blob: 08fef7d6e38a541be7472b6085dadce77582b82c [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_HEAP_SPACES_H_
#define V8_HEAP_SPACES_H_
#include <list>
#include <map>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "src/allocation.h"
#include "src/base/atomic-utils.h"
#include "src/base/iterator.h"
#include "src/base/platform/mutex.h"
#include "src/cancelable-task.h"
#include "src/flags.h"
#include "src/globals.h"
#include "src/heap/heap.h"
#include "src/heap/invalidated-slots.h"
#include "src/heap/marking.h"
#include "src/objects.h"
#include "src/objects/map.h"
#include "src/utils.h"
namespace v8 {
namespace internal {
namespace heap {
class HeapTester;
class TestCodeRangeScope;
} // namespace heap
class AllocationObserver;
class CompactionSpace;
class CompactionSpaceCollection;
class FreeList;
class Isolate;
class LinearAllocationArea;
class LocalArrayBufferTracker;
class MemoryAllocator;
class MemoryChunk;
class Page;
class PagedSpace;
class SemiSpace;
class SkipList;
class SlotsBuffer;
class SlotSet;
class TypedSlotSet;
class Space;
// -----------------------------------------------------------------------------
// Heap structures:
// A JS heap consists of a young generation, an old generation, and a large
// object space. The young generation is divided into two semispaces. A
// scavenger implements Cheney's copying algorithm. The old generation is
// separated into a map space and an old object space. The map space contains
// all (and only) map objects, the rest of old objects go into the old space.
// The old generation is collected by a mark-sweep-compact collector.
// The semispaces of the young generation are contiguous. The old and map
// spaces consists of a list of pages. A page has a page header and an object
// area.
// There is a separate large object space for objects larger than
// kMaxRegularHeapObjectSize, so that they do not have to move during
// collection. The large object space is paged. Pages in large object space
// may be larger than the page size.
// A store-buffer based write barrier is used to keep track of intergenerational
// references. See heap/store-buffer.h.
// During scavenges and mark-sweep collections we sometimes (after a store
// buffer overflow) iterate intergenerational pointers without decoding heap
// object maps so if the page belongs to old space or large object space
// it is essential to guarantee that the page does not contain any
// garbage pointers to new space: every pointer aligned word which satisfies
// the Heap::InNewSpace() predicate must be a pointer to a live heap object in
// new space. Thus objects in old space and large object spaces should have a
// special layout (e.g. no bare integer fields). This requirement does not
// apply to map space which is iterated in a special fashion. However we still
// require pointer fields of dead maps to be cleaned.
// To enable lazy cleaning of old space pages we can mark chunks of the page
// as being garbage. Garbage sections are marked with a special map. These
// sections are skipped when scanning the page, even if we are otherwise
// scanning without regard for object boundaries. Garbage sections are chained
// together to form a free list after a GC. Garbage sections created outside
// of GCs by object trunctation etc. may not be in the free list chain. Very
// small free spaces are ignored, they need only be cleaned of bogus pointers
// into new space.
// Each page may have up to one special garbage section. The start of this
// section is denoted by the top field in the space. The end of the section
// is denoted by the limit field in the space. This special garbage section
// is not marked with a free space map in the data. The point of this section
// is to enable linear allocation without having to constantly update the byte
// array every time the top field is updated and a new object is created. The
// special garbage section is not in the chain of garbage sections.
// Since the top and limit fields are in the space, not the page, only one page
// has a special garbage section, and if the top and limit are equal then there
// is no special garbage section.
// Some assertion macros used in the debugging mode.
#define DCHECK_PAGE_ALIGNED(address) \
DCHECK((OffsetFrom(address) & Page::kPageAlignmentMask) == 0)
#define DCHECK_OBJECT_ALIGNED(address) \
DCHECK((OffsetFrom(address) & kObjectAlignmentMask) == 0)
#define DCHECK_OBJECT_SIZE(size) \
DCHECK((0 < size) && (size <= kMaxRegularHeapObjectSize))
#define DCHECK_CODEOBJECT_SIZE(size, code_space) \
DCHECK((0 < size) && (size <= code_space->AreaSize()))
#define DCHECK_PAGE_OFFSET(offset) \
DCHECK((Page::kObjectStartOffset <= offset) && (offset <= Page::kPageSize))
enum FreeListCategoryType {
kFirstCategory = kTiniest,
kLastCategory = kHuge,
kNumberOfCategories = kLastCategory + 1,
enum FreeMode { kLinkCategory, kDoNotLinkCategory };
enum RememberedSetType {
// A free list category maintains a linked list of free memory blocks.
class FreeListCategory {
static const int kSize = kIntSize + // FreeListCategoryType type_
kIntSize + // padding for type_
kSizetSize + // size_t available_
kPointerSize + // FreeSpace* top_
kPointerSize + // FreeListCategory* prev_
kPointerSize; // FreeListCategory* next_
: type_(kInvalidCategory),
next_(nullptr) {}
void Initialize(FreeListCategoryType type) {
type_ = type;
available_ = 0;
top_ = nullptr;
prev_ = nullptr;
next_ = nullptr;
void Reset();
void ResetStats() { Reset(); }
void RepairFreeList(Heap* heap);
// Relinks the category into the currently owning free list. Requires that the
// category is currently unlinked.
void Relink();
void Free(FreeSpace* node, size_t size_in_bytes, FreeMode mode);
// Picks a node from the list and stores its size in |node_size|. Returns
// nullptr if the category is empty.
FreeSpace* PickNodeFromList(size_t* node_size);
// Performs a single try to pick a node of at least |minimum_size| from the
// category. Stores the actual size in |node_size|. Returns nullptr if no
// node is found.
FreeSpace* TryPickNodeFromList(size_t minimum_size, size_t* node_size);
// Picks a node of at least |minimum_size| from the category. Stores the
// actual size in |node_size|. Returns nullptr if no node is found.
FreeSpace* SearchForNodeInList(size_t minimum_size, size_t* node_size);
inline FreeList* owner();
inline Page* page() const;
inline bool is_linked();
bool is_empty() { return top() == nullptr; }
size_t available() const { return available_; }
#ifdef DEBUG
size_t SumFreeList();
int FreeListLength();
// For debug builds we accurately compute free lists lengths up until
// {kVeryLongFreeList} by manually walking the list.
static const int kVeryLongFreeList = 500;
FreeSpace* top() { return top_; }
void set_top(FreeSpace* top) { top_ = top; }
FreeListCategory* prev() { return prev_; }
void set_prev(FreeListCategory* prev) { prev_ = prev; }
FreeListCategory* next() { return next_; }
void set_next(FreeListCategory* next) { next_ = next; }
// |type_|: The type of this free list category.
FreeListCategoryType type_;
// |available_|: Total available bytes in all blocks of this free list
// category.
size_t available_;
// |top_|: Points to the top FreeSpace* in the free list category.
FreeSpace* top_;
FreeListCategory* prev_;
FreeListCategory* next_;
friend class FreeList;
friend class PagedSpace;
// MemoryChunk represents a memory region owned by a specific space.
// It is divided into the header and the body. Chunk start is always
// 1MB aligned. Start of the body is aligned so it can accommodate
// any heap object.
class MemoryChunk {
// Use with std data structures.
struct Hasher {
size_t operator()(MemoryChunk* const chunk) const {
return reinterpret_cast<size_t>(chunk) >> kPageSizeBits;
enum Flag {
NO_FLAGS = 0u,
IS_EXECUTABLE = 1u << 0,
// A page in new space has one of the next to flags set.
IN_FROM_SPACE = 1u << 3,
IN_TO_SPACE = 1u << 4,
// Large objects can have a progress bar in their page header. These object
// are scanned in increments and will be kept black while being scanned.
// Even if the mutator writes to them they will be kept black and a white
// to grey transition is performed in the value.
// |PAGE_NEW_OLD_PROMOTION|: A page tagged with this flag has been promoted
// from new to old space during evacuation.
// |PAGE_NEW_NEW_PROMOTION|: A page tagged with this flag has been moved
// within the new space during evacuation.
// This flag is intended to be used for testing. Works only when both
// FLAG_stress_compaction and FLAG_manual_evacuation_candidates_selection
// are set. It forces the page to become an evacuation candidate at next
// candidates selection cycle.
// This flag is intended to be used for testing.
// The memory chunk is already logically freed, however the actual freeing
// still has to be performed.
PRE_FREED = 1u << 13,
// |POOLED|: When actually freeing this chunk, only uncommit and do not
// give up the reservation as we still reuse the chunk at some point.
POOLED = 1u << 14,
// |COMPACTION_WAS_ABORTED|: Indicates that the compaction in this page
// has been aborted and needs special handling by the sweeper.
// |COMPACTION_WAS_ABORTED_FOR_TESTING|: During stress testing evacuation
// on pages is sometimes aborted. The flag is used to avoid repeatedly
// triggering on the same page.
// |ANCHOR|: Flag is set if page is an anchor.
ANCHOR = 1u << 17,
// |SWEEP_TO_ITERATE|: The page requires sweeping using external markbits
// to iterate the page.
using Flags = uintptr_t;
static const Flags kPointersToHereAreInterestingMask =
static const Flags kPointersFromHereAreInterestingMask =
static const Flags kEvacuationCandidateMask = EVACUATION_CANDIDATE;
static const Flags kIsInNewSpaceMask = IN_FROM_SPACE | IN_TO_SPACE;
static const Flags kSkipEvacuationSlotsRecordingMask =
kEvacuationCandidateMask | kIsInNewSpaceMask;
// |kSweepingDone|: The page state when sweeping is complete or sweeping must
// not be performed on that page. Sweeper threads that are done with their
// work will set this value and not touch the page anymore.
// |kSweepingPending|: This page is ready for parallel sweeping.
// |kSweepingInProgress|: This page is currently swept by a sweeper thread.
enum ConcurrentSweepingState {
static const intptr_t kAlignment =
(static_cast<uintptr_t>(1) << kPageSizeBits);
static const intptr_t kAlignmentMask = kAlignment - 1;
static const intptr_t kSizeOffset = 0;
static const intptr_t kFlagsOffset = kSizeOffset + kSizetSize;
static const intptr_t kAreaStartOffset = kFlagsOffset + kIntptrSize;
static const intptr_t kAreaEndOffset = kAreaStartOffset + kPointerSize;
static const intptr_t kReservationOffset = kAreaEndOffset + kPointerSize;
static const intptr_t kOwnerOffset = kReservationOffset + 2 * kPointerSize;
static const size_t kMinHeaderSize =
kSizeOffset // NOLINT
+ kSizetSize // size_t size
+ kUIntptrSize // uintptr_t flags_
+ kPointerSize // Address area_start_
+ kPointerSize // Address area_end_
+ 2 * kPointerSize // VirtualMemory reservation_
+ kPointerSize // Address owner_
+ kPointerSize // Heap* heap_
+ kIntptrSize // intptr_t progress_bar_
+ kIntptrSize // intptr_t live_byte_count_
+ kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // SlotSet* array
+ kPointerSize * NUMBER_OF_REMEMBERED_SET_TYPES // TypedSlotSet* array
+ kPointerSize // InvalidatedSlots* invalidated_slots_
+ kPointerSize // SkipList* skip_list_
+ kPointerSize // AtomicValue high_water_mark_
+ kPointerSize // base::Mutex* mutex_
+ kPointerSize // base::AtomicWord concurrent_sweeping_
+ kPointerSize // base::Mutex* page_protection_change_mutex_
+ kPointerSize // unitptr_t write_unprotect_counter_
+ kSizetSize // size_t allocated_bytes_
+ kSizetSize // size_t wasted_memory_
+ kPointerSize // AtomicValue next_chunk_
+ kPointerSize // AtomicValue prev_chunk_
+ FreeListCategory::kSize * kNumberOfCategories
// FreeListCategory categories_[kNumberOfCategories]
+ kPointerSize // LocalArrayBufferTracker* local_tracker_
+ kIntptrSize // intptr_t young_generation_live_byte_count_
+ kPointerSize; // Bitmap* young_generation_bitmap_
// We add some more space to the computed header size to amount for missing
// alignment requirements in our computation.
