIsInNewSpaceMask) != 0; } |
| |
| bool InToSpace() { return IsFlagSet(IN_TO_SPACE); } |
| |
| bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); } |
| |
| MemoryChunk* next_chunk() { return next_chunk_.Value(); } |
| |
| MemoryChunk* prev_chunk() { return prev_chunk_.Value(); } |
| |
| void set_next_chunk(MemoryChunk* next) { next_chunk_.SetValue(next); } |
| |
| void set_prev_chunk(MemoryChunk* prev) { prev_chunk_.SetValue(prev); } |
| |
| Space* owner() const { return owner_.Value(); } |
| |
| void set_owner(Space* space) { owner_.SetValue(space); } |
| |
| void InsertAfter(MemoryChunk* other); |
| void Unlink(); |
| |
| // Emits a memory barrier. For TSAN builds the other thread needs to perform |
| // MemoryChunk::synchronized_heap() to simulate the barrier. |
| void InitializationMemoryFence(); |
| |
| void SetReadAndExecutable(); |
| void SetReadAndWritable(); |
| |
| inline void InitializeFreeListCategories(); |
| |
| protected: |
| static MemoryChunk* Initialize(Heap* heap, Address base, size_t size, |
| Address area_start, Address area_end, |
| Executability executable, Space* owner, |
| VirtualMemory* reservation); |
| |
| // Should be called when memory chunk is about to be freed. |
| void ReleaseAllocatedMemory(); |
| |
| VirtualMemory* reserved_memory() { return &reservation_; } |
| |
| size_t size_; |
| uintptr_t flags_; |
| |
| // Start and end of allocatable memory on this chunk. |
| Address area_start_; |
| Address area_end_; |
| |
| // If the chunk needs to remember its memory reservation, it is stored here. |
| VirtualMemory reservation_; |
| |
| // The space owning this memory chunk. |
| base::AtomicValue<Space*> owner_; |
| |
| Heap* heap_; |
| |
| // Used by the incremental marker to keep track of the scanning progress in |
| // large objects that have a progress bar and are scanned in increments. |
| intptr_t progress_bar_; |
| |
| // Count of bytes marked black on page. |
| intptr_t live_byte_count_; |
| |
| // A single slot set for small pages (of size kPageSize) or an array of slot |
| // set for large pages. In the latter case the number of entries in the array |
| // is ceil(size() / kPageSize). |
| SlotSet* slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; |
| TypedSlotSet* typed_slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES]; |
| InvalidatedSlots* invalidated_slots_; |
| |
| SkipList* skip_list_; |
| |
| // Assuming the initial allocation on a page is sequential, |
| // count highest number of bytes ever allocated on the page. |
| base::AtomicValue<intptr_t> high_water_mark_; |
| |
| base::Mutex* mutex_; |
| |
| base::AtomicValue<ConcurrentSweepingState> concurrent_sweeping_; |
| |
| base::Mutex* page_protection_change_mutex_; |
| |
| // This field is only relevant for code pages. It depicts the number of |
| // times a component requested this page to be read+writeable. The |
| // counter is decremented when a component resets to read+executable. |
| // If Value() == 0 => The memory is read and executable. |
| // If Value() >= 1 => The Memory is read and writable (and maybe executable). |
| // The maximum value is limited by {kMaxWriteUnprotectCounter} to prevent |
| // excessive nesting of scopes. |
| // All executable MemoryChunks are allocated rw based on the assumption that |
| // they will be used immediatelly for an allocation. They are initialized |
| // with the number of open CodeSpaceMemoryModificationScopes. The caller |
| // that triggers the page allocation is responsible for decrementing the |
| // counter. |
| uintptr_t write_unprotect_counter_; |
| |
| // Byte allocated on the page, which includes all objects on the page |
| // and the linear allocation area. |
| size_t allocated_bytes_; |
| // Freed memory that was not added to the free list. |
| size_t wasted_memory_; |
| |
| // next_chunk_ holds a pointer of type MemoryChunk |
| base::AtomicValue<MemoryChunk*> next_chunk_; |
| // prev_chunk_ holds a pointer of type MemoryChunk |
| base::AtomicValue<MemoryChunk*> prev_chunk_; |
| |
| FreeListCategory categories_[kNumberOfCategories]; |
| |
| LocalArrayBufferTracker* local_tracker_; |
| |
| intptr_t young_generation_live_byte_count_; |
| Bitmap* young_generation_bitmap_; |
| |
| private: |
| void InitializeReservedMemory() { reservation_.Reset(); } |
| |
| friend class ConcurrentMarkingState; |
| friend class IncrementalMarkingState; |
| friend class MajorAtomicMarkingState; |
| friend class MajorMarkingState; |
| friend class MajorNonAtomicMarkingState; |
| friend class MemoryAllocator; |
| friend class MemoryChunkValidator; |
| friend class MinorMarkingState; |
| friend class MinorNonAtomicMarkingState; |
| friend class PagedSpace; |
| }; |
| |
| static_assert(kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory, |
| "kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory"); |
| |
| |
| // ----------------------------------------------------------------------------- |
| // A page is a memory chunk of a size 512K. Large object pages may be larger. |
| // |
| // The only way to get a page pointer is by calling factory methods: |
| // Page* p = Page::FromAddress(addr); or |
| // Page* p = Page::FromTopOrLimit(top); |
| class Page : public MemoryChunk { |
| public: |
| static const intptr_t kCopyAllFlags = ~0; |
| |
| // Page flags copied from from-space to to-space when flipping semispaces. |
| static const intptr_t kCopyOnFlipFlagsMask = |
| static_cast<intptr_t>(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) | |
| static_cast<intptr_t>(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING); |
| |
| // Returns the page containing a given address. The address ranges |
| // from [page_addr .. page_addr + kPageSize[. This only works if the object |
| // is in fact in a page. |
| static Page* FromAddress(Address addr) { |
| return reinterpret_cast<Page*>(OffsetFrom(addr) & ~kPageAlignmentMask); |
| } |
| |
| // Returns the page containing the address provided. The address can |
| // potentially point righter after the page. To be also safe for tagged values |
| // we subtract a hole word. The valid address ranges from |
| // [page_addr + kObjectStartOffset .. page_addr + kPageSize + kPointerSize]. |
| static Page* FromAllocationAreaAddress(Address address) { |
| return Page::FromAddress(address - kPointerSize); |
| } |
| |
| // Checks if address1 and address2 are on the same new space page. |
| static bool OnSamePage(Address address1, Address address2) { |
| return Page::FromAddress(address1) == Page::FromAddress(address2); |
| } |
| |
| // Checks whether an address is page aligned. |
| static bool IsAlignedToPageSize(Address addr) { |
| return (OffsetFrom(addr) & kPageAlignmentMask) == 0; |
| } |
| |
| static bool IsAtObjectStart(Address addr) { |
| return (reinterpret_cast<intptr_t>(addr) & kPageAlignmentMask) == |
| kObjectStartOffset; |
| } |
| |
| static Page* ConvertNewToOld(Page* old_page); |
| |
| // Create a Page object that is only used as anchor for the doubly-linked |
| // list of real pages. |
| explicit Page(Space* owner) { InitializeAsAnchor(owner); } |
| |
| inline void MarkNeverAllocateForTesting(); |
| inline void MarkEvacuationCandidate(); |
| inline void ClearEvacuationCandidate(); |
| |
| Page* next_page() { return static_cast<Page*>(next_chunk()); } |
| Page* prev_page() { return static_cast<Page*>(prev_chunk()); } |
| void set_next_page(Page* page) { set_next_chunk(page); } |
| void set_prev_page(Page* page) { set_prev_chunk(page); } |
| |
| template <typename Callback> |
| inline void ForAllFreeListCategories(Callback callback) { |
| for (int i = kFirstCategory; i < kNumberOfCategories; i++) { |
| callback(&categories_[i]); |
| } |
| } |
| |
| // Returns the offset of a given address to this page. |
| inline size_t Offset(Address a) { return static_cast<size_t>(a - address()); } |
| |
| // Returns the address for a given offset to the this page. |
| Address OffsetToAddress(size_t offset) { |
| DCHECK_PAGE_OFFSET(offset); |
| return address() + offset; |
| } |
| |
| // WaitUntilSweepingCompleted only works when concurrent sweeping is in |
| // progress. In particular, when we know that right before this call a |
| // sweeper thread was sweeping this page. |
| void WaitUntilSweepingCompleted() { |
| mutex_->Lock(); |
| mutex_->Unlock(); |
| DCHECK(SweepingDone()); |
| } |
| |
| void ResetFreeListStatistics(); |
| |
| size_t AvailableInFreeList(); |
| |
| size_t AvailableInFreeListFromAllocatedBytes() { |
| DCHECK_GE(area_size(), wasted_memory() + allocated_bytes()); |
| return area_size() - wasted_memory() - allocated_bytes(); |
| } |
| |
| FreeListCategory* free_list_category(FreeListCategoryType type) { |
| return &categories_[type]; |
| } |
| |
| bool is_anchor() { return IsFlagSet(Page::ANCHOR); } |
| |
| size_t wasted_memory() { return wasted_memory_; } |
| void add_wasted_memory(size_t waste) { wasted_memory_ += waste; } |
| size_t allocated_bytes() { return allocated_bytes_; } |
| void IncreaseAllocatedBytes(size_t bytes) { |
| DCHECK_LE(bytes, area_size()); |
| allocated_bytes_ += bytes; |
| } |
| void DecreaseAllocatedBytes(size_t bytes) { |
| DCHECK_LE(bytes, area_size()); |
| DCHECK_GE(allocated_bytes(), bytes); |
| allocated_bytes_ -= bytes; |
| } |
| |
| void ResetAllocatedBytes(); |
| |
| size_t ShrinkToHighWaterMark(); |
| |
| V8_EXPORT_PRIVATE void CreateBlackArea(Address start, Address end); |
| void DestroyBlackArea(Address start, Address end); |
| |
| #ifdef DEBUG |
| void Print(); |
| #endif // DEBUG |
| |
| private: |
| enum InitializationMode { kFreeMemory, kDoNotFreeMemory }; |
| |
| void InitializeAsAnchor(Space* owner); |
| |
| friend class MemoryAllocator; |
| }; |
| |
| class LargePage : public MemoryChunk { |
| public: |
| HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); } |
| |
| inline LargePage* next_page() { |
| return static_cast<LargePage*>(next_chunk()); |
| } |
| |
| inline void set_next_page(LargePage* page) { set_next_chunk(page); } |
| |
| // Uncommit memory that is not in use anymore by the object. If the object |
| // cannot be shrunk 0 is returned. |
| Address GetAddressToShrink(Address object_address, size_t object_size); |
| |
| void ClearOutOfLiveRangeSlots(Address free_start); |
| |
| // A limit to guarantee that we do not overflow typed slot offset in |
| // the old to old remembered set. |
| // Note that this limit is higher than what assembler already imposes on |
| // x64 and ia32 architectures. |
| static const int kMaxCodePageSize = 512 * MB; |
| |
| private: |
| static LargePage* Initialize(Heap* heap, MemoryChunk* chunk, |
| Executability executable, Space* owner); |
| |
| friend class MemoryAllocator; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Space is the abstract superclass for all allocation spaces. |
| class Space : public Malloced { |
| public: |
| Space(Heap* heap, AllocationSpace id, Executability executable) |
| : allocation_observers_paused_(false), |
| heap_(heap), |
| id_(id), |
| executable_(executable), |
| committed_(0), |
| max_committed_(0) {} |
| |
| virtual ~Space() {} |
| |
| Heap* heap() const { return heap_; } |
| |
| // Does the space need executable memory? |
| Executability executable() { return executable_; } |
| |
| // Identity used in error reporting. |
| AllocationSpace identity() { return id_; } |
| |
| V8_EXPORT_PRIVATE virtual void AddAllocationObserver( |
| AllocationObserver* observer); |
| |
| V8_EXPORT_PRIVATE virtual void RemoveAllocationObserver( |
| AllocationObserver* observer); |
| |
| V8_EXPORT_PRIVATE virtual void PauseAllocationObservers(); |
| |
| V8_EXPORT_PRIVATE virtual void ResumeAllocationObservers(); |
| |
| V8_EXPORT_PRIVATE virtual void StartNextInlineAllocationStep() {} |
| |
| void AllocationStep(int bytes_since_last, Address soon_object, int size); |
| |
| // Return the total amount committed memory for this space, i.e., allocatable |
| // memory and page headers. |
| virtual size_t CommittedMemory() { return committed_; } |
| |
| virtual size_t MaximumCommittedMemory() { return max_committed_; } |
| |
| // Returns allocated size. |
| virtual size_t Size() = 0; |
| |
| // Returns size of objects. Can differ from the allocated size |
| // (e.g. see LargeObjectSpace). |
| virtual size_t SizeOfObjects() { return Size(); } |
| |
| // Approximate amount of physical memory committed for this space. |
| virtual size_t CommittedPhysicalMemory() = 0; |
| |
| // Return the available bytes without growing. |
| virtual size_t Available() = 0; |
| |
| virtual int RoundSizeDownToObjectAlignment(int size) { |
| if (id_ == CODE_SPACE) { |
| return RoundDown(size, kCodeAlignment); |
| } else { |
| return RoundDown(size, kPointerSize); |
| } |
| } |
| |
| virtual std::unique_ptr<ObjectIterator> GetObjectIterator() = 0; |
| |
| void AccountCommitted(size_t bytes) { |
| DCHECK_GE(committed_ + bytes, committed_); |
| committed_ += bytes; |
| if (committed_ > max_committed_) { |
| max_committed_ = committed_; |
| } |
| } |
| |
| void AccountUncommitted(size_t bytes) { |
| DCHECK_GE(committed_, committed_ - bytes); |
| committed_ -= bytes; |
| } |
| |
| V8_EXPORT_PRIVATE void* GetRandomMmapAddr(); |
| |
| #ifdef DEBUG |
| virtual void Print() = 0; |
| #endif |
| |
| protected: |
| intptr_t GetNextInlineAllocationStepSize(); |
| bool AllocationObserversActive() { |
| return !allocation_observers_paused_ && !allocation_observers_.empty(); |
| } |
| |
| std::vector<AllocationObserver*> allocation_observers_; |
| bool allocation_observers_paused_; |
| |
| protected: |
| Heap* heap_; |
| AllocationSpace id_; |
| Executability executable_; |
| |
| // Keeps track of committed memory in a space. |
| size_t committed_; |
| size_t max_committed_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Space); |
| }; |
| |
| |
| class MemoryChunkValidator { |
| // Computed offsets should match the compiler generated ones. |
| STATIC_ASSERT(MemoryChunk::kSizeOffset == offsetof(MemoryChunk, size_)); |
| |
| // Validate our estimates on the header size. |
| STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize); |
| STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize); |
| STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize); |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // All heap objects containing executable code (code objects) must be allocated |
| // from a 2 GB range of memory, so that they can call each other using 32-bit |
| // displacements. This happens automatically on 32-bit platforms, where 32-bit |
| // displacements cover the entire 4GB virtual address space. On 64-bit |
| // platforms, we support this using the CodeRange object, which reserves and |
| // manages a range of virtual memory. |
| class CodeRange { |
| public: |
| explicit CodeRange(Isolate* isolate); |
| ~CodeRange() { |
| if (virtual_memory_.IsReserved()) virtual_memory_.Free(); |
| } |
| |
| // Reserves a range of virtual memory, but does not commit any of it. |
| // Can only be called once, at heap initialization time. |
| // Returns false on failure. |
| bool SetUp(size_t requested_size); |
| |
| bool valid() { return virtual_memory_.IsReserved(); } |
| Address start() { |
| DCHECK(valid()); |
| return static_cast<Address>(virtual_memory_.address()); |
| } |
| size_t size() { |
| DCHECK(valid()); |
| return virtual_memory_.size(); |
| } |
| bool contains(Address address) { |
| if (!valid()) return false; |
| Address start = static_cast<Address>(virtual_memory_.address()); |
| return start <= address && address < start + virtual_memory_.size(); |
| } |
| |
| // Allocates a chunk of memory from the large-object portion of |
| // the code range. On platforms with no separate code range, should |
| // not be called. |
| MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size, |
| const size_t commit_size, |
| size_t* allocated); |
| bool CommitRawMemory(Address start, size_t length); |
| bool UncommitRawMemory(Address start, size_t length); |
| void FreeRawMemory(Address buf, size_t length); |
| |
| private: |
| class FreeBlock { |
| public: |
| FreeBlock() : start(0), size(0) {} |
| FreeBlock(Address start_arg, size_t size_arg) |
| : start(start_arg), size(size_arg) { |
| DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); |
| DCHECK(size >= static_cast<size_t>(Page::kPageSize)); |
| } |
| FreeBlock(void* start_arg, size_t size_arg) |
| : start(static_cast<Address>(start_arg)), size(size_arg) { |
| DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment)); |
| DCHECK(size >= static_cast<size_t>(Page::kPageSize)); |
| } |
| |
| Address start; |
| size_t size; |
| }; |
| |
| // Finds a block on the allocation list that contains at least the |
| // requested amount of memory. If none is found, sorts and merges |
| // the existing free memory blocks, and searches again. |
| // If none can be found, returns false. |
| bool GetNextAllocationBlock(size_t requested); |
| // Compares the start addresses of two free blocks. |
| static bool CompareFreeBlockAddress(const FreeBlock& left, |
| const FreeBlock& right); |
| bool ReserveBlock(const size_t requested_size, FreeBlock* block); |
| void ReleaseBlock(const FreeBlock* block); |
| |
| Isolate* isolate_; |
| |
| // The reserved range of virtual memory that all code objects are put in. |
| VirtualMemory virtual_memory_; |
| |
| // The global mutex guards free_list_ and allocation_list_ as GC threads may |
| // access both lists concurrently to the main thread. |
| base::Mutex code_range_mutex_; |
| |
| // Freed blocks of memory are added to the free list. When the allocation |
| // list is exhausted, the free list is sorted and merged to make the new |
| // allocation list. |
| std::vector<FreeBlock> free_list_; |
| |
| // Memory is allocated from the free blocks on the allocation list. |
| // The block at current_allocation_block_index_ is the current block. |
| std::vector<FreeBlock> allocation_list_; |
| size_t current_allocation_block_index_; |
| |
| DISALLOW_COPY_AND_ASSIGN(CodeRange); |
| }; |
| |
| |
| class SkipList { |
| public: |
| SkipList() { Clear(); } |
| |
| void Clear() { |
| for (int idx = 0; idx < kSize; idx++) { |
| starts_[idx] = reinterpret_cast<Address>(-1); |
| } |
| } |
| |
| Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; } |
| |
| void AddObject(Address addr, int size) { |
| int start_region = RegionNumber(addr); |
| int end_region = RegionNumber(addr + size - kPointerSize); |
| for (int idx = start_region; idx <= end_region; idx++) { |
| if (starts_[idx] > addr) { |
| starts_[idx] = addr; |
| } else { |
| // In the first region, there may already be an object closer to the |
| // start of the region. Do not change the start in that case. If this |
| // is not the first region, you probably added overlapping objects. |
| DCHECK_EQ(start_region, idx); |
| } |
| } |
| } |
| |
| static inline int RegionNumber(Address addr) { |
| return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2; |
| } |
| |
| static void Update(Address addr, int size) { |
| Page* page = Page::FromAddress(addr); |
| SkipList* list = page->skip_list(); |
| if (list == nullptr) { |
| list = new SkipList(); |
| page->set_skip_list(list); |
| } |
| |
| list->AddObject(addr, size); |
| } |
| |
| private: |
| static const int kRegionSizeLog2 = 13; |
| static const int kRegionSize = 1 << kRegionSizeLog2; |
| static const int kSize = Page::kPageSize / kRegionSize; |
| |
| STATIC_ASSERT(Page::kPageSize % kRegionSize == 0); |
| |
| Address starts_[kSize]; |
| }; |
| |
| |
| // ---------------------------------------------------------------------------- |
| // A space acquires chunks of memory from the operating system. The memory |
| // allocator allocates and deallocates pages for the paged heap spaces and large |
| // pages for large object space. |
| class V8_EXPORT_PRIVATE MemoryAllocator { |
| public: |
| // Unmapper takes care of concurrently unmapping and uncommitting memory |
| // chunks. |
| class Unmapper { |
| public: |
| class UnmapFreeMemoryTask; |
| |
| Unmapper(Heap* heap, MemoryAllocator* allocator) |
| : heap_(heap), |
| allocator_(allocator), |
| pending_unmapping_tasks_semaphore_(0), |
| concurrent_unmapping_tasks_active_(0) { |
| chunks_[kRegular].reserve(kReservedQueueingSlots); |
| chunks_[kPooled].reserve(kReservedQueueingSlots); |
| } |
| |
| void AddMemoryChunkSafe(MemoryChunk* chunk) { |
| if ((chunk->size() == Page::kPageSize) && |
| (chunk->executable() != EXECUTABLE)) { |
| AddMemoryChunkSafe<kRegular>(chunk); |
| } else { |
| AddMemoryChunkSafe<kNonRegular>(chunk); |
| } |
| } |
| |
| MemoryChunk* TryGetPooledMemoryChunkSafe() { |
| // Procedure: |
| // (1) Try to get a chunk that was declared as pooled and already has |
| // been uncommitted. |
| // (2) Try to steal any memory chunk of kPageSize that would've been |
| // unmapped. |
| MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>(); |
| if (chunk == nullptr) { |
| chunk = GetMemoryChunkSafe<kRegular>(); |
| if (chunk != nullptr) { |
| // For stolen chunks we need to manually free any allocated memory. |
| chunk->ReleaseAllocatedMemory(); |
| } |
| } |
| return chunk; |
| } |
| |
| void FreeQueuedChunks(); |
| void WaitUntilCompleted(); |