// Try to get kHeaderSize properly aligned on 32-bit and 64-bit machines.
static const size_t kHeaderSize = kMinHeaderSize;
static const int kBodyOffset =
CODE_POINTER_ALIGN(kHeaderSize + Bitmap::kSize);
// The start offset of the object area in a page. Aligned to both maps and
// code alignment to be suitable for both. Also aligned to 32 words because
// the marking bitmap is arranged in 32 bit chunks.
static const int kObjectStartAlignment = 32 * kPointerSize;
static const int kObjectStartOffset =
kBodyOffset - 1 +
(kObjectStartAlignment - (kBodyOffset - 1) % kObjectStartAlignment);
// Page size in bytes. This must be a multiple of the OS page size.
static const int kPageSize = 1 << kPageSizeBits;
static const intptr_t kPageAlignmentMask = (1 << kPageSizeBits) - 1;
static const int kAllocatableMemory = kPageSize - kObjectStartOffset;
// Maximum number of nested code memory modification scopes.
// TODO(6792,mstarzinger): Drop to 3 or lower once WebAssembly is off heap.
static const int kMaxWriteUnprotectCounter = 4;
// Only works if the pointer is in the first kPageSize of the MemoryChunk.
static MemoryChunk* FromAddress(Address a) {
return reinterpret_cast<MemoryChunk*>(OffsetFrom(a) & ~kAlignmentMask);
static inline MemoryChunk* FromAnyPointerAddress(Heap* heap, Address addr);
static inline void UpdateHighWaterMark(Address mark) {
if (mark == nullptr) return;
// Need to subtract one from the mark because when a chunk is full the
// top points to the next address after the chunk, which effectively belongs
// to another chunk. See the comment to Page::FromTopOrLimit.
MemoryChunk* chunk = MemoryChunk::FromAddress(mark - 1);
intptr_t new_mark = static_cast<intptr_t>(mark - chunk->address());
intptr_t old_mark = 0;
do {
old_mark = chunk->high_water_mark_.Value();
} while ((new_mark > old_mark) &&
!chunk->high_water_mark_.TrySetValue(old_mark, new_mark));
Address address() const {
return reinterpret_cast<Address>(const_cast<MemoryChunk*>(this));
base::Mutex* mutex() { return mutex_; }
bool Contains(Address addr) {
return addr >= area_start() && addr < area_end();
// Checks whether |addr| can be a limit of addresses in this page. It's a
// limit if it's in the page, or if it's just after the last byte of the page.
bool ContainsLimit(Address addr) {
return addr >= area_start() && addr <= area_end();
base::AtomicValue<ConcurrentSweepingState>& concurrent_sweeping_state() {
return concurrent_sweeping_;
bool SweepingDone() {
return concurrent_sweeping_state().Value() == kSweepingDone;
size_t size() const { return size_; }
void set_size(size_t size) { size_ = size; }
inline Heap* heap() const { return heap_; }
Heap* synchronized_heap();
inline SkipList* skip_list() { return skip_list_; }
inline void set_skip_list(SkipList* skip_list) { skip_list_ = skip_list; }
template <RememberedSetType type>
bool ContainsSlots() {
return slot_set<type>() != nullptr || typed_slot_set<type>() != nullptr ||
invalidated_slots() != nullptr;
template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC>
SlotSet* slot_set() {
if (access_mode == AccessMode::ATOMIC)
return base::AsAtomicPointer::Acquire_Load(&slot_set_[type]);
return slot_set_[type];
template <RememberedSetType type, AccessMode access_mode = AccessMode::ATOMIC>
TypedSlotSet* typed_slot_set() {
if (access_mode == AccessMode::ATOMIC)
return base::AsAtomicPointer::Acquire_Load(&typed_slot_set_[type]);
return typed_slot_set_[type];
template <RememberedSetType type>
SlotSet* AllocateSlotSet();
// Not safe to be called concurrently.
template <RememberedSetType type>
void ReleaseSlotSet();
template <RememberedSetType type>
TypedSlotSet* AllocateTypedSlotSet();
// Not safe to be called concurrently.
template <RememberedSetType type>
void ReleaseTypedSlotSet();
InvalidatedSlots* AllocateInvalidatedSlots();
void ReleaseInvalidatedSlots();
void RegisterObjectWithInvalidatedSlots(HeapObject* object, int size);
InvalidatedSlots* invalidated_slots() { return invalidated_slots_; }
void AllocateLocalTracker();
void ReleaseLocalTracker();
inline LocalArrayBufferTracker* local_tracker() { return local_tracker_; }
bool contains_array_buffers();
void AllocateYoungGenerationBitmap();
void ReleaseYoungGenerationBitmap();
Address area_start() { return area_start_; }
Address area_end() { return area_end_; }
size_t area_size() { return static_cast<size_t>(area_end() - area_start()); }
// Approximate amount of physical memory committed for this chunk.
size_t CommittedPhysicalMemory();
Address HighWaterMark() { return address() + high_water_mark_.Value(); }
int progress_bar() {
return static_cast<int>(progress_bar_);
void set_progress_bar(int progress_bar) {
progress_bar_ = progress_bar;
void ResetProgressBar() {
if (IsFlagSet(MemoryChunk::HAS_PROGRESS_BAR)) {
inline uint32_t AddressToMarkbitIndex(Address addr) const {
return static_cast<uint32_t>(addr - this->address()) >> kPointerSizeLog2;
inline Address MarkbitIndexToAddress(uint32_t index) const {
return this->address() + (index << kPointerSizeLog2);
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
void SetFlag(Flag flag) {
if (access_mode == AccessMode::NON_ATOMIC) {
flags_ |= flag;
} else {
base::AsAtomicWord::SetBits<uintptr_t>(&flags_, flag, flag);
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
bool IsFlagSet(Flag flag) {
return (GetFlags<access_mode>() & flag) != 0;
void ClearFlag(Flag flag) { flags_ &= ~flag; }
// Set or clear multiple flags at a time. The flags in the mask are set to
// the value in "flags", the rest retain the current value in |flags_|.
void SetFlags(uintptr_t flags, uintptr_t mask) {
flags_ = (flags_ & ~mask) | (flags & mask);
// Return all current flags.
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
uintptr_t GetFlags() {
if (access_mode == AccessMode::NON_ATOMIC) {
return flags_;
} else {
return base::AsAtomicWord::Relaxed_Load(&flags_);
bool NeverEvacuate() { return IsFlagSet(NEVER_EVACUATE); }
void MarkNeverEvacuate() { SetFlag(NEVER_EVACUATE); }
bool CanAllocate() {
return !IsEvacuationCandidate() && !IsFlagSet(NEVER_ALLOCATE_ON_PAGE);
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
bool IsEvacuationCandidate() {
DCHECK(!(IsFlagSet<access_mode>(NEVER_EVACUATE) &&
return IsFlagSet<access_mode>(EVACUATION_CANDIDATE);
template <AccessMode access_mode = AccessMode::NON_ATOMIC>
bool ShouldSkipEvacuationSlotRecording() {
uintptr_t flags = GetFlags<access_mode>();
return ((flags & kSkipEvacuationSlotsRecordingMask) != 0) &&
((flags & COMPACTION_WAS_ABORTED) == 0);
Executability executable() {
bool InNewSpace() { return (flags_ & kIsInNewSpaceMask) != 0; }
bool InToSpace() { return IsFlagSet(IN_TO_SPACE); }
bool InFromSpace() { return IsFlagSet(IN_FROM_SPACE); }
MemoryChunk* next_chunk() { return next_chunk_.Value(); }
MemoryChunk* prev_chunk() { return prev_chunk_.Value(); }
void set_next_chunk(MemoryChunk* next) { next_chunk_.SetValue(next); }
void set_prev_chunk(MemoryChunk* prev) { prev_chunk_.SetValue(prev); }
Space* owner() const { return owner_.Value(); }
void set_owner(Space* space) { owner_.SetValue(space); }
void InsertAfter(MemoryChunk* other);
void Unlink();
// Emits a memory barrier. For TSAN builds the other thread needs to perform
// MemoryChunk::synchronized_heap() to simulate the barrier.
void InitializationMemoryFence();
void SetReadAndExecutable();
void SetReadAndWritable();
inline void InitializeFreeListCategories();
static MemoryChunk* Initialize(Heap* heap, Address base, size_t size,
Address area_start, Address area_end,
Executability executable, Space* owner,
VirtualMemory* reservation);
// Should be called when memory chunk is about to be freed.
void ReleaseAllocatedMemory();
VirtualMemory* reserved_memory() { return &reservation_; }
size_t size_;
uintptr_t flags_;
// Start and end of allocatable memory on this chunk.
Address area_start_;
Address area_end_;
// If the chunk needs to remember its memory reservation, it is stored here.
VirtualMemory reservation_;
// The space owning this memory chunk.
base::AtomicValue<Space*> owner_;
Heap* heap_;
// Used by the incremental marker to keep track of the scanning progress in
// large objects that have a progress bar and are scanned in increments.
intptr_t progress_bar_;
// Count of bytes marked black on page.
intptr_t live_byte_count_;
// A single slot set for small pages (of size kPageSize) or an array of slot
// set for large pages. In the latter case the number of entries in the array
// is ceil(size() / kPageSize).
TypedSlotSet* typed_slot_set_[NUMBER_OF_REMEMBERED_SET_TYPES];
InvalidatedSlots* invalidated_slots_;
SkipList* skip_list_;
// Assuming the initial allocation on a page is sequential,
// count highest number of bytes ever allocated on the page.
base::AtomicValue<intptr_t> high_water_mark_;
base::Mutex* mutex_;
base::AtomicValue<ConcurrentSweepingState> concurrent_sweeping_;
base::Mutex* page_protection_change_mutex_;
// This field is only relevant for code pages. It depicts the number of
// times a component requested this page to be read+writeable. The
// counter is decremented when a component resets to read+executable.
// If Value() == 0 => The memory is read and executable.
// If Value() >= 1 => The Memory is read and writable (and maybe executable).
// The maximum value is limited by {kMaxWriteUnprotectCounter} to prevent
// excessive nesting of scopes.