| void TearDown(); |
| int NumberOfChunks(); |
| |
| private: |
| static const int kReservedQueueingSlots = 64; |
| static const int kMaxUnmapperTasks = 4; |
| |
| enum ChunkQueueType { |
| kRegular, // Pages of kPageSize that do not live in a CodeRange and |
| // can thus be used for stealing. |
| kNonRegular, // Large chunks and executable chunks. |
| kPooled, // Pooled chunks, already uncommited and ready for reuse. |
| kNumberOfChunkQueues, |
| }; |
| |
| enum class FreeMode { |
| kUncommitPooled, |
| kReleasePooled, |
| }; |
| |
| template <ChunkQueueType type> |
| void AddMemoryChunkSafe(MemoryChunk* chunk) { |
| base::LockGuard<base::Mutex> guard(&mutex_); |
| chunks_[type].push_back(chunk); |
| } |
| |
| template <ChunkQueueType type> |
| MemoryChunk* GetMemoryChunkSafe() { |
| base::LockGuard<base::Mutex> guard(&mutex_); |
| if (chunks_[type].empty()) return nullptr; |
| MemoryChunk* chunk = chunks_[type].back(); |
| chunks_[type].pop_back(); |
| return chunk; |
| } |
| |
| template <FreeMode mode> |
| void PerformFreeMemoryOnQueuedChunks(); |
| |
| Heap* const heap_; |
| MemoryAllocator* const allocator_; |
| base::Mutex mutex_; |
| std::vector<MemoryChunk*> chunks_[kNumberOfChunkQueues]; |
| CancelableTaskManager::Id task_ids_[kMaxUnmapperTasks]; |
| base::Semaphore pending_unmapping_tasks_semaphore_; |
| intptr_t concurrent_unmapping_tasks_active_; |
| |
| friend class MemoryAllocator; |
| }; |
| |
| enum AllocationMode { |
| kRegular, |
| kPooled, |
| }; |
| |
| enum FreeMode { |
| kFull, |
| kAlreadyPooled, |
| kPreFreeAndQueue, |
| kPooledAndQueue, |
| }; |
| |
| static size_t CodePageGuardStartOffset(); |
| |
| static size_t CodePageGuardSize(); |
| |
| static size_t CodePageAreaStartOffset(); |
| |
| static size_t CodePageAreaEndOffset(); |
| |
| static size_t CodePageAreaSize() { |
| return CodePageAreaEndOffset() - CodePageAreaStartOffset(); |
| } |
| |
| static size_t PageAreaSize(AllocationSpace space) { |
| DCHECK_NE(LO_SPACE, space); |
| return (space == CODE_SPACE) ? CodePageAreaSize() |
| : Page::kAllocatableMemory; |
| } |
| |
| static intptr_t GetCommitPageSize(); |
| |
| explicit MemoryAllocator(Isolate* isolate); |
| |
| // Initializes its internal bookkeeping structures. |
| // Max capacity of the total space and executable memory limit. |
| bool SetUp(size_t max_capacity, size_t code_range_size); |
| |
| void TearDown(); |
| |
| // Allocates a Page from the allocator. AllocationMode is used to indicate |
| // whether pooled allocation, which only works for MemoryChunk::kPageSize, |
| // should be tried first. |
| template <MemoryAllocator::AllocationMode alloc_mode = kRegular, |
| typename SpaceType> |
| Page* AllocatePage(size_t size, SpaceType* owner, Executability executable); |
| |
| LargePage* AllocateLargePage(size_t size, LargeObjectSpace* owner, |
| Executability executable); |
| |
| template <MemoryAllocator::FreeMode mode = kFull> |
| void Free(MemoryChunk* chunk); |
| |
| // Returns allocated spaces in bytes. |
| size_t Size() { return size_.Value(); } |
| |
| // Returns allocated executable spaces in bytes. |
| size_t SizeExecutable() { return size_executable_.Value(); } |
| |
| // Returns the maximum available bytes of heaps. |
| size_t Available() { |
| const size_t size = Size(); |
| return capacity_ < size ? 0 : capacity_ - size; |
| } |
| |
| // Returns maximum available bytes that the old space can have. |
| size_t MaxAvailable() { |
| return (Available() / Page::kPageSize) * Page::kAllocatableMemory; |
| } |
| |
| // Returns an indication of whether a pointer is in a space that has |
| // been allocated by this MemoryAllocator. |
| V8_INLINE bool IsOutsideAllocatedSpace(const void* address) { |
| return address < lowest_ever_allocated_.Value() || |
| address >= highest_ever_allocated_.Value(); |
| } |
| |
| // Returns a MemoryChunk in which the memory region from commit_area_size to |
| // reserve_area_size of the chunk area is reserved but not committed, it |
| // could be committed later by calling MemoryChunk::CommitArea. |
| MemoryChunk* AllocateChunk(size_t reserve_area_size, size_t commit_area_size, |
| Executability executable, Space* space); |
| |
| Address ReserveAlignedMemory(size_t requested, size_t alignment, void* hint, |
| VirtualMemory* controller); |
| Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size, |
| size_t alignment, Executability executable, |
| void* hint, VirtualMemory* controller); |
| |
| bool CommitMemory(Address addr, size_t size, Executability executable); |
| |
| void FreeMemory(VirtualMemory* reservation, Executability executable); |
| void FreeMemory(Address addr, size_t size, Executability executable); |
| |
| // Partially release |bytes_to_free| bytes starting at |start_free|. Note that |
| // internally memory is freed from |start_free| to the end of the reservation. |
| // Additional memory beyond the page is not accounted though, so |
| // |bytes_to_free| is computed by the caller. |
| void PartialFreeMemory(MemoryChunk* chunk, Address start_free, |
| size_t bytes_to_free, Address new_area_end); |
| |
| // Commit a contiguous block of memory from the initial chunk. Assumes that |
| // the address is not nullptr, the size is greater than zero, and that the |
| // block is contained in the initial chunk. Returns true if it succeeded |
| // and false otherwise. |
| bool CommitBlock(Address start, size_t size, Executability executable); |
| |
| // Uncommit a contiguous block of memory [start..(start+size)[. |
| // start is not nullptr, the size is greater than zero, and the |
| // block is contained in the initial chunk. Returns true if it succeeded |
| // and false otherwise. |
| bool UncommitBlock(Address start, size_t size); |
| |
| // Zaps a contiguous block of memory [start..(start+size)[ thus |
| // filling it up with a recognizable non-nullptr bit pattern. |
| void ZapBlock(Address start, size_t size); |
| |
| MUST_USE_RESULT bool CommitExecutableMemory(VirtualMemory* vm, Address start, |
| size_t commit_size, |
| size_t reserved_size); |
| |
| CodeRange* code_range() { return code_range_; } |
| Unmapper* unmapper() { return &unmapper_; } |
| |
| private: |
| // PreFree logically frees the object, i.e., it takes care of the size |
| // bookkeeping and calls the allocation callback. |
| void PreFreeMemory(MemoryChunk* chunk); |
| |
| // FreeMemory can be called concurrently when PreFree was executed before. |
| void PerformFreeMemory(MemoryChunk* chunk); |
| |
| // See AllocatePage for public interface. Note that currently we only support |
| // pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize. |
| template <typename SpaceType> |
| MemoryChunk* AllocatePagePooled(SpaceType* owner); |
| |
| // Initializes pages in a chunk. Returns the first page address. |
| // This function and GetChunkId() are provided for the mark-compact |
| // collector to rebuild page headers in the from space, which is |
| // used as a marking stack and its page headers are destroyed. |
| Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk, |
| PagedSpace* owner); |
| |
| void UpdateAllocatedSpaceLimits(void* low, void* high) { |
| // The use of atomic primitives does not guarantee correctness (wrt. |
| // desired semantics) by default. The loop here ensures that we update the |
| // values only if they did not change in between. |
| void* ptr = nullptr; |
| do { |
| ptr = lowest_ever_allocated_.Value(); |
| } while ((low < ptr) && !lowest_ever_allocated_.TrySetValue(ptr, low)); |
| do { |
| ptr = highest_ever_allocated_.Value(); |
| } while ((high > ptr) && !highest_ever_allocated_.TrySetValue(ptr, high)); |
| } |
| |
| Isolate* isolate_; |
| CodeRange* code_range_; |
| |
| // Maximum space size in bytes. |
| size_t capacity_; |
| |
| // Allocated space size in bytes. |
| base::AtomicNumber<size_t> size_; |
| // Allocated executable space size in bytes. |
| base::AtomicNumber<size_t> size_executable_; |
| |
| // We keep the lowest and highest addresses allocated as a quick way |
| // of determining that pointers are outside the heap. The estimate is |
| // conservative, i.e. not all addresses in 'allocated' space are allocated |
| // to our heap. The range is [lowest, highest[, inclusive on the low end |
| // and exclusive on the high end. |
| base::AtomicValue<void*> lowest_ever_allocated_; |
| base::AtomicValue<void*> highest_ever_allocated_; |
| |
| VirtualMemory last_chunk_; |
| Unmapper unmapper_; |
| |
| friend class heap::TestCodeRangeScope; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(MemoryAllocator); |
| }; |
| |
| extern template Page* |
| MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>( |
| size_t size, PagedSpace* owner, Executability executable); |
| extern template Page* |
| MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>( |
| size_t size, SemiSpace* owner, Executability executable); |
| extern template Page* |
| MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>( |
| size_t size, SemiSpace* owner, Executability executable); |
| |
| // ----------------------------------------------------------------------------- |
| // Interface for heap object iterator to be implemented by all object space |
| // object iterators. |
| // |
| // NOTE: The space specific object iterators also implements the own next() |
| // method which is used to avoid using virtual functions |
| // iterating a specific space. |
| |
| class V8_EXPORT_PRIVATE ObjectIterator : public Malloced { |
| public: |
| virtual ~ObjectIterator() {} |
| virtual HeapObject* Next() = 0; |
| }; |
| |
| template <class PAGE_TYPE> |
| class PageIteratorImpl |
| : public base::iterator<std::forward_iterator_tag, PAGE_TYPE> { |
| public: |
| explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {} |
| PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {} |
| PAGE_TYPE* operator*() { return p_; } |
| bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) { |
| return rhs.p_ == p_; |
| } |
| bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) { |
| return rhs.p_ != p_; |
| } |
| inline PageIteratorImpl<PAGE_TYPE>& operator++(); |
| inline PageIteratorImpl<PAGE_TYPE> operator++(int); |
| |
| private: |
| PAGE_TYPE* p_; |
| }; |
| |
| typedef PageIteratorImpl<Page> PageIterator; |
| typedef PageIteratorImpl<LargePage> LargePageIterator; |
| |
| class PageRange { |
| public: |
| typedef PageIterator iterator; |
| PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {} |
| explicit PageRange(Page* page) : PageRange(page, page->next_page()) {} |
| inline PageRange(Address start, Address limit); |
| |