// All executable MemoryChunks are allocated rw based on the assumption that
// they will be used immediatelly for an allocation. They are initialized
// with the number of open CodeSpaceMemoryModificationScopes. The caller
// that triggers the page allocation is responsible for decrementing the
// counter.
uintptr_t write_unprotect_counter_;
// Byte allocated on the page, which includes all objects on the page
// and the linear allocation area.
size_t allocated_bytes_;
// Freed memory that was not added to the free list.
size_t wasted_memory_;
// next_chunk_ holds a pointer of type MemoryChunk
base::AtomicValue<MemoryChunk*> next_chunk_;
// prev_chunk_ holds a pointer of type MemoryChunk
base::AtomicValue<MemoryChunk*> prev_chunk_;
FreeListCategory categories_[kNumberOfCategories];
LocalArrayBufferTracker* local_tracker_;
intptr_t young_generation_live_byte_count_;
Bitmap* young_generation_bitmap_;
void InitializeReservedMemory() { reservation_.Reset(); }
friend class ConcurrentMarkingState;
friend class IncrementalMarkingState;
friend class MajorAtomicMarkingState;
friend class MajorMarkingState;
friend class MajorNonAtomicMarkingState;
friend class MemoryAllocator;
friend class MemoryChunkValidator;
friend class MinorMarkingState;
friend class MinorNonAtomicMarkingState;
friend class PagedSpace;
static_assert(kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory,
"kMaxRegularHeapObjectSize <= MemoryChunk::kAllocatableMemory");
// -----------------------------------------------------------------------------
// A page is a memory chunk of a size 512K. Large object pages may be larger.
// The only way to get a page pointer is by calling factory methods:
// Page* p = Page::FromAddress(addr); or
// Page* p = Page::FromTopOrLimit(top);
class Page : public MemoryChunk {
static const intptr_t kCopyAllFlags = ~0;
// Page flags copied from from-space to to-space when flipping semispaces.
static const intptr_t kCopyOnFlipFlagsMask =
static_cast<intptr_t>(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING) |
// Returns the page containing a given address. The address ranges
// from [page_addr .. page_addr + kPageSize[. This only works if the object
// is in fact in a page.
static Page* FromAddress(Address addr) {
return reinterpret_cast<Page*>(OffsetFrom(addr) & ~kPageAlignmentMask);
// Returns the page containing the address provided. The address can
// potentially point righter after the page. To be also safe for tagged values
// we subtract a hole word. The valid address ranges from
// [page_addr + kObjectStartOffset .. page_addr + kPageSize + kPointerSize].
static Page* FromAllocationAreaAddress(Address address) {
return Page::FromAddress(address - kPointerSize);
// Checks if address1 and address2 are on the same new space page.
static bool OnSamePage(Address address1, Address address2) {
return Page::FromAddress(address1) == Page::FromAddress(address2);
// Checks whether an address is page aligned.
static bool IsAlignedToPageSize(Address addr) {
return (OffsetFrom(addr) & kPageAlignmentMask) == 0;
static bool IsAtObjectStart(Address addr) {
return (reinterpret_cast<intptr_t>(addr) & kPageAlignmentMask) ==
static Page* ConvertNewToOld(Page* old_page);
// Create a Page object that is only used as anchor for the doubly-linked
// list of real pages.
explicit Page(Space* owner) { InitializeAsAnchor(owner); }
inline void MarkNeverAllocateForTesting();
inline void MarkEvacuationCandidate();
inline void ClearEvacuationCandidate();
Page* next_page() { return static_cast<Page*>(next_chunk()); }
Page* prev_page() { return static_cast<Page*>(prev_chunk()); }
void set_next_page(Page* page) { set_next_chunk(page); }
void set_prev_page(Page* page) { set_prev_chunk(page); }
template <typename Callback>
inline void ForAllFreeListCategories(Callback callback) {
for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
// Returns the offset of a given address to this page.
inline size_t Offset(Address a) { return static_cast<size_t>(a - address()); }
// Returns the address for a given offset to the this page.
Address OffsetToAddress(size_t offset) {
return address() + offset;
// WaitUntilSweepingCompleted only works when concurrent sweeping is in
// progress. In particular, when we know that right before this call a
// sweeper thread was sweeping this page.
void WaitUntilSweepingCompleted() {
void ResetFreeListStatistics();
size_t AvailableInFreeList();
size_t AvailableInFreeListFromAllocatedBytes() {
DCHECK_GE(area_size(), wasted_memory() + allocated_bytes());
return area_size() - wasted_memory() - allocated_bytes();
FreeListCategory* free_list_category(FreeListCategoryType type) {
return &categories_[type];
bool is_anchor() { return IsFlagSet(Page::ANCHOR); }
size_t wasted_memory() { return wasted_memory_; }
void add_wasted_memory(size_t waste) { wasted_memory_ += waste; }
size_t allocated_bytes() { return allocated_bytes_; }
void IncreaseAllocatedBytes(size_t bytes) {
DCHECK_LE(bytes, area_size());
allocated_bytes_ += bytes;
void DecreaseAllocatedBytes(size_t bytes) {
DCHECK_LE(bytes, area_size());
DCHECK_GE(allocated_bytes(), bytes);
allocated_bytes_ -= bytes;
void ResetAllocatedBytes();
size_t ShrinkToHighWaterMark();
V8_EXPORT_PRIVATE void CreateBlackArea(Address start, Address end);
void DestroyBlackArea(Address start, Address end);
#ifdef DEBUG
void Print();
#endif // DEBUG
enum InitializationMode { kFreeMemory, kDoNotFreeMemory };
void InitializeAsAnchor(Space* owner);
friend class MemoryAllocator;
class LargePage : public MemoryChunk {
HeapObject* GetObject() { return HeapObject::FromAddress(area_start()); }
inline LargePage* next_page() {
return static_cast<LargePage*>(next_chunk());
inline void set_next_page(LargePage* page) { set_next_chunk(page); }
// Uncommit memory that is not in use anymore by the object. If the object
// cannot be shrunk 0 is returned.
Address GetAddressToShrink(Address object_address, size_t object_size);
void ClearOutOfLiveRangeSlots(Address free_start);
// A limit to guarantee that we do not overflow typed slot offset in
// the old to old remembered set.
// Note that this limit is higher than what assembler already imposes on
// x64 and ia32 architectures.
static const int kMaxCodePageSize = 512 * MB;
static LargePage* Initialize(Heap* heap, MemoryChunk* chunk,
Executability executable, Space* owner);
friend class MemoryAllocator;
// ----------------------------------------------------------------------------
// Space is the abstract superclass for all allocation spaces.
class Space : public Malloced {
Space(Heap* heap, AllocationSpace id, Executability executable)
: allocation_observers_paused_(false),
max_committed_(0) {}
virtual ~Space() {}
Heap* heap() const { return heap_; }
// Does the space need executable memory?
Executability executable() { return executable_; }
// Identity used in error reporting.
AllocationSpace identity() { return id_; }
V8_EXPORT_PRIVATE virtual void AddAllocationObserver(
AllocationObserver* observer);
V8_EXPORT_PRIVATE virtual void RemoveAllocationObserver(
AllocationObserver* observer);
V8_EXPORT_PRIVATE virtual void PauseAllocationObservers();
V8_EXPORT_PRIVATE virtual void ResumeAllocationObservers();
V8_EXPORT_PRIVATE virtual void StartNextInlineAllocationStep() {}
void AllocationStep(int bytes_since_last, Address soon_object, int size);
// Return the total amount committed memory for this space, i.e., allocatable
// memory and page headers.
virtual size_t CommittedMemory() { return committed_; }
virtual size_t MaximumCommittedMemory() { return max_committed_; }
// Returns allocated size.
virtual size_t Size() = 0;
// Returns size of objects. Can differ from the allocated size
// (e.g. see LargeObjectSpace).
virtual size_t SizeOfObjects() { return Size(); }
// Approximate amount of physical memory committed for this space.
virtual size_t CommittedPhysicalMemory() = 0;
// Return the available bytes without growing.
virtual size_t Available() = 0;
virtual int RoundSizeDownToObjectAlignment(int size) {
if (id_ == CODE_SPACE) {
return RoundDown(size, kCodeAlignment);
} else {
return RoundDown(size, kPointerSize);
virtual std::unique_ptr<ObjectIterator> GetObjectIterator() = 0;
void AccountCommitted(size_t bytes) {
DCHECK_GE(committed_ + bytes, committed_);
committed_ += bytes;
if (committed_ > max_committed_) {
max_committed_ = committed_;
void AccountUncommitted(size_t bytes) {
DCHECK_GE(committed_, committed_ - bytes);
committed_ -= bytes;
V8_EXPORT_PRIVATE void* GetRandomMmapAddr();
#ifdef DEBUG
virtual void Print() = 0;
intptr_t GetNextInlineAllocationStepSize();
bool AllocationObserversActive() {
return !allocation_observers_paused_ && !allocation_observers_.empty();
std::vector<AllocationObserver*> allocation_observers_;
bool allocation_observers_paused_;
Heap* heap_;
AllocationSpace id_;
Executability executable_;
// Keeps track of committed memory in a space.
size_t committed_;
size_t max_committed_;
class MemoryChunkValidator {
// Computed offsets should match the compiler generated ones.
STATIC_ASSERT(MemoryChunk::kSizeOffset == offsetof(MemoryChunk, size_));
// Validate our estimates on the header size.
STATIC_ASSERT(sizeof(MemoryChunk) <= MemoryChunk::kHeaderSize);
STATIC_ASSERT(sizeof(LargePage) <= MemoryChunk::kHeaderSize);
STATIC_ASSERT(sizeof(Page) <= MemoryChunk::kHeaderSize);
// ----------------------------------------------------------------------------
// All heap objects containing executable code (code objects) must be allocated
// from a 2 GB range of memory, so that they can call each other using 32-bit
// displacements. This happens automatically on 32-bit platforms, where 32-bit
// displacements cover the entire 4GB virtual address space. On 64-bit
// platforms, we support this using the CodeRange object, which reserves and
// manages a range of virtual memory.
class CodeRange {
explicit CodeRange(Isolate* isolate);
~CodeRange() {
if (virtual_memory_.IsReserved()) virtual_memory_.Free();
// Reserves a range of virtual memory, but does not commit any of it.
// Can only be called once, at heap initialization time.
// Returns false on failure.
bool SetUp(size_t requested_size);
bool valid() { return virtual_memory_.IsReserved(); }
Address start() {
return static_cast<Address>(virtual_memory_.address());
size_t size() {
return virtual_memory_.size();
bool contains(Address address) {
if (!valid()) return false;
Address start = static_cast<Address>(virtual_memory_.address());
return start <= address && address < start + virtual_memory_.size();
// Allocates a chunk of memory from the large-object portion of
// the code range. On platforms with no separate code range, should
// not be called.
MUST_USE_RESULT Address AllocateRawMemory(const size_t requested_size,
const size_t commit_size,
size_t* allocated);
bool CommitRawMemory(Address start, size_t length);
bool UncommitRawMemory(Address start, size_t length);
void FreeRawMemory(Address buf, size_t length);
class FreeBlock {
FreeBlock() : start(0), size(0) {}
FreeBlock(Address start_arg, size_t size_arg)
: start(start_arg), size(size_arg) {
DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment));
DCHECK(size >= static_cast<size_t>(Page::kPageSize));
FreeBlock(void* start_arg, size_t size_arg)
: start(static_cast<Address>(start_arg)), size(size_arg) {
DCHECK(IsAddressAligned(start, MemoryChunk::kAlignment));
DCHECK(size >= static_cast<size_t>(Page::kPageSize));
Address start;
size_t size;
// Finds a block on the allocation list that contains at least the
// requested amount of memory. If none is found, sorts and merges
// the existing free memory blocks, and searches again.
// If none can be found, returns false.
bool GetNextAllocationBlock(size_t requested);
// Compares the start addresses of two free blocks.
static bool CompareFreeBlockAddress(const FreeBlock& left,
const FreeBlock& right);
bool ReserveBlock(const size_t requested_size, FreeBlock* block);
void ReleaseBlock(const FreeBlock* block);
Isolate* isolate_;
// The reserved range of virtual memory that all code objects are put in.
VirtualMemory virtual_memory_;
// The global mutex guards free_list_ and allocation_list_ as GC threads may
// access both lists concurrently to the main thread.
base::Mutex code_range_mutex_;
// Freed blocks of memory are added to the free list. When the allocation
// list is exhausted, the free list is sorted and merged to make the new
// allocation list.
std::vector<FreeBlock> free_list_;
// Memory is allocated from the free blocks on the allocation list.
// The block at current_allocation_block_index_ is the current block.
std::vector<FreeBlock> allocation_list_;
size_t current_allocation_block_index_;
class SkipList {
SkipList() { Clear(); }
void Clear() {
for (int idx = 0; idx < kSize; idx++) {
starts_[idx] = reinterpret_cast<Address>(-1);
Address StartFor(Address addr) { return starts_[RegionNumber(addr)]; }
void AddObject(Address addr, int size) {
int start_region = RegionNumber(addr);
int end_region = RegionNumber(addr + size - kPointerSize);
for (int idx = start_region; idx <= end_region; idx++) {
if (starts_[idx] > addr) {
starts_[idx] = addr;
} else {
// In the first region, there may already be an object closer to the
// start of the region. Do not change the start in that case. If this
// is not the first region, you probably added overlapping objects.
DCHECK_EQ(start_region, idx);
static inline int RegionNumber(Address addr) {
return (OffsetFrom(addr) & Page::kPageAlignmentMask) >> kRegionSizeLog2;
static void Update(Address addr, int size) {
Page* page = Page::FromAddress(addr);
SkipList* list = page->skip_list();
if (list == nullptr) {
list = new SkipList();
list->AddObject(addr, size);
static const int kRegionSizeLog2 = 13;
static const int kRegionSize = 1 << kRegionSizeLog2;
static const int kSize = Page::kPageSize / kRegionSize;
STATIC_ASSERT(Page::kPageSize % kRegionSize == 0);
Address starts_[kSize];
// ----------------------------------------------------------------------------
// A space acquires chunks of memory from the operating system. The memory
// allocator allocates and deallocates pages for the paged heap spaces and large
// pages for large object space.
class V8_EXPORT_PRIVATE MemoryAllocator {
// Unmapper takes care of concurrently unmapping and uncommitting memory
// chunks.
class Unmapper {
class UnmapFreeMemoryTask;
Unmapper(Heap* heap, MemoryAllocator* allocator)
: heap_(heap),
concurrent_unmapping_tasks_active_(0) {
void AddMemoryChunkSafe(MemoryChunk* chunk) {
if ((chunk->size() == Page::kPageSize) &&
(chunk->executable() != EXECUTABLE)) {
} else {
MemoryChunk* TryGetPooledMemoryChunkSafe() {
// Procedure:
// (1) Try to get a chunk that was declared as pooled and already has
// been uncommitted.
// (2) Try to steal any memory chunk of kPageSize that would've been
// unmapped.
MemoryChunk* chunk = GetMemoryChunkSafe<kPooled>();
if (chunk == nullptr) {
chunk = GetMemoryChunkSafe<kRegular>();
if (chunk != nullptr) {
// For stolen chunks we need to manually free any allocated memory.
return chunk;
void FreeQueuedChunks();
void WaitUntilCompleted();
void TearDown();
int NumberOfChunks();
static const int kReservedQueueingSlots = 64;
static const int kMaxUnmapperTasks = 4;
enum ChunkQueueType {
kRegular, // Pages of kPageSize that do not live in a CodeRange and
// can thus be used for stealing.
kNonRegular, // Large chunks and executable chunks.
kPooled, // Pooled chunks, already uncommited and ready for reuse.
enum class FreeMode {
template <ChunkQueueType type>
void AddMemoryChunkSafe(MemoryChunk* chunk) {
base::LockGuard<base::Mutex> guard(&mutex_);
template <ChunkQueueType type>
MemoryChunk* GetMemoryChunkSafe() {
base::LockGuard<base::Mutex> guard(&mutex_);
if (chunks_[type].empty()) return nullptr;
MemoryChunk* chunk = chunks_[type].back();
return chunk;
template <FreeMode mode>
void PerformFreeMemoryOnQueuedChunks();
Heap* const heap_;
MemoryAllocator* const allocator_;
base::Mutex mutex_;
std::vector<MemoryChunk*> chunks_[kNumberOfChunkQueues];
CancelableTaskManager::Id task_ids_[kMaxUnmapperTasks];
base::Semaphore pending_unmapping_tasks_semaphore_;
intptr_t concurrent_unmapping_tasks_active_;
friend class MemoryAllocator;
enum AllocationMode {
enum FreeMode {
static size_t CodePageGuardStartOffset();
static size_t CodePageGuardSize();
static size_t CodePageAreaStartOffset();
static size_t CodePageAreaEndOffset();
static size_t CodePageAreaSize() {
return CodePageAreaEndOffset() - CodePageAreaStartOffset();
static size_t PageAreaSize(AllocationSpace space) {
return (space == CODE_SPACE) ? CodePageAreaSize()
: Page::kAllocatableMemory;
static intptr_t GetCommitPageSize();
explicit MemoryAllocator(Isolate* isolate);
// Initializes its internal bookkeeping structures.
// Max capacity of the total space and executable memory limit.
bool SetUp(size_t max_capacity, size_t code_range_size);
void TearDown();
// Allocates a Page from the allocator. AllocationMode is used to indicate
// whether pooled allocation, which only works for MemoryChunk::kPageSize,
// should be tried first.
template <MemoryAllocator::AllocationMode alloc_mode = kRegular,
typename SpaceType>
Page* AllocatePage(size_t size, SpaceType* owner, Executability executable);
LargePage* AllocateLargePage(size_t size, LargeObjectSpace* owner,
Executability executable);
template <MemoryAllocator::FreeMode mode = kFull>
void Free(MemoryChunk* chunk);
// Returns allocated spaces in bytes.
size_t Size() { return size_.Value(); }
// Returns allocated executable spaces in bytes.
size_t SizeExecutable() { return size_executable_.Value(); }
// Returns the maximum available bytes of heaps.
size_t Available() {
const size_t size = Size();
return capacity_ < size ? 0 : capacity_ - size;
// Returns maximum available bytes that the old space can have.
size_t MaxAvailable() {
return (Available() / Page::kPageSize) * Page::kAllocatableMemory;
// Returns an indication of whether a pointer is in a space that has
// been allocated by this MemoryAllocator.
V8_INLINE bool IsOutsideAllocatedSpace(const void* address) {
return address < lowest_ever_allocated_.Value() ||
address >= highest_ever_allocated_.Value();
// Returns a MemoryChunk in which the memory region from commit_area_size to
// reserve_area_size of the chunk area is reserved but not committed, it
// could be committed later by calling MemoryChunk::CommitArea.
MemoryChunk* AllocateChunk(size_t reserve_area_size, size_t commit_area_size,
Executability executable, Space* space);
Address ReserveAlignedMemory(size_t requested, size_t alignment, void* hint,
VirtualMemory* controller);
Address AllocateAlignedMemory(size_t reserve_size, size_t commit_size,
size_t alignment, Executability executable,
void* hint, VirtualMemory* controller);
bool CommitMemory(Address addr, size_t size, Executability executable);
void FreeMemory(VirtualMemory* reservation, Executability executable);
void FreeMemory(Address addr, size_t size, Executability executable);
// Partially release |bytes_to_free| bytes starting at |start_free|. Note that
// internally memory is freed from |start_free| to the end of the reservation.
// Additional memory beyond the page is not accounted though, so
// |bytes_to_free| is computed by the caller.
void PartialFreeMemory(MemoryChunk* chunk, Address start_free,
size_t bytes_to_free, Address new_area_end);
// Commit a contiguous block of memory from the initial chunk. Assumes that
// the address is not nullptr, the size is greater than zero, and that the
// block is contained in the initial chunk. Returns true if it succeeded
// and false otherwise.
bool CommitBlock(Address start, size_t size, Executability executable);
// Uncommit a contiguous block of memory [start..(start+size)[.
// start is not nullptr, the size is greater than zero, and the
// block is contained in the initial chunk. Returns true if it succeeded
// and false otherwise.
bool UncommitBlock(Address start, size_t size);
// Zaps a contiguous block of memory [start..(start+size)[ thus
// filling it up with a recognizable non-nullptr bit pattern.
void ZapBlock(Address start, size_t size);
MUST_USE_RESULT bool CommitExecutableMemory(VirtualMemory* vm, Address start,
size_t commit_size,
size_t reserved_size);
CodeRange* code_range() { return code_range_; }
Unmapper* unmapper() { return &unmapper_; }
// PreFree logically frees the object, i.e., it takes care of the size
// bookkeeping and calls the allocation callback.
void PreFreeMemory(MemoryChunk* chunk);
// FreeMemory can be called concurrently when PreFree was executed before.
void PerformFreeMemory(MemoryChunk* chunk);
// See AllocatePage for public interface. Note that currently we only support
// pools for NOT_EXECUTABLE pages of size MemoryChunk::kPageSize.
template <typename SpaceType>
MemoryChunk* AllocatePagePooled(SpaceType* owner);
// Initializes pages in a chunk. Returns the first page address.
// This function and GetChunkId() are provided for the mark-compact
// collector to rebuild page headers in the from space, which is
// used as a marking stack and its page headers are destroyed.
Page* InitializePagesInChunk(int chunk_id, int pages_in_chunk,
PagedSpace* owner);
void UpdateAllocatedSpaceLimits(void* low, void* high) {
// The use of atomic primitives does not guarantee correctness (wrt.
// desired semantics) by default. The loop here ensures that we update the
// values only if they did not change in between.
void* ptr = nullptr;
do {
ptr = lowest_ever_allocated_.Value();
} while ((low < ptr) && !lowest_ever_allocated_.TrySetValue(ptr, low));
do {
ptr = highest_ever_allocated_.Value();
} while ((high > ptr) && !highest_ever_allocated_.TrySetValue(ptr, high));
Isolate* isolate_;
CodeRange* code_range_;
// Maximum space size in bytes.
size_t capacity_;
// Allocated space size in bytes.
base::AtomicNumber<size_t> size_;
// Allocated executable space size in bytes.
base::AtomicNumber<size_t> size_executable_;
// We keep the lowest and highest addresses allocated as a quick way
// of determining that pointers are outside the heap. The estimate is
// conservative, i.e. not all addresses in 'allocated' space are allocated
// to our heap. The range is [lowest, highest[, inclusive on the low end
// and exclusive on the high end.
base::AtomicValue<void*> lowest_ever_allocated_;
base::AtomicValue<void*> highest_ever_allocated_;
VirtualMemory last_chunk_;
Unmapper unmapper_;
friend class heap::TestCodeRangeScope;
extern template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, PagedSpace>(
size_t size, PagedSpace* owner, Executability executable);
extern template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kRegular, SemiSpace>(
size_t size, SemiSpace* owner, Executability executable);
extern template Page*
MemoryAllocator::AllocatePage<MemoryAllocator::kPooled, SemiSpace>(
size_t size, SemiSpace* owner, Executability executable);
// -----------------------------------------------------------------------------
// Interface for heap object iterator to be implemented by all object space
// object iterators.