| iterator begin() { return iterator(begin_); } |
| iterator end() { return iterator(end_); } |
| |
| private: |
| Page* begin_; |
| Page* end_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Heap object iterator in new/old/map spaces. |
| // |
| // A HeapObjectIterator iterates objects from the bottom of the given space |
| // to its top or from the bottom of the given page to its top. |
| // |
| // If objects are allocated in the page during iteration the iterator may |
| // or may not iterate over those objects. The caller must create a new |
| // iterator in order to be sure to visit these new objects. |
| class V8_EXPORT_PRIVATE HeapObjectIterator : public ObjectIterator { |
| public: |
| // Creates a new object iterator in a given space. |
| explicit HeapObjectIterator(PagedSpace* space); |
| explicit HeapObjectIterator(Page* page); |
| |
| // Advance to the next object, skipping free spaces and other fillers and |
| // skipping the special garbage section of which there is one per space. |
| // Returns nullptr when the iteration has ended. |
| inline HeapObject* Next() override; |
| |
| private: |
| // Fast (inlined) path of next(). |
| inline HeapObject* FromCurrentPage(); |
| |
| // Slow path of next(), goes into the next page. Returns false if the |
| // iteration has ended. |
| bool AdvanceToNextPage(); |
| |
| Address cur_addr_; // Current iteration point. |
| Address cur_end_; // End iteration point. |
| PagedSpace* space_; |
| PageRange page_range_; |
| PageRange::iterator current_page_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // A space has a circular list of pages. The next page can be accessed via |
| // Page::next_page() call. |
| |
| // An abstraction of allocation and relocation pointers in a page-structured |
| // space. |
| class LinearAllocationArea { |
| public: |
| LinearAllocationArea() : top_(nullptr), limit_(nullptr) {} |
| LinearAllocationArea(Address top, Address limit) : top_(top), limit_(limit) {} |
| |
| void Reset(Address top, Address limit) { |
| set_top(top); |
| set_limit(limit); |
| } |
| |
| INLINE(void set_top(Address top)) { |
| SLOW_DCHECK(top == nullptr || |
| (reinterpret_cast<intptr_t>(top) & kHeapObjectTagMask) == 0); |
| top_ = top; |
| } |
| |
| INLINE(Address top()) const { |
| SLOW_DCHECK(top_ == nullptr || |
| (reinterpret_cast<intptr_t>(top_) & kHeapObjectTagMask) == 0); |
| return top_; |
| } |
| |
| Address* top_address() { return &top_; } |
| |
| INLINE(void set_limit(Address limit)) { |
| limit_ = limit; |
| } |
| |
| INLINE(Address limit()) const { |
| return limit_; |
| } |
| |
| Address* limit_address() { return &limit_; } |
| |
| #ifdef DEBUG |
| bool VerifyPagedAllocation() { |
| return (Page::FromAllocationAreaAddress(top_) == |
| Page::FromAllocationAreaAddress(limit_)) && |
| (top_ <= limit_); |
| } |
| #endif |
| |
| private: |
| // Current allocation top. |
| Address top_; |
| // Current allocation limit. |
| Address limit_; |
| }; |
| |
| |
| // An abstraction of the accounting statistics of a page-structured space. |
| // |
| // The stats are only set by functions that ensure they stay balanced. These |
| // functions increase or decrease one of the non-capacity stats in conjunction |
| // with capacity, or else they always balance increases and decreases to the |
| // non-capacity stats. |
| class AllocationStats BASE_EMBEDDED { |
| public: |
| AllocationStats() { Clear(); } |
| |
| // Zero out all the allocation statistics (i.e., no capacity). |
| void Clear() { |
| capacity_ = 0; |
| max_capacity_ = 0; |
| ClearSize(); |
| } |
| |
| void ClearSize() { |
| size_ = 0; |
| #ifdef DEBUG |
| allocated_on_page_.clear(); |
| #endif |
| } |
| |
| // Accessors for the allocation statistics. |
| size_t Capacity() { return capacity_.Value(); } |
| size_t MaxCapacity() { return max_capacity_; } |
| size_t Size() { return size_; } |
| #ifdef DEBUG |
| size_t AllocatedOnPage(Page* page) { return allocated_on_page_[page]; } |
| #endif |
| |
| void IncreaseAllocatedBytes(size_t bytes, Page* page) { |
| DCHECK_GE(size_ + bytes, size_); |
| size_ += bytes; |
| #ifdef DEBUG |
| allocated_on_page_[page] += bytes; |
| #endif |
| } |
| |
| void DecreaseAllocatedBytes(size_t bytes, Page* page) { |
| DCHECK_GE(size_, bytes); |
| size_ -= bytes; |
| #ifdef DEBUG |
| DCHECK_GE(allocated_on_page_[page], bytes); |
| allocated_on_page_[page] -= bytes; |
| #endif |
| } |
| |
| void DecreaseCapacity(size_t bytes) { |
| size_t capacity = capacity_.Value(); |
| DCHECK_GE(capacity, bytes); |
| DCHECK_GE(capacity - bytes, size_); |
| USE(capacity); |
| capacity_.Decrement(bytes); |
| } |
| |
| void IncreaseCapacity(size_t bytes) { |
| size_t capacity = capacity_.Value(); |
| DCHECK_GE(capacity + bytes, capacity); |
| capacity_.Increment(bytes); |
| if (capacity > max_capacity_) { |
| max_capacity_ = capacity; |
| } |
| } |
| |
| private: |
| // |capacity_|: The number of object-area bytes (i.e., not including page |
| // bookkeeping structures) currently in the space. |
| // During evacuation capacity of the main spaces is accessed from multiple |
| // threads to check the old generation hard limit. |
| base::AtomicNumber<size_t> capacity_; |
| |
| // |max_capacity_|: The maximum capacity ever observed. |
| size_t max_capacity_; |
| |
| // |size_|: The number of allocated bytes. |
| size_t size_; |
| |
| #ifdef DEBUG |
| std::unordered_map<Page*, size_t, Page::Hasher> allocated_on_page_; |
| #endif |
| }; |
| |
| // A free list maintaining free blocks of memory. The free list is organized in |
| // a way to encourage objects allocated around the same time to be near each |
| // other. The normal way to allocate is intended to be by bumping a 'top' |
| // pointer until it hits a 'limit' pointer. When the limit is hit we need to |
| // find a new space to allocate from. This is done with the free list, which is |
| // divided up into rough categories to cut down on waste. Having finer |
| // categories would scatter allocation more. |
| |
| // The free list is organized in categories as follows: |
| // kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for |
| // allocation, when categories >= small do not have entries anymore. |
| // 11-31 words (tiny): The tiny blocks are only used for allocation, when |
| // categories >= small do not have entries anymore. |
| // 32-255 words (small): Used for allocating free space between 1-31 words in |
| // size. |
| // 256-2047 words (medium): Used for allocating free space between 32-255 words |
| // in size. |
| // 1048-16383 words (large): Used for allocating free space between 256-2047 |
| // words in size. |
| // At least 16384 words (huge): This list is for objects of 2048 words or |
| // larger. Empty pages are also added to this list. |
| class V8_EXPORT_PRIVATE FreeList { |
| public: |
| // This method returns how much memory can be allocated after freeing |
| // maximum_freed memory. |
| static inline size_t GuaranteedAllocatable(size_t maximum_freed) { |
| if (maximum_freed <= kTiniestListMax) { |
| // Since we are not iterating over all list entries, we cannot guarantee |
| // that we can find the maximum freed block in that free list. |
| return 0; |
| } else if (maximum_freed <= kTinyListMax) { |
| return kTinyAllocationMax; |
| } else if (maximum_freed <= kSmallListMax) { |
| return kSmallAllocationMax; |
| } else if (maximum_freed <= kMediumListMax) { |
| return kMediumAllocationMax; |
| } else if (maximum_freed <= kLargeListMax) { |
| return kLargeAllocationMax; |
| } |
| return maximum_freed; |
| } |
| |
| static FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) { |
| if (size_in_bytes <= kTiniestListMax) { |
| return kTiniest; |
| } else if (size_in_bytes <= kTinyListMax) { |
| return kTiny; |
| } else if (size_in_bytes <= kSmallListMax) { |
| return kSmall; |
| } else if (size_in_bytes <= kMediumListMax) { |
| return kMedium; |
| } else if (size_in_bytes <= kLargeListMax) { |
| return kLarge; |
| } |
| return kHuge; |
| } |
| |
| explicit FreeList(PagedSpace* owner); |
| |
| // Adds a node on the free list. The block of size {size_in_bytes} starting |
| // at {start} is placed on the free list. The return value is the number of |
| // bytes that were not added to the free list, because they freed memory block |
| // was too small. Bookkeeping information will be written to the block, i.e., |
| // its contents will be destroyed. The start address should be word aligned, |
| // and the size should be a non-zero multiple of the word size. |
| size_t Free(Address start, size_t size_in_bytes, FreeMode mode); |
| |
| // Allocates a free space node frome the free list of at least size_in_bytes |
| // bytes. Returns the actual node size in node_size which can be bigger than |
| // size_in_bytes. This method returns null if the allocation request cannot be |
| // handled by the free list. |
| MUST_USE_RESULT FreeSpace* Allocate(size_t size_in_bytes, size_t* node_size); |
| |
| // Clear the free list. |
| void Reset(); |
| |
| void ResetStats() { |
| wasted_bytes_.SetValue(0); |
| ForAllFreeListCategories( |
| [](FreeListCategory* category) { category->ResetStats(); }); |
| } |
| |
| // Return the number of bytes available on the free list. |
| size_t Available() { |
| size_t available = 0; |
| ForAllFreeListCategories([&available](FreeListCategory* category) { |
| available += category->available(); |
| }); |
| return available; |
| } |
| |
| bool IsEmpty() { |
| bool empty = true; |
| ForAllFreeListCategories([&empty](FreeListCategory* category) { |
| if (!category->is_empty()) empty = false; |
| }); |
| return empty; |
| } |
| |
| // Used after booting the VM. |
| void RepairLists(Heap* heap); |
| |
| size_t EvictFreeListItems(Page* page); |
| bool ContainsPageFreeListItems(Page* page); |
| |
| PagedSpace* owner() { return owner_; } |
| size_t wasted_bytes() { return wasted_bytes_.Value(); } |
| |
| template <typename Callback> |
| void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) { |
| FreeListCategory* current = categories_[type]; |
| while (current != nullptr) { |
| FreeListCategory* next = current->next(); |
| callback(current); |
| current = next; |
| } |
| } |
| |
| template <typename Callback> |
| void ForAllFreeListCategories(Callback callback) { |
| for (int i = kFirstCategory; i < kNumberOfCategories; i++) { |
| ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback); |
| } |
| } |
| |
| bool AddCategory(FreeListCategory* category); |
| void RemoveCategory(FreeListCategory* category); |
| void PrintCategories(FreeListCategoryType type); |
| |
| // Returns a page containing an entry for a given type, or nullptr otherwise. |
| inline Page* GetPageForCategoryType(FreeListCategoryType type); |
| |
| #ifdef DEBUG |
| size_t SumFreeLists(); |
| bool IsVeryLong(); |
| #endif |
| |
| private: |
| class FreeListCategoryIterator { |
| public: |
| FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type) |
| : current_(free_list->categories_[type]) {} |
| |
| bool HasNext() { return current_ != nullptr; } |
| |
| FreeListCategory* Next() { |
| DCHECK(HasNext()); |
| FreeListCategory* tmp = current_; |
| current_ = current_->next(); |
| return tmp; |
| } |
| |
| private: |
| FreeListCategory* current_; |
| }; |
| |
| // The size range of blocks, in bytes. |
| static const size_t kMinBlockSize = 3 * kPointerSize; |
| static const size_t kMaxBlockSize = Page::kAllocatableMemory; |
| |
| static const size_t kTiniestListMax = 0xa * kPointerSize; |
| static const size_t kTinyListMax = 0x1f * kPointerSize; |
| static const size_t kSmallListMax = 0xff * kPointerSize; |
| static const size_t kMediumListMax = 0x7ff * kPointerSize; |
| static const size_t kLargeListMax = 0x3fff * kPointerSize; |
| static const size_t kTinyAllocationMax = kTiniestListMax; |
| static const size_t kSmallAllocationMax = kTinyListMax; |
| static const size_t kMediumAllocationMax = kSmallListMax; |
| static const size_t kLargeAllocationMax = kMediumListMax; |
| |
| // Walks all available categories for a given |type| and tries to retrieve |
| // a node. Returns nullptr if the category is empty. |
| FreeSpace* FindNodeIn(FreeListCategoryType type, size_t* node_size); |
| |
| // Tries to retrieve a node from the first category in a given |type|. |
| // Returns nullptr if the category is empty. |
| FreeSpace* TryFindNodeIn(FreeListCategoryType type, size_t* node_size, |
| size_t minimum_size); |
| |
| // Searches a given |type| for a node of at least |minimum_size|. |
| FreeSpace* SearchForNodeInList(FreeListCategoryType type, size_t* node_size, |
| size_t minimum_size); |
| |
| // The tiny categories are not used for fast allocation. |
| FreeListCategoryType SelectFastAllocationFreeListCategoryType( |
| size_t size_in_bytes) { |
| if (size_in_bytes <= kSmallAllocationMax) { |
| return kSmall; |
| } else if (size_in_bytes <= kMediumAllocationMax) { |
| return kMedium; |
| } else if (size_in_bytes <= kLargeAllocationMax) { |
| return kLarge; |
| } |
| return kHuge; |
| } |
| |
| FreeListCategory* top(FreeListCategoryType type) const { |
| return categories_[type]; |
| } |
| |
| PagedSpace* owner_; |
| base::AtomicNumber<size_t> wasted_bytes_; |
| FreeListCategory* categories_[kNumberOfCategories]; |
| |
| friend class FreeListCategory; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(FreeList); |
| }; |
| |
| // LocalAllocationBuffer represents a linear allocation area that is created |
| // from a given {AllocationResult} and can be used to allocate memory without |
| // synchronization. |
| // |
| // The buffer is properly closed upon destruction and reassignment. |
| // Example: |
| // { |
| // AllocationResult result = ...; |
| // LocalAllocationBuffer a(heap, result, size); |
| // LocalAllocationBuffer b = a; |
| // CHECK(!a.IsValid()); |
| // CHECK(b.IsValid()); |
| // // {a} is invalid now and cannot be used for further allocations. |
| // } |
| // // Since {b} went out of scope, the LAB is closed, resulting in creating a |
| // // filler object for the remaining area. |
| class LocalAllocationBuffer { |
| public: |
| // Indicates that a buffer cannot be used for allocations anymore. Can result |
| // from either reassigning a buffer, or trying to construct it from an |
| // invalid {AllocationResult}. |
| static inline LocalAllocationBuffer InvalidBuffer(); |
| |
| // Creates a new LAB from a given {AllocationResult}. Results in |
| // InvalidBuffer if the result indicates a retry. |
| static inline LocalAllocationBuffer FromResult(Heap* heap, |
| AllocationResult result, |
| intptr_t size); |
| |
| ~LocalAllocationBuffer() { Close(); } |
| |
| // Convert to C++11 move-semantics once allowed by the style guide. |
| LocalAllocationBuffer(const LocalAllocationBuffer& other); |
| LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other); |
| |
| MUST_USE_RESULT inline AllocationResult AllocateRawAligned( |
| int size_in_bytes, AllocationAlignment alignment); |
| |
| inline bool IsValid() { return allocation_info_.top() != nullptr; } |
| |
| // Try to merge LABs, which is only possible when they are adjacent in memory. |
| // Returns true if the merge was successful, false otherwise. |
| inline bool TryMerge(LocalAllocationBuffer* other); |
| |
| inline bool TryFreeLast(HeapObject* object, int object_size); |
| |
| // Close a LAB, effectively invalidating it. Returns the unused area. |
| LinearAllocationArea Close(); |
| |
| private: |
| LocalAllocationBuffer(Heap* heap, LinearAllocationArea allocation_info); |
| |
| Heap* heap_; |
| LinearAllocationArea allocation_info_; |
| }; |
| |
| class SpaceWithLinearArea : public Space { |
| public: |
| SpaceWithLinearArea(Heap* heap, AllocationSpace id, Executability executable) |
| : Space(heap, id, executable), top_on_previous_step_(0) { |
| allocation_info_.Reset(nullptr, nullptr); |
| } |
| |
| virtual bool SupportsInlineAllocation() = 0; |
| |
| // Returns the allocation pointer in this space. |
| Address top() { return allocation_info_.top(); } |
| Address limit() { return allocation_info_.limit(); } |
| |
| // The allocation top address. |
| Address* allocation_top_address() { return allocation_info_.top_address(); } |
| |
| // The allocation limit address. |
| Address* allocation_limit_address() { |
| return allocation_info_.limit_address(); |
| } |
| |
| V8_EXPORT_PRIVATE void AddAllocationObserver( |
| AllocationObserver* observer) override; |
| V8_EXPORT_PRIVATE void RemoveAllocationObserver( |
| AllocationObserver* observer) override; |
| V8_EXPORT_PRIVATE void ResumeAllocationObservers() override; |
| V8_EXPORT_PRIVATE void PauseAllocationObservers() override; |
| |
| // When allocation observers are active we may use a lower limit to allow the |
| // observers to 'interrupt' earlier than the natural limit. Given a linear |
| // area bounded by [start, end), this function computes the limit to use to |
| // allow proper observation based on existing observers. min_size specifies |
| // the minimum size that the limited area should have. |
| Address ComputeLimit(Address start, Address end, size_t min_size); |
| V8_EXPORT_PRIVATE virtual void UpdateInlineAllocationLimit( |
| size_t min_size) = 0; |
| |
| protected: |
| // If we are doing inline allocation in steps, this method performs the 'step' |
| // operation. top is the memory address of the bump pointer at the last |
| // inline allocation (i.e. it determines the numbers of bytes actually |
| // allocated since the last step.) top_for_next_step is the address of the |
| // bump pointer where the next byte is going to be allocated from. top and |
| // top_for_next_step may be different when we cross a page boundary or reset |
| // the space. |
| // TODO(ofrobots): clarify the precise difference between this and |
| // Space::AllocationStep. |
| void InlineAllocationStep(Address top, Address top_for_next_step, |
| Address soon_object, size_t size); |
| V8_EXPORT_PRIVATE void StartNextInlineAllocationStep() override; |
| |
| // TODO(ofrobots): make these private after refactoring is complete. |
| LinearAllocationArea allocation_info_; |
| Address top_on_previous_step_; |
| }; |
| |
| class V8_EXPORT_PRIVATE PagedSpace |
| : NON_EXPORTED_BASE(public SpaceWithLinearArea) { |
| public: |
| typedef PageIterator iterator; |
| |
| static const size_t kCompactionMemoryWanted = 500 * KB; |
| |
| // Creates a space with an id. |
| PagedSpace(Heap* heap, AllocationSpace id, Executability executable); |
| |
| ~PagedSpace() override { TearDown(); } |
| |
| // Set up the space using the given address range of virtual memory (from |
| // the memory allocator's initial chunk) if possible. If the block of |
| // addresses is not big enough to contain a single page-aligned page, a |
| // fresh chunk will be allocated. |
| bool SetUp(); |
| |
| // Returns true if the space has been successfully set up and not |
| // subsequently torn down. |
| bool HasBeenSetUp(); |
| |
| // Checks whether an object/address is in this space. |
| inline bool Contains(Address a); |
| inline bool Contains(Object* o); |
| bool ContainsSlow(Address addr); |
| |
| // During boot the free_space_map is created, and afterwards we may need |
| // to write it into the free list nodes that were already created. |
| void RepairFreeListsAfterDeserialization(); |
| |
| // Prepares for a mark-compact GC. |
| void PrepareForMarkCompact(); |
| |
| // Current capacity without growing (Size() + Available()). |
| size_t Capacity() { return accounting_stats_.Capacity(); } |
| |
| // Approximate amount of physical memory committed for this space. |
| size_t CommittedPhysicalMemory() override; |
| |
| void ResetFreeListStatistics(); |
| |
| // Sets the capacity, the available space and the wasted space to zero. |
| // The stats are rebuilt during sweeping by adding each page to the |
| // capacity and the size when it is encountered. As free spaces are |
| // discovered during the sweeping they are subtracted from the size and added |
| // to the available and wasted totals. |
| void ClearStats() { |
| accounting_stats_.ClearSize(); |
| free_list_.ResetStats(); |
| ResetFreeListStatistics(); |
| } |
| |
| // Available bytes without growing. These are the bytes on the free list. |
| // The bytes in the linear allocation area are not included in this total |
| // because updating the stats would slow down allocation. New pages are |
| // immediately added to the free list so they show up here. |
| size_t Available() override { return free_list_.Available(); } |
| |
| // Allocated bytes in this space. Garbage bytes that were not found due to |
| // concurrent sweeping are counted as being allocated! The bytes in the |
| // current linear allocation area (between top and limit) are also counted |
| // here. |
| size_t Size() override { return accounting_stats_.Size(); } |
| |
| // As size, but the bytes in lazily swept pages are estimated and the bytes |
| // in the current linear allocation area are not included. |
| size_t SizeOfObjects() override; |
| |
| // Wasted bytes in this space. These are just the bytes that were thrown away |
| // due to being too small to use for allocation. |
| virtual size_t Waste() { return free_list_.wasted_bytes(); } |