// NOTE: The space specific object iterators also implements the own next()
// method which is used to avoid using virtual functions
// iterating a specific space.
class V8_EXPORT_PRIVATE ObjectIterator : public Malloced {
virtual ~ObjectIterator() {}
virtual HeapObject* Next() = 0;
template <class PAGE_TYPE>
class PageIteratorImpl
: public base::iterator<std::forward_iterator_tag, PAGE_TYPE> {
explicit PageIteratorImpl(PAGE_TYPE* p) : p_(p) {}
PageIteratorImpl(const PageIteratorImpl<PAGE_TYPE>& other) : p_(other.p_) {}
PAGE_TYPE* operator*() { return p_; }
bool operator==(const PageIteratorImpl<PAGE_TYPE>& rhs) {
return rhs.p_ == p_;
bool operator!=(const PageIteratorImpl<PAGE_TYPE>& rhs) {
return rhs.p_ != p_;
inline PageIteratorImpl<PAGE_TYPE>& operator++();
inline PageIteratorImpl<PAGE_TYPE> operator++(int);
typedef PageIteratorImpl<Page> PageIterator;
typedef PageIteratorImpl<LargePage> LargePageIterator;
class PageRange {
typedef PageIterator iterator;
PageRange(Page* begin, Page* end) : begin_(begin), end_(end) {}
explicit PageRange(Page* page) : PageRange(page, page->next_page()) {}
inline PageRange(Address start, Address limit);
iterator begin() { return iterator(begin_); }
iterator end() { return iterator(end_); }
Page* begin_;
Page* end_;
// -----------------------------------------------------------------------------
// Heap object iterator in new/old/map spaces.
// A HeapObjectIterator iterates objects from the bottom of the given space
// to its top or from the bottom of the given page to its top.
// If objects are allocated in the page during iteration the iterator may
// or may not iterate over those objects. The caller must create a new
// iterator in order to be sure to visit these new objects.
class V8_EXPORT_PRIVATE HeapObjectIterator : public ObjectIterator {
// Creates a new object iterator in a given space.
explicit HeapObjectIterator(PagedSpace* space);
explicit HeapObjectIterator(Page* page);
// Advance to the next object, skipping free spaces and other fillers and
// skipping the special garbage section of which there is one per space.
// Returns nullptr when the iteration has ended.
inline HeapObject* Next() override;
// Fast (inlined) path of next().
inline HeapObject* FromCurrentPage();
// Slow path of next(), goes into the next page. Returns false if the
// iteration has ended.
bool AdvanceToNextPage();
Address cur_addr_; // Current iteration point.
Address cur_end_; // End iteration point.
PagedSpace* space_;
PageRange page_range_;
PageRange::iterator current_page_;
// -----------------------------------------------------------------------------
// A space has a circular list of pages. The next page can be accessed via
// Page::next_page() call.
// An abstraction of allocation and relocation pointers in a page-structured
// space.
class LinearAllocationArea {
LinearAllocationArea() : top_(nullptr), limit_(nullptr) {}
LinearAllocationArea(Address top, Address limit) : top_(top), limit_(limit) {}
void Reset(Address top, Address limit) {
INLINE(void set_top(Address top)) {
SLOW_DCHECK(top == nullptr ||
(reinterpret_cast<intptr_t>(top) & kHeapObjectTagMask) == 0);
top_ = top;
INLINE(Address top()) const {
SLOW_DCHECK(top_ == nullptr ||
(reinterpret_cast<intptr_t>(top_) & kHeapObjectTagMask) == 0);
return top_;
Address* top_address() { return &top_; }
INLINE(void set_limit(Address limit)) {
limit_ = limit;
INLINE(Address limit()) const {
return limit_;
Address* limit_address() { return &limit_; }
#ifdef DEBUG
bool VerifyPagedAllocation() {
return (Page::FromAllocationAreaAddress(top_) ==
Page::FromAllocationAreaAddress(limit_)) &&
(top_ <= limit_);
// Current allocation top.
Address top_;
// Current allocation limit.
Address limit_;
// An abstraction of the accounting statistics of a page-structured space.
// The stats are only set by functions that ensure they stay balanced. These
// functions increase or decrease one of the non-capacity stats in conjunction
// with capacity, or else they always balance increases and decreases to the
// non-capacity stats.
class AllocationStats BASE_EMBEDDED {
AllocationStats() { Clear(); }
// Zero out all the allocation statistics (i.e., no capacity).
void Clear() {
capacity_ = 0;
max_capacity_ = 0;
void ClearSize() {
size_ = 0;
#ifdef DEBUG
// Accessors for the allocation statistics.
size_t Capacity() { return capacity_.Value(); }
size_t MaxCapacity() { return max_capacity_; }
size_t Size() { return size_; }
#ifdef DEBUG
size_t AllocatedOnPage(Page* page) { return allocated_on_page_[page]; }
void IncreaseAllocatedBytes(size_t bytes, Page* page) {
DCHECK_GE(size_ + bytes, size_);
size_ += bytes;
#ifdef DEBUG
allocated_on_page_[page] += bytes;
void DecreaseAllocatedBytes(size_t bytes, Page* page) {
DCHECK_GE(size_, bytes);
size_ -= bytes;
#ifdef DEBUG
DCHECK_GE(allocated_on_page_[page], bytes);
allocated_on_page_[page] -= bytes;
void DecreaseCapacity(size_t bytes) {
size_t capacity = capacity_.Value();
DCHECK_GE(capacity, bytes);
DCHECK_GE(capacity - bytes, size_);
void IncreaseCapacity(size_t bytes) {
size_t capacity = capacity_.Value();
DCHECK_GE(capacity + bytes, capacity);
if (capacity > max_capacity_) {
max_capacity_ = capacity;
// |capacity_|: The number of object-area bytes (i.e., not including page
// bookkeeping structures) currently in the space.
// During evacuation capacity of the main spaces is accessed from multiple
// threads to check the old generation hard limit.
base::AtomicNumber<size_t> capacity_;
// |max_capacity_|: The maximum capacity ever observed.
size_t max_capacity_;
// |size_|: The number of allocated bytes.
size_t size_;
#ifdef DEBUG
std::unordered_map<Page*, size_t, Page::Hasher> allocated_on_page_;
// A free list maintaining free blocks of memory. The free list is organized in
// a way to encourage objects allocated around the same time to be near each
// other. The normal way to allocate is intended to be by bumping a 'top'
// pointer until it hits a 'limit' pointer. When the limit is hit we need to
// find a new space to allocate from. This is done with the free list, which is
// divided up into rough categories to cut down on waste. Having finer
// categories would scatter allocation more.
// The free list is organized in categories as follows:
// kMinBlockSize-10 words (tiniest): The tiniest blocks are only used for
// allocation, when categories >= small do not have entries anymore.
// 11-31 words (tiny): The tiny blocks are only used for allocation, when
// categories >= small do not have entries anymore.
// 32-255 words (small): Used for allocating free space between 1-31 words in
// size.
// 256-2047 words (medium): Used for allocating free space between 32-255 words
// in size.
// 1048-16383 words (large): Used for allocating free space between 256-2047
// words in size.
// At least 16384 words (huge): This list is for objects of 2048 words or
// larger. Empty pages are also added to this list.
class V8_EXPORT_PRIVATE FreeList {
// This method returns how much memory can be allocated after freeing
// maximum_freed memory.
static inline size_t GuaranteedAllocatable(size_t maximum_freed) {
if (maximum_freed <= kTiniestListMax) {
// Since we are not iterating over all list entries, we cannot guarantee
// that we can find the maximum freed block in that free list.
return 0;
} else if (maximum_freed <= kTinyListMax) {
return kTinyAllocationMax;
} else if (maximum_freed <= kSmallListMax) {
return kSmallAllocationMax;
} else if (maximum_freed <= kMediumListMax) {
return kMediumAllocationMax;
} else if (maximum_freed <= kLargeListMax) {
return kLargeAllocationMax;
return maximum_freed;
static FreeListCategoryType SelectFreeListCategoryType(size_t size_in_bytes) {
if (size_in_bytes <= kTiniestListMax) {
return kTiniest;
} else if (size_in_bytes <= kTinyListMax) {
return kTiny;
} else if (size_in_bytes <= kSmallListMax) {
return kSmall;
} else if (size_in_bytes <= kMediumListMax) {
return kMedium;
} else if (size_in_bytes <= kLargeListMax) {
return kLarge;
return kHuge;
explicit FreeList(PagedSpace* owner);
// Adds a node on the free list. The block of size {size_in_bytes} starting
// at {start} is placed on the free list. The return value is the number of
// bytes that were not added to the free list, because they freed memory block
// was too small. Bookkeeping information will be written to the block, i.e.,
// its contents will be destroyed. The start address should be word aligned,
// and the size should be a non-zero multiple of the word size.
size_t Free(Address start, size_t size_in_bytes, FreeMode mode);
// Allocates a free space node frome the free list of at least size_in_bytes
// bytes. Returns the actual node size in node_size which can be bigger than
// size_in_bytes. This method returns null if the allocation request cannot be
// handled by the free list.
MUST_USE_RESULT FreeSpace* Allocate(size_t size_in_bytes, size_t* node_size);
// Clear the free list.
void Reset();
void ResetStats() {
[](FreeListCategory* category) { category->ResetStats(); });
// Return the number of bytes available on the free list.
size_t Available() {
size_t available = 0;
ForAllFreeListCategories([&available](FreeListCategory* category) {
available += category->available();
return available;
bool IsEmpty() {
bool empty = true;
ForAllFreeListCategories([&empty](FreeListCategory* category) {
if (!category->is_empty()) empty = false;
return empty;
// Used after booting the VM.
void RepairLists(Heap* heap);
size_t EvictFreeListItems(Page* page);
bool ContainsPageFreeListItems(Page* page);
PagedSpace* owner() { return owner_; }
size_t wasted_bytes() { return wasted_bytes_.Value(); }
template <typename Callback>
void ForAllFreeListCategories(FreeListCategoryType type, Callback callback) {
FreeListCategory* current = categories_[type];
while (current != nullptr) {
FreeListCategory* next = current->next();
current = next;
template <typename Callback>
void ForAllFreeListCategories(Callback callback) {
for (int i = kFirstCategory; i < kNumberOfCategories; i++) {
ForAllFreeListCategories(static_cast<FreeListCategoryType>(i), callback);
bool AddCategory(FreeListCategory* category);
void RemoveCategory(FreeListCategory* category);
void PrintCategories(FreeListCategoryType type);
// Returns a page containing an entry for a given type, or nullptr otherwise.
inline Page* GetPageForCategoryType(FreeListCategoryType type);
#ifdef DEBUG
size_t SumFreeLists();
bool IsVeryLong();
class FreeListCategoryIterator {
FreeListCategoryIterator(FreeList* free_list, FreeListCategoryType type)
: current_(free_list->categories_[type]) {}
bool HasNext() { return current_ != nullptr; }
FreeListCategory* Next() {
FreeListCategory* tmp = current_;
current_ = current_->next();
return tmp;
FreeListCategory* current_;
// The size range of blocks, in bytes.
static const size_t kMinBlockSize = 3 * kPointerSize;
static const size_t kMaxBlockSize = Page::kAllocatableMemory;
static const size_t kTiniestListMax = 0xa * kPointerSize;
static const size_t kTinyListMax = 0x1f * kPointerSize;
static const size_t kSmallListMax = 0xff * kPointerSize;
static const size_t kMediumListMax = 0x7ff * kPointerSize;
static const size_t kLargeListMax = 0x3fff * kPointerSize;
static const size_t kTinyAllocationMax = kTiniestListMax;
static const size_t kSmallAllocationMax = kTinyListMax;
static const size_t kMediumAllocationMax = kSmallListMax;
static const size_t kLargeAllocationMax = kMediumListMax;
// Walks all available categories for a given |type| and tries to retrieve
// a node. Returns nullptr if the category is empty.