| |
| enum UpdateSkipList { UPDATE_SKIP_LIST, IGNORE_SKIP_LIST }; |
| |
| // Allocate the requested number of bytes in the space if possible, return a |
| // failure object if not. Only use IGNORE_SKIP_LIST if the skip list is going |
| // to be manually updated later. |
| MUST_USE_RESULT inline AllocationResult AllocateRawUnaligned( |
| int size_in_bytes, UpdateSkipList update_skip_list = UPDATE_SKIP_LIST); |
| |
| // Allocate the requested number of bytes in the space double aligned if |
| // possible, return a failure object if not. |
| MUST_USE_RESULT inline AllocationResult AllocateRawAligned( |
| int size_in_bytes, AllocationAlignment alignment); |
| |
| // Allocate the requested number of bytes in the space and consider allocation |
| // alignment if needed. |
| MUST_USE_RESULT inline AllocationResult AllocateRaw( |
| int size_in_bytes, AllocationAlignment alignment); |
| |
| // Give a block of memory to the space's free list. It might be added to |
| // the free list or accounted as waste. |
| // If add_to_freelist is false then just accounting stats are updated and |
| // no attempt to add area to free list is made. |
| size_t Free(Address start, size_t size_in_bytes) { |
| size_t wasted = free_list_.Free(start, size_in_bytes, kLinkCategory); |
| Page* page = Page::FromAddress(start); |
| accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page); |
| DCHECK_GE(size_in_bytes, wasted); |
| return size_in_bytes - wasted; |
| } |
| |
| size_t UnaccountedFree(Address start, size_t size_in_bytes) { |
| size_t wasted = free_list_.Free(start, size_in_bytes, kDoNotLinkCategory); |
| DCHECK_GE(size_in_bytes, wasted); |
| return size_in_bytes - wasted; |
| } |
| |
| inline bool TryFreeLast(HeapObject* object, int object_size); |
| |
| void ResetFreeList(); |
| |
| // Empty space linear allocation area, returning unused area to free list. |
| void FreeLinearAllocationArea(); |
| |
| void MarkLinearAllocationAreaBlack(); |
| void UnmarkLinearAllocationArea(); |
| |
| void DecreaseAllocatedBytes(size_t bytes, Page* page) { |
| accounting_stats_.DecreaseAllocatedBytes(bytes, page); |
| } |
| void IncreaseAllocatedBytes(size_t bytes, Page* page) { |
| accounting_stats_.IncreaseAllocatedBytes(bytes, page); |
| } |
| void DecreaseCapacity(size_t bytes) { |
| accounting_stats_.DecreaseCapacity(bytes); |
| } |
| void IncreaseCapacity(size_t bytes) { |
| accounting_stats_.IncreaseCapacity(bytes); |
| } |
| |
| void RefineAllocatedBytesAfterSweeping(Page* page); |
| |
| // The dummy page that anchors the linked list of pages. |
| Page* anchor() { return &anchor_; } |
| |
| Page* InitializePage(MemoryChunk* chunk, Executability executable); |
| void ReleasePage(Page* page); |
| // Adds the page to this space and returns the number of bytes added to the |
| // free list of the space. |
| size_t AddPage(Page* page); |
| void RemovePage(Page* page); |
| // Remove a page if it has at least |size_in_bytes| bytes available that can |
| // be used for allocation. |
| Page* RemovePageSafe(int size_in_bytes); |
| |
| void SetReadAndExecutable(); |
| void SetReadAndWritable(); |
| |
| #ifdef VERIFY_HEAP |
| // Verify integrity of this space. |
| virtual void Verify(ObjectVisitor* visitor); |
| |
| void VerifyLiveBytes(); |
| |
| // Overridden by subclasses to verify space-specific object |
| // properties (e.g., only maps or free-list nodes are in map space). |
| virtual void VerifyObject(HeapObject* obj) {} |
| #endif |
| |
| #ifdef DEBUG |
| void VerifyCountersAfterSweeping(); |
| void VerifyCountersBeforeConcurrentSweeping(); |
| // Print meta info and objects in this space. |
| void Print() override; |
| |
| // Report code object related statistics |
| static void ReportCodeStatistics(Isolate* isolate); |
| static void ResetCodeStatistics(Isolate* isolate); |
| #endif |
| |
| Page* FirstPage() { return anchor_.next_page(); } |
| Page* LastPage() { return anchor_.prev_page(); } |
| |
| bool CanExpand(size_t size); |
| |
| // Returns the number of total pages in this space. |
| int CountTotalPages(); |
| |
| // Return size of allocatable area on a page in this space. |
| inline int AreaSize() { return static_cast<int>(area_size_); } |
| |
| virtual bool is_local() { return false; } |
| |
| // Merges {other} into the current space. Note that this modifies {other}, |
| // e.g., removes its bump pointer area and resets statistics. |
| void MergeCompactionSpace(CompactionSpace* other); |
| |
| // Refills the free list from the corresponding free list filled by the |
| // sweeper. |
| virtual void RefillFreeList(); |
| |
| FreeList* free_list() { return &free_list_; } |
| |
| base::Mutex* mutex() { return &space_mutex_; } |
| |
| inline void UnlinkFreeListCategories(Page* page); |
| inline size_t RelinkFreeListCategories(Page* page); |
| |
| iterator begin() { return iterator(anchor_.next_page()); } |
| iterator end() { return iterator(&anchor_); } |
| |
| // Shrink immortal immovable pages of the space to be exactly the size needed |
| // using the high water mark. |
| void ShrinkImmortalImmovablePages(); |
| |
| size_t ShrinkPageToHighWaterMark(Page* page); |
| |
| std::unique_ptr<ObjectIterator> GetObjectIterator() override; |
| |
| void SetLinearAllocationArea(Address top, Address limit); |
| |
| private: |
| // Set space linear allocation area. |
| void SetTopAndLimit(Address top, Address limit) { |
| DCHECK(top == limit || |
| Page::FromAddress(top) == Page::FromAddress(limit - 1)); |
| MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); |
| allocation_info_.Reset(top, limit); |
| } |
| void DecreaseLimit(Address new_limit); |
| void UpdateInlineAllocationLimit(size_t min_size) override; |
| bool SupportsInlineAllocation() override { |
| return identity() == OLD_SPACE && !is_local(); |
| } |
| |
| protected: |
| // PagedSpaces that should be included in snapshots have different, i.e., |
| // smaller, initial pages. |
| virtual bool snapshotable() { return true; } |
| |
| bool HasPages() { return anchor_.next_page() != &anchor_; } |
| |
| // Cleans up the space, frees all pages in this space except those belonging |
| // to the initial chunk, uncommits addresses in the initial chunk. |
| void TearDown(); |
| |
| // Expands the space by allocating a fixed number of pages. Returns false if |
| // it cannot allocate requested number of pages from OS, or if the hard heap |
| // size limit has been hit. |
| bool Expand(); |
| |
| // Sets up a linear allocation area that fits the given number of bytes. |
| // Returns false if there is not enough space and the caller has to retry |
| // after collecting garbage. |
| inline bool EnsureLinearAllocationArea(int size_in_bytes); |
| // Allocates an object from the linear allocation area. Assumes that the |
| // linear allocation area is large enought to fit the object. |
| inline HeapObject* AllocateLinearly(int size_in_bytes); |
| // Tries to allocate an aligned object from the linear allocation area. |
| // Returns nullptr if the linear allocation area does not fit the object. |
| // Otherwise, returns the object pointer and writes the allocation size |
| // (object size + alignment filler size) to the size_in_bytes. |
| inline HeapObject* TryAllocateLinearlyAligned(int* size_in_bytes, |
| AllocationAlignment alignment); |
| |
| MUST_USE_RESULT bool RefillLinearAllocationAreaFromFreeList( |
| size_t size_in_bytes); |
| |
| // If sweeping is still in progress try to sweep unswept pages. If that is |
| // not successful, wait for the sweeper threads and retry free-list |
| // allocation. Returns false if there is not enough space and the caller |
| // has to retry after collecting garbage. |
| MUST_USE_RESULT virtual bool SweepAndRetryAllocation(int size_in_bytes); |
| |
| // Slow path of AllocateRaw. This function is space-dependent. Returns false |
| // if there is not enough space and the caller has to retry after |
| // collecting garbage. |
| MUST_USE_RESULT virtual bool SlowRefillLinearAllocationArea( |
| int size_in_bytes); |
| |
| // Implementation of SlowAllocateRaw. Returns false if there is not enough |
| // space and the caller has to retry after collecting garbage. |
| MUST_USE_RESULT bool RawSlowRefillLinearAllocationArea(int size_in_bytes); |
| |
| size_t area_size_; |
| |
| // Accounting information for this space. |
| AllocationStats accounting_stats_; |
| |
| // The dummy page that anchors the double linked list of pages. |
| Page anchor_; |
| |
| // The space's free list. |
| FreeList free_list_; |
| |
| // Mutex guarding any concurrent access to the space. |
| base::Mutex space_mutex_; |
| |
| friend class IncrementalMarking; |
| friend class MarkCompactCollector; |
| |
| // Used in cctest. |
| friend class heap::HeapTester; |
| }; |
| |
| enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 }; |
| |
| // ----------------------------------------------------------------------------- |
| // SemiSpace in young generation |
| // |
| // A SemiSpace is a contiguous chunk of memory holding page-like memory chunks. |
| // The mark-compact collector uses the memory of the first page in the from |
| // space as a marking stack when tracing live objects. |
| class SemiSpace : public Space { |
| public: |
| typedef PageIterator iterator; |
| |
| static void Swap(SemiSpace* from, SemiSpace* to); |
| |
| SemiSpace(Heap* heap, SemiSpaceId semispace) |
| : Space(heap, NEW_SPACE, NOT_EXECUTABLE), |
| current_capacity_(0), |
| maximum_capacity_(0), |
| minimum_capacity_(0), |
| age_mark_(nullptr), |
| committed_(false), |
| id_(semispace), |
| anchor_(this), |
| current_page_(nullptr), |
| pages_used_(0) {} |
| |
| inline bool Contains(HeapObject* o); |
| inline bool Contains(Object* o); |
| inline bool ContainsSlow(Address a); |
| |
| void SetUp(size_t initial_capacity, size_t maximum_capacity); |
| void TearDown(); |
| bool HasBeenSetUp() { return maximum_capacity_ != 0; } |
| |
| bool Commit(); |
| bool Uncommit(); |
| bool is_committed() { return committed_; } |
| |
| // Grow the semispace to the new capacity. The new capacity requested must |
| // be larger than the current capacity and less than the maximum capacity. |
| bool GrowTo(size_t new_capacity); |
| |
| // Shrinks the semispace to the new capacity. The new capacity requested |
| // must be more than the amount of used memory in the semispace and less |
| // than the current capacity. |
| bool ShrinkTo(size_t new_capacity); |
| |
| bool EnsureCurrentCapacity(); |
| |
| // Returns the start address of the first page of the space. |
| Address space_start() { |
| DCHECK_NE(anchor_.next_page(), anchor()); |
| return anchor_.next_page()->area_start(); |
| } |
| |
| Page* first_page() { return anchor_.next_page(); } |
| Page* current_page() { return current_page_; } |
| int pages_used() { return pages_used_; } |
| |
| // Returns one past the end address of the space. |
| Address space_end() { return anchor_.prev_page()->area_end(); } |
| |
| // Returns the start address of the current page of the space. |
| Address page_low() { return current_page_->area_start(); } |
| |
| // Returns one past the end address of the current page of the space. |
| Address page_high() { return current_page_->area_end(); } |
| |
| bool AdvancePage() { |
| Page* next_page = current_page_->next_page(); |
| // We cannot expand if we reached the maximum number of pages already. Note |
| // that we need to account for the next page already for this check as we |
| // could potentially fill the whole page after advancing. |
| const bool reached_max_pages = (pages_used_ + 1) == max_pages(); |
| if (next_page == anchor() || reached_max_pages) { |
| return false; |
| } |
| current_page_ = next_page; |
| pages_used_++; |
| return true; |
| } |
| |
| // Resets the space to using the first page. |
| void Reset(); |
| |
| void RemovePage(Page* page); |
| void PrependPage(Page* page); |
| Page* InitializePage(MemoryChunk* chunk, Executability executable); |
| |
| // Age mark accessors. |
| Address age_mark() { return age_mark_; } |
| void set_age_mark(Address mark); |
| |
| // Returns the current capacity of the semispace. |
| size_t current_capacity() { return current_capacity_; } |
| |
| // Returns the maximum capacity of the semispace. |
| size_t maximum_capacity() { return maximum_capacity_; } |
| |
| // Returns the initial capacity of the semispace. |
| size_t minimum_capacity() { return minimum_capacity_; } |
| |
| SemiSpaceId id() { return id_; } |
| |
| // Approximate amount of physical memory committed for this space. |
| size_t CommittedPhysicalMemory() override; |
| |
| // If we don't have these here then SemiSpace will be abstract. However |
| // they should never be called: |
| |
| size_t Size() override { |
| UNREACHABLE(); |
| } |
| |
| size_t SizeOfObjects() override { return Size(); } |
| |
| size_t Available() override { |
| UNREACHABLE(); |
| } |
| |
| iterator begin() { return iterator(anchor_.next_page()); } |
| iterator end() { return iterator(anchor()); } |
| |
| std::unique_ptr<ObjectIterator> GetObjectIterator() override; |
| |
| #ifdef DEBUG |
| void Print() override; |
| // Validate a range of of addresses in a SemiSpace. |
| // The "from" address must be on a page prior to the "to" address, |
| // in the linked page order, or it must be earlier on the same page. |
| static void AssertValidRange(Address from, Address to); |
| #else |
| // Do nothing. |
| inline static void AssertValidRange(Address from, Address to) {} |
| #endif |
| |
| #ifdef VERIFY_HEAP |
| virtual void Verify(); |
| #endif |
| |
| private: |
| void RewindPages(Page* start, int num_pages); |
| |
| inline Page* anchor() { return &anchor_; } |
| inline int max_pages() { |
| return static_cast<int>(current_capacity_ / Page::kPageSize); |
| } |
| |
| // Copies the flags into the masked positions on all pages in the space. |
| void FixPagesFlags(intptr_t flags, intptr_t flag_mask); |
| |
| // The currently committed space capacity. |
| size_t current_capacity_; |
| |
| // The maximum capacity that can be used by this space. A space cannot grow |
| // beyond that size. |
| size_t maximum_capacity_; |
| |
| // The minimum capacity for the space. A space cannot shrink below this size. |
| size_t minimum_capacity_; |
| |
| // Used to govern object promotion during mark-compact collection. |
| Address age_mark_; |
| |
| bool committed_; |
| SemiSpaceId id_; |
| |
| Page anchor_; |
| Page* current_page_; |
| int pages_used_; |
| |
| friend class NewSpace; |
| friend class SemiSpaceIterator; |
| }; |
| |
| |
| // A SemiSpaceIterator is an ObjectIterator that iterates over the active |
| // semispace of the heap's new space. It iterates over the objects in the |
| // semispace from a given start address (defaulting to the bottom of the |
| // semispace) to the top of the semispace. New objects allocated after the |
| // iterator is created are not iterated. |
| class SemiSpaceIterator : public ObjectIterator { |
| public: |
| // Create an iterator over the allocated objects in the given to-space. |
| explicit SemiSpaceIterator(NewSpace* space); |
| |
| inline HeapObject* Next() override; |
| |
| private: |
| void Initialize(Address start, Address end); |
| |
| // The current iteration point. |
| Address current_; |
| // The end of iteration. |
| Address limit_; |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // The young generation space. |
| // |
| // The new space consists of a contiguous pair of semispaces. It simply |
| // forwards most functions to the appropriate semispace. |
| |
| class NewSpace : public SpaceWithLinearArea { |
| public: |
| typedef PageIterator iterator; |
| |
| explicit NewSpace(Heap* heap) |
| : SpaceWithLinearArea(heap, NEW_SPACE, NOT_EXECUTABLE), |
| to_space_(heap, kToSpace), |
| from_space_(heap, kFromSpace), |
| reservation_() {} |
| |
| inline bool Contains(HeapObject* o); |
| inline bool ContainsSlow(Address a); |
| inline bool Contains(Object* o); |
| |
| bool SetUp(size_t initial_semispace_capacity, size_t max_semispace_capacity); |
| |
| // Tears down the space. Heap memory was not allocated by the space, so it |
| // is not deallocated here. |
| void TearDown(); |
| |
| // True if the space has been set up but not torn down. |
| bool HasBeenSetUp() { |
| return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp(); |
| } |
| |
| // Flip the pair of spaces. |
| void Flip(); |
| |
| // Grow the capacity of the semispaces. Assumes that they are not at |
| // their maximum capacity. |
| void Grow(); |
| |
| // Shrink the capacity of the semispaces. |
| void Shrink(); |
| |
| // Return the allocated bytes in the active semispace. |
| size_t Size() override { |
| DCHECK_GE(top(), to_space_.page_low()); |
| return to_space_.pages_used() * Page::kAllocatableMemory + |
| static_cast<size_t>(top() - to_space_.page_low()); |
| } |
| |
| size_t SizeOfObjects() override { return Size(); } |
| |
| // Return the allocatable capacity of a semispace. |
| size_t Capacity() { |
| SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); |
| return (to_space_.current_capacity() / Page::kPageSize) * |
| Page::kAllocatableMemory; |
| } |
| |
| // Return the current size of a semispace, allocatable and non-allocatable |
| // memory. |
| size_t TotalCapacity() { |
| DCHECK(to_space_.current_capacity() == from_space_.current_capacity()); |
| return to_space_.current_capacity(); |
| } |
| |
| // Committed memory for NewSpace is the committed memory of both semi-spaces |
| // combined. |
| size_t CommittedMemory() override { |
| return from_space_.CommittedMemory() + to_space_.CommittedMemory(); |
| } |
| |
| size_t MaximumCommittedMemory() override { |
| return from_space_.MaximumCommittedMemory() + |
| to_space_.MaximumCommittedMemory(); |
| } |
| |
| // Approximate amount of physical memory committed for this space. |
| size_t CommittedPhysicalMemory() override; |
| |
| // Return the available bytes without growing. |
| size_t Available() override { |
| DCHECK_GE(Capacity(), Size()); |
| return Capacity() - Size(); |
| } |
| |
| size_t AllocatedSinceLastGC() { |
| const Address age_mark = to_space_.age_mark(); |
| DCHECK_NOT_NULL(age_mark); |
| DCHECK_NOT_NULL(top()); |
| Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark); |
| Page* const last_page = Page::FromAllocationAreaAddress(top()); |
| Page* current_page = age_mark_page; |
| size_t allocated = 0; |
| if (current_page != last_page) { |
| DCHECK_EQ(current_page, age_mark_page); |
| DCHECK_GE(age_mark_page->area_end(), age_mark); |
| allocated += age_mark_page->area_end() - age_mark; |
| current_page = current_page->next_page(); |
| } else { |
| DCHECK_GE(top(), age_mark); |
| return top() - age_mark; |
| } |
| while (current_page != last_page) { |
| DCHECK_NE(current_page, age_mark_page); |
| allocated += Page::kAllocatableMemory; |
| current_page = current_page->next_page(); |
| } |
| DCHECK_GE(top(), current_page->area_start()); |
| allocated += top() - current_page->area_start(); |
| DCHECK_LE(allocated, Size()); |
| return allocated; |
| } |
| |
| void MovePageFromSpaceToSpace(Page* page) { |
| DCHECK(page->InFromSpace()); |
| from_space_.RemovePage(page); |
| to_space_.PrependPage(page); |
| } |
| |
| bool Rebalance(); |
| |
| // Return the maximum capacity of a semispace. |
| size_t MaximumCapacity() { |
| DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity()); |
| return to_space_.maximum_capacity(); |
| } |
| |
| bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); } |
| |
| // Returns the initial capacity of a semispace. |
| size_t InitialTotalCapacity() { |
| DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity()); |
| return to_space_.minimum_capacity(); |
| } |
| |
| void ResetOriginalTop() { |
| DCHECK_GE(top(), original_top()); |
| DCHECK_LE(top(), original_limit()); |
| original_top_.SetValue(top()); |
| } |
| |
| Address original_top() { return original_top_.Value(); } |
| Address original_limit() { return original_limit_.Value(); } |
| |
| // Return the address of the first object in the active semispace. |
| Address bottom() { return to_space_.space_start(); } |
| |
| // Get the age mark of the inactive semispace. |
| Address age_mark() { return from_space_.age_mark(); } |
| // Set the age mark in the active semispace. |
| void set_age_mark(Address mark) { to_space_.set_age_mark(mark); } |
| |
| MUST_USE_RESULT INLINE(AllocationResult AllocateRawAligned( |
| int size_in_bytes, AllocationAlignment alignment)); |
| |
| MUST_USE_RESULT INLINE( |
| AllocationResult AllocateRawUnaligned(int size_in_bytes)); |
| |
| MUST_USE_RESULT INLINE(AllocationResult AllocateRaw( |
| int size_in_bytes, AllocationAlignment alignment)); |
| |
| MUST_USE_RESULT inline AllocationResult AllocateRawSynchronized( |
| int size_in_bytes, AllocationAlignment alignment); |
| |
| // Reset the allocation pointer to the beginning of the active semispace. |
| void ResetLinearAllocationArea(); |
| |
| // When inline allocation stepping is active, either because of incremental |
| // marking, idle scavenge, or allocation statistics gathering, we 'interrupt' |
| // inline allocation every once in a while. This is done by setting |