FreeSpace* FindNodeIn(FreeListCategoryType type, size_t* node_size);
// Tries to retrieve a node from the first category in a given |type|.
// Returns nullptr if the category is empty.
FreeSpace* TryFindNodeIn(FreeListCategoryType type, size_t* node_size,
size_t minimum_size);
// Searches a given |type| for a node of at least |minimum_size|.
FreeSpace* SearchForNodeInList(FreeListCategoryType type, size_t* node_size,
size_t minimum_size);
// The tiny categories are not used for fast allocation.
FreeListCategoryType SelectFastAllocationFreeListCategoryType(
size_t size_in_bytes) {
if (size_in_bytes <= kSmallAllocationMax) {
return kSmall;
} else if (size_in_bytes <= kMediumAllocationMax) {
return kMedium;
} else if (size_in_bytes <= kLargeAllocationMax) {
return kLarge;
return kHuge;
FreeListCategory* top(FreeListCategoryType type) const {
return categories_[type];
PagedSpace* owner_;
base::AtomicNumber<size_t> wasted_bytes_;
FreeListCategory* categories_[kNumberOfCategories];
friend class FreeListCategory;
// LocalAllocationBuffer represents a linear allocation area that is created
// from a given {AllocationResult} and can be used to allocate memory without
// synchronization.
// The buffer is properly closed upon destruction and reassignment.
// Example:
// {
// AllocationResult result = ...;
// LocalAllocationBuffer a(heap, result, size);
// LocalAllocationBuffer b = a;
// CHECK(!a.IsValid());
// CHECK(b.IsValid());
// // {a} is invalid now and cannot be used for further allocations.
// }
// // Since {b} went out of scope, the LAB is closed, resulting in creating a
// // filler object for the remaining area.
class LocalAllocationBuffer {
// Indicates that a buffer cannot be used for allocations anymore. Can result
// from either reassigning a buffer, or trying to construct it from an
// invalid {AllocationResult}.
static inline LocalAllocationBuffer InvalidBuffer();
// Creates a new LAB from a given {AllocationResult}. Results in
// InvalidBuffer if the result indicates a retry.
static inline LocalAllocationBuffer FromResult(Heap* heap,
AllocationResult result,
intptr_t size);
~LocalAllocationBuffer() { Close(); }
// Convert to C++11 move-semantics once allowed by the style guide.
LocalAllocationBuffer(const LocalAllocationBuffer& other);
LocalAllocationBuffer& operator=(const LocalAllocationBuffer& other);
MUST_USE_RESULT inline AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment);
inline bool IsValid() { return != nullptr; }
// Try to merge LABs, which is only possible when they are adjacent in memory.
// Returns true if the merge was successful, false otherwise.
inline bool TryMerge(LocalAllocationBuffer* other);
inline bool TryFreeLast(HeapObject* object, int object_size);
// Close a LAB, effectively invalidating it. Returns the unused area.
LinearAllocationArea Close();
LocalAllocationBuffer(Heap* heap, LinearAllocationArea allocation_info);
Heap* heap_;
LinearAllocationArea allocation_info_;
class SpaceWithLinearArea : public Space {
SpaceWithLinearArea(Heap* heap, AllocationSpace id, Executability executable)
: Space(heap, id, executable), top_on_previous_step_(0) {
allocation_info_.Reset(nullptr, nullptr);
virtual bool SupportsInlineAllocation() = 0;
// Returns the allocation pointer in this space.
Address top() { return; }
Address limit() { return allocation_info_.limit(); }
// The allocation top address.
Address* allocation_top_address() { return allocation_info_.top_address(); }
// The allocation limit address.
Address* allocation_limit_address() {
return allocation_info_.limit_address();
V8_EXPORT_PRIVATE void AddAllocationObserver(
AllocationObserver* observer) override;
V8_EXPORT_PRIVATE void RemoveAllocationObserver(
AllocationObserver* observer) override;
V8_EXPORT_PRIVATE void ResumeAllocationObservers() override;
V8_EXPORT_PRIVATE void PauseAllocationObservers() override;
// When allocation observers are active we may use a lower limit to allow the
// observers to 'interrupt' earlier than the natural limit. Given a linear
// area bounded by [start, end), this function computes the limit to use to
// allow proper observation based on existing observers. min_size specifies
// the minimum size that the limited area should have.
Address ComputeLimit(Address start, Address end, size_t min_size);
V8_EXPORT_PRIVATE virtual void UpdateInlineAllocationLimit(
size_t min_size) = 0;
// If we are doing inline allocation in steps, this method performs the 'step'
// operation. top is the memory address of the bump pointer at the last
// inline allocation (i.e. it determines the numbers of bytes actually
// allocated since the last step.) top_for_next_step is the address of the
// bump pointer where the next byte is going to be allocated from. top and
// top_for_next_step may be different when we cross a page boundary or reset
// the space.
// TODO(ofrobots): clarify the precise difference between this and
// Space::AllocationStep.
void InlineAllocationStep(Address top, Address top_for_next_step,
Address soon_object, size_t size);
V8_EXPORT_PRIVATE void StartNextInlineAllocationStep() override;
// TODO(ofrobots): make these private after refactoring is complete.
LinearAllocationArea allocation_info_;
Address top_on_previous_step_;
class V8_EXPORT_PRIVATE PagedSpace
: NON_EXPORTED_BASE(public SpaceWithLinearArea) {
typedef PageIterator iterator;
static const size_t kCompactionMemoryWanted = 500 * KB;
// Creates a space with an id.
PagedSpace(Heap* heap, AllocationSpace id, Executability executable);
~PagedSpace() override { TearDown(); }
// Set up the space using the given address range of virtual memory (from
// the memory allocator's initial chunk) if possible. If the block of
// addresses is not big enough to contain a single page-aligned page, a
// fresh chunk will be allocated.
bool SetUp();
// Returns true if the space has been successfully set up and not
// subsequently torn down.
bool HasBeenSetUp();
// Checks whether an object/address is in this space.
inline bool Contains(Address a);
inline bool Contains(Object* o);
bool ContainsSlow(Address addr);
// During boot the free_space_map is created, and afterwards we may need
// to write it into the free list nodes that were already created.
void RepairFreeListsAfterDeserialization();
// Prepares for a mark-compact GC.
void PrepareForMarkCompact();
// Current capacity without growing (Size() + Available()).
size_t Capacity() { return accounting_stats_.Capacity(); }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
void ResetFreeListStatistics();
// Sets the capacity, the available space and the wasted space to zero.
// The stats are rebuilt during sweeping by adding each page to the
// capacity and the size when it is encountered. As free spaces are
// discovered during the sweeping they are subtracted from the size and added
// to the available and wasted totals.
void ClearStats() {
// Available bytes without growing. These are the bytes on the free list.
// The bytes in the linear allocation area are not included in this total
// because updating the stats would slow down allocation. New pages are
// immediately added to the free list so they show up here.
size_t Available() override { return free_list_.Available(); }
// Allocated bytes in this space. Garbage bytes that were not found due to
// concurrent sweeping are counted as being allocated! The bytes in the
// current linear allocation area (between top and limit) are also counted
// here.
size_t Size() override { return accounting_stats_.Size(); }
// As size, but the bytes in lazily swept pages are estimated and the bytes
// in the current linear allocation area are not included.
size_t SizeOfObjects() override;
// Wasted bytes in this space. These are just the bytes that were thrown away
// due to being too small to use for allocation.
virtual size_t Waste() { return free_list_.wasted_bytes(); }
// Allocate the requested number of bytes in the space if possible, return a
// failure object if not. Only use IGNORE_SKIP_LIST if the skip list is going
// to be manually updated later.
MUST_USE_RESULT inline AllocationResult AllocateRawUnaligned(
int size_in_bytes, UpdateSkipList update_skip_list = UPDATE_SKIP_LIST);
// Allocate the requested number of bytes in the space double aligned if
// possible, return a failure object if not.
MUST_USE_RESULT inline AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment);
// Allocate the requested number of bytes in the space and consider allocation
// alignment if needed.
MUST_USE_RESULT inline AllocationResult AllocateRaw(
int size_in_bytes, AllocationAlignment alignment);
// Give a block of memory to the space's free list. It might be added to
// the free list or accounted as waste.
// If add_to_freelist is false then just accounting stats are updated and
// no attempt to add area to free list is made.
size_t Free(Address start, size_t size_in_bytes) {
size_t wasted = free_list_.Free(start, size_in_bytes, kLinkCategory);
Page* page = Page::FromAddress(start);
accounting_stats_.DecreaseAllocatedBytes(size_in_bytes, page);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
size_t UnaccountedFree(Address start, size_t size_in_bytes) {
size_t wasted = free_list_.Free(start, size_in_bytes, kDoNotLinkCategory);
DCHECK_GE(size_in_bytes, wasted);
return size_in_bytes - wasted;
inline bool TryFreeLast(HeapObject* object, int object_size);
void ResetFreeList();
// Empty space linear allocation area, returning unused area to free list.
void FreeLinearAllocationArea();
void MarkLinearAllocationAreaBlack();
void UnmarkLinearAllocationArea();
void DecreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.DecreaseAllocatedBytes(bytes, page);
void IncreaseAllocatedBytes(size_t bytes, Page* page) {
accounting_stats_.IncreaseAllocatedBytes(bytes, page);
void DecreaseCapacity(size_t bytes) {
void IncreaseCapacity(size_t bytes) {
void RefineAllocatedBytesAfterSweeping(Page* page);
// The dummy page that anchors the linked list of pages.
Page* anchor() { return &anchor_; }
Page* InitializePage(MemoryChunk* chunk, Executability executable);
void ReleasePage(Page* page);
// Adds the page to this space and returns the number of bytes added to the
// free list of the space.
size_t AddPage(Page* page);
void RemovePage(Page* page);
// Remove a page if it has at least |size_in_bytes| bytes available that can
// be used for allocation.
Page* RemovePageSafe(int size_in_bytes);
void SetReadAndExecutable();
void SetReadAndWritable();
// Verify integrity of this space.
virtual void Verify(ObjectVisitor* visitor);
void VerifyLiveBytes();
// Overridden by subclasses to verify space-specific object
// properties (e.g., only maps or free-list nodes are in map space).
virtual void VerifyObject(HeapObject* obj) {}
#ifdef DEBUG
void VerifyCountersAfterSweeping();
void VerifyCountersBeforeConcurrentSweeping();
// Print meta info and objects in this space.
void Print() override;
// Report code object related statistics
static void ReportCodeStatistics(Isolate* isolate);
static void ResetCodeStatistics(Isolate* isolate);
Page* FirstPage() { return anchor_.next_page(); }
Page* LastPage() { return anchor_.prev_page(); }
bool CanExpand(size_t size);
// Returns the number of total pages in this space.
int CountTotalPages();
// Return size of allocatable area on a page in this space.
inline int AreaSize() { return static_cast<int>(area_size_); }
virtual bool is_local() { return false; }
// Merges {other} into the current space. Note that this modifies {other},
// e.g., removes its bump pointer area and resets statistics.
void MergeCompactionSpace(CompactionSpace* other);
// Refills the free list from the corresponding free list filled by the
// sweeper.
virtual void RefillFreeList();
FreeList* free_list() { return &free_list_; }
base::Mutex* mutex() { return &space_mutex_; }
inline void UnlinkFreeListCategories(Page* page);
inline size_t RelinkFreeListCategories(Page* page);
iterator begin() { return iterator(anchor_.next_page()); }
iterator end() { return iterator(&anchor_); }
// Shrink immortal immovable pages of the space to be exactly the size needed
// using the high water mark.
void ShrinkImmortalImmovablePages();
size_t ShrinkPageToHighWaterMark(Page* page);
std::unique_ptr<ObjectIterator> GetObjectIterator() override;
void SetLinearAllocationArea(Address top, Address limit);
// Set space linear allocation area.
void SetTopAndLimit(Address top, Address limit) {
DCHECK(top == limit ||
Page::FromAddress(top) == Page::FromAddress(limit - 1));
allocation_info_.Reset(top, limit);
void DecreaseLimit(Address new_limit);
void UpdateInlineAllocationLimit(size_t min_size) override;
bool SupportsInlineAllocation() override {
return identity() == OLD_SPACE && !is_local();
// PagedSpaces that should be included in snapshots have different, i.e.,
// smaller, initial pages.
virtual bool snapshotable() { return true; }
bool HasPages() { return anchor_.next_page() != &anchor_; }
// Cleans up the space, frees all pages in this space except those belonging
// to the initial chunk, uncommits addresses in the initial chunk.
void TearDown();
// Expands the space by allocating a fixed number of pages. Returns false if
// it cannot allocate requested number of pages from OS, or if the hard heap
// size limit has been hit.
bool Expand();
// Sets up a linear allocation area that fits the given number of bytes.
// Returns false if there is not enough space and the caller has to retry
// after collecting garbage.
inline bool EnsureLinearAllocationArea(int size_in_bytes);
// Allocates an object from the linear allocation area. Assumes that the
// linear allocation area is large enought to fit the object.
inline HeapObject* AllocateLinearly(int size_in_bytes);
// Tries to allocate an aligned object from the linear allocation area.
// Returns nullptr if the linear allocation area does not fit the object.
// Otherwise, returns the object pointer and writes the allocation size
// (object size + alignment filler size) to the size_in_bytes.
inline HeapObject* TryAllocateLinearlyAligned(int* size_in_bytes,
AllocationAlignment alignment);
MUST_USE_RESULT bool RefillLinearAllocationAreaFromFreeList(
size_t size_in_bytes);
// If sweeping is still in progress try to sweep unswept pages. If that is
// not successful, wait for the sweeper threads and retry free-list
// allocation. Returns false if there is not enough space and the caller
// has to retry after collecting garbage.
MUST_USE_RESULT virtual bool SweepAndRetryAllocation(int size_in_bytes);
// Slow path of AllocateRaw. This function is space-dependent. Returns false
// if there is not enough space and the caller has to retry after
// collecting garbage.
MUST_USE_RESULT virtual bool SlowRefillLinearAllocationArea(
int size_in_bytes);
// Implementation of SlowAllocateRaw. Returns false if there is not enough
// space and the caller has to retry after collecting garbage.
MUST_USE_RESULT bool RawSlowRefillLinearAllocationArea(int size_in_bytes);
size_t area_size_;
// Accounting information for this space.
AllocationStats accounting_stats_;
// The dummy page that anchors the double linked list of pages.
Page anchor_;
// The space's free list.
FreeList free_list_;
// Mutex guarding any concurrent access to the space.
base::Mutex space_mutex_;
friend class IncrementalMarking;
friend class MarkCompactCollector;
// Used in cctest.
friend class heap::HeapTester;
enum SemiSpaceId { kFromSpace = 0, kToSpace = 1 };
// -----------------------------------------------------------------------------
// SemiSpace in young generation
// A SemiSpace is a contiguous chunk of memory holding page-like memory chunks.
// The mark-compact collector uses the memory of the first page in the from
// space as a marking stack when tracing live objects.
class SemiSpace : public Space {
typedef PageIterator iterator;
static void Swap(SemiSpace* from, SemiSpace* to);
SemiSpace(Heap* heap, SemiSpaceId semispace)
pages_used_(0) {}
inline bool Contains(HeapObject* o);
inline bool Contains(Object* o);
inline bool ContainsSlow(Address a);
void SetUp(size_t initial_capacity, size_t maximum_capacity);
void TearDown();
bool HasBeenSetUp() { return maximum_capacity_ != 0; }
bool Commit();
bool Uncommit();
bool is_committed() { return committed_; }
// Grow the semispace to the new capacity. The new capacity requested must
// be larger than the current capacity and less than the maximum capacity.
bool GrowTo(size_t new_capacity);
// Shrinks the semispace to the new capacity. The new capacity requested
// must be more than the amount of used memory in the semispace and less
// than the current capacity.
bool ShrinkTo(size_t new_capacity);
bool EnsureCurrentCapacity();
// Returns the start address of the first page of the space.
Address space_start() {
DCHECK_NE(anchor_.next_page(), anchor());
return anchor_.next_page()->area_start();
Page* first_page() { return anchor_.next_page(); }
Page* current_page() { return current_page_; }
int pages_used() { return pages_used_; }
// Returns one past the end address of the space.
Address space_end() { return anchor_.prev_page()->area_end(); }
// Returns the start address of the current page of the space.
Address page_low() { return current_page_->area_start(); }
// Returns one past the end address of the current page of the space.
Address page_high() { return current_page_->area_end(); }
bool AdvancePage() {
Page* next_page = current_page_->next_page();
// We cannot expand if we reached the maximum number of pages already. Note
// that we need to account for the next page already for this check as we
// could potentially fill the whole page after advancing.
const bool reached_max_pages = (pages_used_ + 1) == max_pages();
if (next_page == anchor() || reached_max_pages) {
return false;
current_page_ = next_page;
return true;
// Resets the space to using the first page.
void Reset();
void RemovePage(Page* page);
void PrependPage(Page* page);
Page* InitializePage(MemoryChunk* chunk, Executability executable);
// Age mark accessors.
Address age_mark() { return age_mark_; }
void set_age_mark(Address mark);
// Returns the current capacity of the semispace.
size_t current_capacity() { return current_capacity_; }
// Returns the maximum capacity of the semispace.
size_t maximum_capacity() { return maximum_capacity_; }
// Returns the initial capacity of the semispace.
size_t minimum_capacity() { return minimum_capacity_; }
SemiSpaceId id() { return id_; }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
// If we don't have these here then SemiSpace will be abstract. However
// they should never be called:
size_t Size() override {
size_t SizeOfObjects() override { return Size(); }
size_t Available() override {
iterator begin() { return iterator(anchor_.next_page()); }
iterator end() { return iterator(anchor()); }
std::unique_ptr<ObjectIterator> GetObjectIterator() override;
#ifdef DEBUG
void Print() override;
// Validate a range of of addresses in a SemiSpace.
// The "from" address must be on a page prior to the "to" address,
// in the linked page order, or it must be earlier on the same page.
static void AssertValidRange(Address from, Address to);
// Do nothing.
inline static void AssertValidRange(Address from, Address to) {}
virtual void Verify();
void RewindPages(Page* start, int num_pages);
inline Page* anchor() { return &anchor_; }
inline int max_pages() {
return static_cast<int>(current_capacity_ / Page::kPageSize);
// Copies the flags into the masked positions on all pages in the space.
void FixPagesFlags(intptr_t flags, intptr_t flag_mask);
// The currently committed space capacity.
size_t current_capacity_;
// The maximum capacity that can be used by this space. A space cannot grow
// beyond that size.
size_t maximum_capacity_;
// The minimum capacity for the space. A space cannot shrink below this size.
size_t minimum_capacity_;
// Used to govern object promotion during mark-compact collection.
Address age_mark_;
bool committed_;
SemiSpaceId id_;
Page anchor_;
Page* current_page_;
int pages_used_;
friend class NewSpace;
friend class SemiSpaceIterator;
// A SemiSpaceIterator is an ObjectIterator that iterates over the active
// semispace of the heap's new space. It iterates over the objects in the
// semispace from a given start address (defaulting to the bottom of the
// semispace) to the top of the semispace. New objects allocated after the
// iterator is created are not iterated.
class SemiSpaceIterator : public ObjectIterator {
// Create an iterator over the allocated objects in the given to-space.
explicit SemiSpaceIterator(NewSpace* space);
inline HeapObject* Next() override;
void Initialize(Address start, Address end);
// The current iteration point.
Address current_;
// The end of iteration.
Address limit_;
// -----------------------------------------------------------------------------
// The young generation space.
// The new space consists of a contiguous pair of semispaces. It simply
// forwards most functions to the appropriate semispace.
class NewSpace : public SpaceWithLinearArea {
typedef PageIterator iterator;
explicit NewSpace(Heap* heap)
: SpaceWithLinearArea(heap, NEW_SPACE, NOT_EXECUTABLE),
to_space_(heap, kToSpace),
from_space_(heap, kFromSpace),
reservation_() {}
inline bool Contains(HeapObject* o);
inline bool ContainsSlow(Address a);
inline bool Contains(Object* o);
bool SetUp(size_t initial_semispace_capacity, size_t max_semispace_capacity);
// Tears down the space. Heap memory was not allocated by the space, so it
// is not deallocated here.
void TearDown();
// True if the space has been set up but not torn down.
bool HasBeenSetUp() {
return to_space_.HasBeenSetUp() && from_space_.HasBeenSetUp();
// Flip the pair of spaces.
void Flip();
// Grow the capacity of the semispaces. Assumes that they are not at
// their maximum capacity.
void Grow();
// Shrink the capacity of the semispaces.
void Shrink();
// Return the allocated bytes in the active semispace.
size_t Size() override {
DCHECK_GE(top(), to_space_.page_low());
return to_space_.pages_used() * Page::kAllocatableMemory +
static_cast<size_t>(top() - to_space_.page_low());
size_t SizeOfObjects() override { return Size(); }
// Return the allocatable capacity of a semispace.
size_t Capacity() {
SLOW_DCHECK(to_space_.current_capacity() == from_space_.current_capacity());
return (to_space_.current_capacity() / Page::kPageSize) *
// Return the current size of a semispace, allocatable and non-allocatable
// memory.
size_t TotalCapacity() {
DCHECK(to_space_.current_capacity() == from_space_.current_capacity());
return to_space_.current_capacity();
// Committed memory for NewSpace is the committed memory of both semi-spaces
// combined.
size_t CommittedMemory() override {
return from_space_.CommittedMemory() + to_space_.CommittedMemory();
size_t MaximumCommittedMemory() override {
return from_space_.MaximumCommittedMemory() +
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
// Return the available bytes without growing.
size_t Available() override {
DCHECK_GE(Capacity(), Size());
return Capacity() - Size();
size_t AllocatedSinceLastGC() {
const Address age_mark = to_space_.age_mark();
Page* const age_mark_page = Page::FromAllocationAreaAddress(age_mark);
Page* const last_page = Page::FromAllocationAreaAddress(top());
Page* current_page = age_mark_page;
size_t allocated = 0;
if (current_page != last_page) {
DCHECK_EQ(current_page, age_mark_page);
DCHECK_GE(age_mark_page->area_end(), age_mark);
allocated += age_mark_page->area_end() - age_mark;
current_page = current_page->next_page();
} else {
DCHECK_GE(top(), age_mark);
return top() - age_mark;
while (current_page != last_page) {
DCHECK_NE(current_page, age_mark_page);
allocated += Page::kAllocatableMemory;
current_page = current_page->next_page();
DCHECK_GE(top(), current_page->area_start());
allocated += top() - current_page->area_start();
DCHECK_LE(allocated, Size());
return allocated;
void MovePageFromSpaceToSpace(Page* page) {
bool Rebalance();
// Return the maximum capacity of a semispace.
size_t MaximumCapacity() {
DCHECK(to_space_.maximum_capacity() == from_space_.maximum_capacity());
return to_space_.maximum_capacity();
bool IsAtMaximumCapacity() { return TotalCapacity() == MaximumCapacity(); }
// Returns the initial capacity of a semispace.
size_t InitialTotalCapacity() {
DCHECK(to_space_.minimum_capacity() == from_space_.minimum_capacity());
return to_space_.minimum_capacity();
void ResetOriginalTop() {
DCHECK_GE(top(), original_top());
DCHECK_LE(top(), original_limit());
Address original_top() { return original_top_.Value(); }
Address original_limit() { return original_limit_.Value(); }
// Return the address of the first object in the active semispace.