| // allocation_info_.limit to be lower than the actual limit and and increasing |
| // it in steps to guarantee that the observers are notified periodically. |
| void UpdateInlineAllocationLimit(size_t size_in_bytes) override; |
| |
| // Get the extent of the inactive semispace (for use as a marking stack, |
| // or to zap it). Notice: space-addresses are not necessarily on the |
| // same page, so FromSpaceStart() might be above FromSpaceEnd(). |
| Address FromSpacePageLow() { return from_space_.page_low(); } |
| Address FromSpacePageHigh() { return from_space_.page_high(); } |
| Address FromSpaceStart() { return from_space_.space_start(); } |
| Address FromSpaceEnd() { return from_space_.space_end(); } |
| |
| // Get the extent of the active semispace's pages' memory. |
| Address ToSpaceStart() { return to_space_.space_start(); } |
| Address ToSpaceEnd() { return to_space_.space_end(); } |
| |
| inline bool ToSpaceContainsSlow(Address a); |
| inline bool FromSpaceContainsSlow(Address a); |
| inline bool ToSpaceContains(Object* o); |
| inline bool FromSpaceContains(Object* o); |
| |
| // Try to switch the active semispace to a new, empty, page. |
| // Returns false if this isn't possible or reasonable (i.e., there |
| // are no pages, or the current page is already empty), or true |
| // if successful. |
| bool AddFreshPage(); |
| bool AddFreshPageSynchronized(); |
| |
| #ifdef VERIFY_HEAP |
| // Verify the active semispace. |
| virtual void Verify(); |
| #endif |
| |
| #ifdef DEBUG |
| // Print the active semispace. |
| void Print() override { to_space_.Print(); } |
| #endif |
| |
| // Return whether the operation succeeded. |
| bool CommitFromSpaceIfNeeded() { |
| if (from_space_.is_committed()) return true; |
| return from_space_.Commit(); |
| } |
| |
| bool UncommitFromSpace() { |
| if (!from_space_.is_committed()) return true; |
| return from_space_.Uncommit(); |
| } |
| |
| bool IsFromSpaceCommitted() { return from_space_.is_committed(); } |
| |
| SemiSpace* active_space() { return &to_space_; } |
| |
| iterator begin() { return to_space_.begin(); } |
| iterator end() { return to_space_.end(); } |
| |
| std::unique_ptr<ObjectIterator> GetObjectIterator() override; |
| |
| SemiSpace& from_space() { return from_space_; } |
| SemiSpace& to_space() { return to_space_; } |
| |
| private: |
| // Update linear allocation area to match the current to-space page. |
| void UpdateLinearAllocationArea(); |
| |
| base::Mutex mutex_; |
| |
| // The top and the limit at the time of setting the linear allocation area. |
| // These values can be accessed by background tasks. |
| base::AtomicValue<Address> original_top_; |
| base::AtomicValue<Address> original_limit_; |
| |
| // The semispaces. |
| SemiSpace to_space_; |
| SemiSpace from_space_; |
| VirtualMemory reservation_; |
| |
| bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment); |
| bool SupportsInlineAllocation() override { return true; } |
| |
| friend class SemiSpaceIterator; |
| }; |
| |
| class PauseAllocationObserversScope { |
| public: |
| explicit PauseAllocationObserversScope(Heap* heap); |
| ~PauseAllocationObserversScope(); |
| |
| private: |
| Heap* heap_; |
| DISALLOW_COPY_AND_ASSIGN(PauseAllocationObserversScope); |
| }; |
| |
| // ----------------------------------------------------------------------------- |
| // Compaction space that is used temporarily during compaction. |
| |
| class V8_EXPORT_PRIVATE CompactionSpace : public PagedSpace { |
| public: |
| CompactionSpace(Heap* heap, AllocationSpace id, Executability executable) |
| : PagedSpace(heap, id, executable) {} |
| |
| bool is_local() override { return true; } |
| |
| protected: |
| // The space is temporary and not included in any snapshots. |
| bool snapshotable() override { return false; } |
| |
| MUST_USE_RESULT bool SweepAndRetryAllocation(int size_in_bytes) override; |
| |
| MUST_USE_RESULT bool SlowRefillLinearAllocationArea( |
| int size_in_bytes) override; |
| }; |
| |
| |
| // A collection of |CompactionSpace|s used by a single compaction task. |
| class CompactionSpaceCollection : public Malloced { |
| public: |
| explicit CompactionSpaceCollection(Heap* heap) |
| : old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE), |
| code_space_(heap, CODE_SPACE, Executability::EXECUTABLE) {} |
| |
| CompactionSpace* Get(AllocationSpace space) { |
| switch (space) { |
| case OLD_SPACE: |
| return &old_space_; |
| case CODE_SPACE: |
| return &code_space_; |
| default: |
| UNREACHABLE(); |
| } |
| UNREACHABLE(); |
| } |
| |
| private: |
| CompactionSpace old_space_; |
| CompactionSpace code_space_; |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old object space (includes the old space of objects and code space) |
| |
| class OldSpace : public PagedSpace { |
| public: |
| // Creates an old space object. The constructor does not allocate pages |
| // from OS. |
| OldSpace(Heap* heap, AllocationSpace id, Executability executable) |
| : PagedSpace(heap, id, executable) {} |
| }; |
| |
| |
| // For contiguous spaces, top should be in the space (or at the end) and limit |
| // should be the end of the space. |
| #define DCHECK_SEMISPACE_ALLOCATION_INFO(info, space) \ |
| SLOW_DCHECK((space).page_low() <= (info).top() && \ |
| (info).top() <= (space).page_high() && \ |
| (info).limit() <= (space).page_high()) |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Old space for all map objects |
| |
| class MapSpace : public PagedSpace { |
| public: |
| // Creates a map space object. |
| MapSpace(Heap* heap, AllocationSpace id) |
| : PagedSpace(heap, id, NOT_EXECUTABLE) {} |
| |
| int RoundSizeDownToObjectAlignment(int size) override { |
| if (base::bits::IsPowerOfTwo(Map::kSize)) { |
| return RoundDown(size, Map::kSize); |
| } else { |
| return (size / Map::kSize) * Map::kSize; |
| } |
| } |
| |
| #ifdef VERIFY_HEAP |
| void VerifyObject(HeapObject* obj) override; |
| #endif |
| }; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Large objects ( > kMaxRegularHeapObjectSize ) are allocated and |
| // managed by the large object space. A large object is allocated from OS |
| // heap with extra padding bytes (Page::kPageSize + Page::kObjectStartOffset). |
| // A large object always starts at Page::kObjectStartOffset to a page. |
| // Large objects do not move during garbage collections. |
| |
| class LargeObjectSpace : public Space { |
| public: |
| typedef LargePageIterator iterator; |
| |
| LargeObjectSpace(Heap* heap, AllocationSpace id); |
| virtual ~LargeObjectSpace(); |
| |
| // Initializes internal data structures. |
| bool SetUp(); |
| |
| // Releases internal resources, frees objects in this space. |
| void TearDown(); |
| |
| static size_t ObjectSizeFor(size_t chunk_size) { |
| if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0; |
| return chunk_size - Page::kPageSize - Page::kObjectStartOffset; |
| } |
| |
| // Shared implementation of AllocateRaw, AllocateRawCode and |
| // AllocateRawFixedArray. |
| MUST_USE_RESULT AllocationResult |
| AllocateRaw(int object_size, Executability executable); |
| |
| // Available bytes for objects in this space. |
| inline size_t Available() override; |
| |
| size_t Size() override { return size_; } |
| |
| size_t SizeOfObjects() override { return objects_size_; } |
| |
| // Approximate amount of physical memory committed for this space. |
| size_t CommittedPhysicalMemory() override; |
| |
| int PageCount() { return page_count_; } |
| |
| // Finds an object for a given address, returns a Smi if it is not found. |
| // The function iterates through all objects in this space, may be slow. |
| Object* FindObject(Address a); |
| |
| // Takes the chunk_map_mutex_ and calls FindPage after that. |
| LargePage* FindPageThreadSafe(Address a); |
| |
| // Finds a large object page containing the given address, returns nullptr |
| // if such a page doesn't exist. |
| LargePage* FindPage(Address a); |
| |
| // Clears the marking state of live objects. |
| void ClearMarkingStateOfLiveObjects(); |
| |
| // Frees unmarked objects. |
| void FreeUnmarkedObjects(); |
| |
| void InsertChunkMapEntries(LargePage* page); |
| void RemoveChunkMapEntries(LargePage* page); |
| void RemoveChunkMapEntries(LargePage* page, Address free_start); |
| |
| // Checks whether a heap object is in this space; O(1). |
| bool Contains(HeapObject* obj); |
| // Checks whether an address is in the object area in this space. Iterates |
| // all objects in the space. May be slow. |
| bool ContainsSlow(Address addr) { return FindObject(addr)->IsHeapObject(); } |
| |
| // Checks whether the space is empty. |
| bool IsEmpty() { return first_page_ == nullptr; } |
| |
| LargePage* first_page() { return first_page_; } |
| |
| // Collect code statistics. |
| void CollectCodeStatistics(); |
| |
| iterator begin() { return iterator(first_page_); } |
| iterator end() { return iterator(nullptr); } |
| |
| std::unique_ptr<ObjectIterator> GetObjectIterator() override; |
| |
| base::Mutex* chunk_map_mutex() { return &chunk_map_mutex_; } |
| |
| #ifdef VERIFY_HEAP |
| virtual void Verify(); |
| #endif |
| |
| #ifdef DEBUG |
| void Print() override; |
| #endif |
| |
| private: |
| // The head of the linked list of large object chunks. |
| LargePage* first_page_; |
| size_t size_; // allocated bytes |
| int page_count_; // number of chunks |
| size_t objects_size_; // size of objects |
| // The chunk_map_mutex_ has to be used when the chunk map is accessed |
| // concurrently. |
| base::Mutex chunk_map_mutex_; |
| // Page-aligned addresses to their corresponding LargePage. |
| std::unordered_map<Address, LargePage*> chunk_map_; |
| |
| friend class LargeObjectIterator; |
| }; |
| |
| |
| class LargeObjectIterator : public ObjectIterator { |
| public: |
| explicit LargeObjectIterator(LargeObjectSpace* space); |
| |
| HeapObject* Next() override; |
| |
| private: |
| LargePage* current_; |
| }; |
| |
| // Iterates over the chunks (pages and large object pages) that can contain |
| // pointers to new space or to evacuation candidates. |
| class MemoryChunkIterator BASE_EMBEDDED { |
| public: |
| inline explicit MemoryChunkIterator(Heap* heap); |
| |
| // Return nullptr when the iterator is done. |
| inline MemoryChunk* next(); |
| |
| private: |
| enum State { |
| kOldSpaceState, |
| kMapState, |
| kCodeState, |
| kLargeObjectState, |
| kFinishedState |
| }; |
| Heap* heap_; |
| State state_; |
| PageIterator old_iterator_; |
| PageIterator code_iterator_; |
| PageIterator map_iterator_; |
| LargePageIterator lo_iterator_; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_HEAP_SPACES_H_ |