Address bottom() { return to_space_.space_start(); }
// Get the age mark of the inactive semispace.
Address age_mark() { return from_space_.age_mark(); }
// Set the age mark in the active semispace.
void set_age_mark(Address mark) { to_space_.set_age_mark(mark); }
MUST_USE_RESULT INLINE(AllocationResult AllocateRawAligned(
int size_in_bytes, AllocationAlignment alignment));
AllocationResult AllocateRawUnaligned(int size_in_bytes));
MUST_USE_RESULT INLINE(AllocationResult AllocateRaw(
int size_in_bytes, AllocationAlignment alignment));
MUST_USE_RESULT inline AllocationResult AllocateRawSynchronized(
int size_in_bytes, AllocationAlignment alignment);
// Reset the allocation pointer to the beginning of the active semispace.
void ResetLinearAllocationArea();
// When inline allocation stepping is active, either because of incremental
// marking, idle scavenge, or allocation statistics gathering, we 'interrupt'
// inline allocation every once in a while. This is done by setting
// allocation_info_.limit to be lower than the actual limit and and increasing
// it in steps to guarantee that the observers are notified periodically.
void UpdateInlineAllocationLimit(size_t size_in_bytes) override;
// Get the extent of the inactive semispace (for use as a marking stack,
// or to zap it). Notice: space-addresses are not necessarily on the
// same page, so FromSpaceStart() might be above FromSpaceEnd().
Address FromSpacePageLow() { return from_space_.page_low(); }
Address FromSpacePageHigh() { return from_space_.page_high(); }
Address FromSpaceStart() { return from_space_.space_start(); }
Address FromSpaceEnd() { return from_space_.space_end(); }
// Get the extent of the active semispace's pages' memory.
Address ToSpaceStart() { return to_space_.space_start(); }
Address ToSpaceEnd() { return to_space_.space_end(); }
inline bool ToSpaceContainsSlow(Address a);
inline bool FromSpaceContainsSlow(Address a);
inline bool ToSpaceContains(Object* o);
inline bool FromSpaceContains(Object* o);
// Try to switch the active semispace to a new, empty, page.
// Returns false if this isn't possible or reasonable (i.e., there
// are no pages, or the current page is already empty), or true
// if successful.
bool AddFreshPage();
bool AddFreshPageSynchronized();
// Verify the active semispace.
virtual void Verify();
#ifdef DEBUG
// Print the active semispace.
void Print() override { to_space_.Print(); }
// Return whether the operation succeeded.
bool CommitFromSpaceIfNeeded() {
if (from_space_.is_committed()) return true;
return from_space_.Commit();
bool UncommitFromSpace() {
if (!from_space_.is_committed()) return true;
return from_space_.Uncommit();
bool IsFromSpaceCommitted() { return from_space_.is_committed(); }
SemiSpace* active_space() { return &to_space_; }
iterator begin() { return to_space_.begin(); }
iterator end() { return to_space_.end(); }
std::unique_ptr<ObjectIterator> GetObjectIterator() override;
SemiSpace& from_space() { return from_space_; }
SemiSpace& to_space() { return to_space_; }
// Update linear allocation area to match the current to-space page.
void UpdateLinearAllocationArea();
base::Mutex mutex_;
// The top and the limit at the time of setting the linear allocation area.
// These values can be accessed by background tasks.
base::AtomicValue<Address> original_top_;
base::AtomicValue<Address> original_limit_;
// The semispaces.
SemiSpace to_space_;
SemiSpace from_space_;
VirtualMemory reservation_;
bool EnsureAllocation(int size_in_bytes, AllocationAlignment alignment);
bool SupportsInlineAllocation() override { return true; }
friend class SemiSpaceIterator;
class PauseAllocationObserversScope {
explicit PauseAllocationObserversScope(Heap* heap);
Heap* heap_;
// -----------------------------------------------------------------------------
// Compaction space that is used temporarily during compaction.
class V8_EXPORT_PRIVATE CompactionSpace : public PagedSpace {
CompactionSpace(Heap* heap, AllocationSpace id, Executability executable)
: PagedSpace(heap, id, executable) {}
bool is_local() override { return true; }
// The space is temporary and not included in any snapshots.
bool snapshotable() override { return false; }
MUST_USE_RESULT bool SweepAndRetryAllocation(int size_in_bytes) override;
MUST_USE_RESULT bool SlowRefillLinearAllocationArea(
int size_in_bytes) override;
// A collection of |CompactionSpace|s used by a single compaction task.
class CompactionSpaceCollection : public Malloced {
explicit CompactionSpaceCollection(Heap* heap)
: old_space_(heap, OLD_SPACE, Executability::NOT_EXECUTABLE),
code_space_(heap, CODE_SPACE, Executability::EXECUTABLE) {}
CompactionSpace* Get(AllocationSpace space) {
switch (space) {
return &old_space_;
return &code_space_;
CompactionSpace old_space_;
CompactionSpace code_space_;
// -----------------------------------------------------------------------------
// Old object space (includes the old space of objects and code space)
class OldSpace : public PagedSpace {
// Creates an old space object. The constructor does not allocate pages
// from OS.
OldSpace(Heap* heap, AllocationSpace id, Executability executable)
: PagedSpace(heap, id, executable) {}
// For contiguous spaces, top should be in the space (or at the end) and limit
// should be the end of the space.
SLOW_DCHECK((space).page_low() <= (info).top() && \
(info).top() <= (space).page_high() && \
(info).limit() <= (space).page_high())
// -----------------------------------------------------------------------------
// Old space for all map objects
class MapSpace : public PagedSpace {
// Creates a map space object.
MapSpace(Heap* heap, AllocationSpace id)
: PagedSpace(heap, id, NOT_EXECUTABLE) {}
int RoundSizeDownToObjectAlignment(int size) override {
if (base::bits::IsPowerOfTwo(Map::kSize)) {
return RoundDown(size, Map::kSize);
} else {
return (size / Map::kSize) * Map::kSize;
void VerifyObject(HeapObject* obj) override;
// -----------------------------------------------------------------------------
// Large objects ( > kMaxRegularHeapObjectSize ) are allocated and
// managed by the large object space. A large object is allocated from OS
// heap with extra padding bytes (Page::kPageSize + Page::kObjectStartOffset).
// A large object always starts at Page::kObjectStartOffset to a page.
// Large objects do not move during garbage collections.
class LargeObjectSpace : public Space {
typedef LargePageIterator iterator;
LargeObjectSpace(Heap* heap, AllocationSpace id);
virtual ~LargeObjectSpace();
// Initializes internal data structures.
bool SetUp();
// Releases internal resources, frees objects in this space.
void TearDown();
static size_t ObjectSizeFor(size_t chunk_size) {
if (chunk_size <= (Page::kPageSize + Page::kObjectStartOffset)) return 0;
return chunk_size - Page::kPageSize - Page::kObjectStartOffset;
// Shared implementation of AllocateRaw, AllocateRawCode and
// AllocateRawFixedArray.
MUST_USE_RESULT AllocationResult
AllocateRaw(int object_size, Executability executable);
// Available bytes for objects in this space.
inline size_t Available() override;
size_t Size() override { return size_; }
size_t SizeOfObjects() override { return objects_size_; }
// Approximate amount of physical memory committed for this space.
size_t CommittedPhysicalMemory() override;
int PageCount() { return page_count_; }
// Finds an object for a given address, returns a Smi if it is not found.
// The function iterates through all objects in this space, may be slow.
Object* FindObject(Address a);
// Takes the chunk_map_mutex_ and calls FindPage after that.
LargePage* FindPageThreadSafe(Address a);
// Finds a large object page containing the given address, returns nullptr
// if such a page doesn't exist.
LargePage* FindPage(Address a);
// Clears the marking state of live objects.
void ClearMarkingStateOfLiveObjects();
// Frees unmarked objects.
void FreeUnmarkedObjects();
void InsertChunkMapEntries(LargePage* page);
void RemoveChunkMapEntries(LargePage* page);
void RemoveChunkMapEntries(LargePage* page, Address free_start);
// Checks whether a heap object is in this space; O(1).
bool Contains(HeapObject* obj);
// Checks whether an address is in the object area in this space. Iterates
// all objects in the space. May be slow.
bool ContainsSlow(Address addr) { return FindObject(addr)->IsHeapObject(); }
// Checks whether the space is empty.
bool IsEmpty() { return first_page_ == nullptr; }
LargePage* first_page() { return first_page_; }
// Collect code statistics.
void CollectCodeStatistics();
iterator begin() { return iterator(first_page_); }
iterator end() { return iterator(nullptr); }
std::unique_ptr<ObjectIterator> GetObjectIterator() override;
base::Mutex* chunk_map_mutex() { return &chunk_map_mutex_; }
virtual void Verify();
#ifdef DEBUG
void Print() override;
// The head of the linked list of large object chunks.
LargePage* first_page_;
size_t size_; // allocated bytes
int page_count_; // number of chunks
size_t objects_size_; // size of objects
// The chunk_map_mutex_ has to be used when the chunk map is accessed
// concurrently.
base::Mutex chunk_map_mutex_;
// Page-aligned addresses to their corresponding LargePage.
std::unordered_map<Address, LargePage*> chunk_map_;
friend class LargeObjectIterator;
class LargeObjectIterator : public ObjectIterator {
explicit LargeObjectIterator(LargeObjectSpace* space);
HeapObject* Next() override;
LargePage* current_;
// Iterates over the chunks (pages and large object pages) that can contain
// pointers to new space or to evacuation candidates.
class MemoryChunkIterator BASE_EMBEDDED {
inline explicit MemoryChunkIterator(Heap* heap);
// Return nullptr when the iterator is done.
inline MemoryChunk* next();
enum State {
Heap* heap_;
State state_;
PageIterator old_iterator_;
PageIterator code_iterator_;
PageIterator map_iterator_;
LargePageIterator lo_iterator_;
} // namespace internal
} // namespace v8
#endif // V8_HEAP_SPACES_H_