| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_IA32 |
| |
| #include "src/api-arguments.h" |
| #include "src/assembler-inl.h" |
| #include "src/base/bits.h" |
| #include "src/bootstrapper.h" |
| #include "src/code-stubs.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/isolate.h" |
| #include "src/regexp/jsregexp.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/runtime/runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { |
| __ pop(ecx); |
| __ mov(MemOperand(esp, eax, times_4, 0), edi); |
| __ push(edi); |
| __ push(ebx); |
| __ push(ecx); |
| __ add(eax, Immediate(3)); |
| __ TailCallRuntime(Runtime::kNewArray); |
| } |
| |
| |
| void DoubleToIStub::Generate(MacroAssembler* masm) { |
| Register final_result_reg = this->destination(); |
| |
| Label check_negative, process_64_bits, done; |
| |
| // Account for return address and saved regs. |
| const int kArgumentOffset = 3 * kPointerSize; |
| |
| MemOperand mantissa_operand(MemOperand(esp, kArgumentOffset)); |
| MemOperand exponent_operand( |
| MemOperand(esp, kArgumentOffset + kDoubleSize / 2)); |
| |
| Register scratch1 = no_reg; |
| { |
| Register scratch_candidates[3] = { ebx, edx, edi }; |
| for (int i = 0; i < 3; i++) { |
| scratch1 = scratch_candidates[i]; |
| if (final_result_reg != scratch1) break; |
| } |
| } |
| // Since we must use ecx for shifts below, use some other register (eax) |
| // to calculate the result if ecx is the requested return register. |
| Register result_reg = final_result_reg == ecx ? eax : final_result_reg; |
| // Save ecx if it isn't the return register and therefore volatile, or if it |
| // is the return register, then save the temp register we use in its stead for |
| // the result. |
| Register save_reg = final_result_reg == ecx ? eax : ecx; |
| __ push(scratch1); |
| __ push(save_reg); |
| |
| __ mov(scratch1, mantissa_operand); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| CpuFeatureScope scope(masm, SSE3); |
| // Load x87 register with heap number. |
| __ fld_d(mantissa_operand); |
| } |
| __ mov(ecx, exponent_operand); |
| |
| __ and_(ecx, HeapNumber::kExponentMask); |
| __ shr(ecx, HeapNumber::kExponentShift); |
| __ lea(result_reg, MemOperand(ecx, -HeapNumber::kExponentBias)); |
| __ cmp(result_reg, Immediate(HeapNumber::kMantissaBits)); |
| __ j(below, &process_64_bits); |
| |
| // Result is entirely in lower 32-bits of mantissa |
| int delta = HeapNumber::kExponentBias + Double::kPhysicalSignificandSize; |
| if (CpuFeatures::IsSupported(SSE3)) { |
| __ fstp(0); |
| } |
| __ sub(ecx, Immediate(delta)); |
| __ xor_(result_reg, result_reg); |
| __ cmp(ecx, Immediate(31)); |
| __ j(above, &done); |
| __ shl_cl(scratch1); |
| __ jmp(&check_negative); |
| |
| __ bind(&process_64_bits); |
| if (CpuFeatures::IsSupported(SSE3)) { |
| CpuFeatureScope scope(masm, SSE3); |
| // Reserve space for 64 bit answer. |
| __ sub(esp, Immediate(kDoubleSize)); // Nolint. |
| // Do conversion, which cannot fail because we checked the exponent. |
| __ fisttp_d(Operand(esp, 0)); |
| __ mov(result_reg, Operand(esp, 0)); // Load low word of answer as result |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&done); |
| } else { |
| // Result must be extracted from shifted 32-bit mantissa |
| __ sub(ecx, Immediate(delta)); |
| __ neg(ecx); |
| __ mov(result_reg, exponent_operand); |
| __ and_(result_reg, |
| Immediate(static_cast<uint32_t>(Double::kSignificandMask >> 32))); |
| __ add(result_reg, |
| Immediate(static_cast<uint32_t>(Double::kHiddenBit >> 32))); |
| __ shrd_cl(scratch1, result_reg); |
| __ shr_cl(result_reg); |
| __ test(ecx, Immediate(32)); |
| __ cmov(not_equal, scratch1, result_reg); |
| } |
| |
| // If the double was negative, negate the integer result. |
| __ bind(&check_negative); |
| __ mov(result_reg, scratch1); |
| __ neg(result_reg); |
| __ cmp(exponent_operand, Immediate(0)); |
| __ cmov(greater, result_reg, scratch1); |
| |
| // Restore registers |
| __ bind(&done); |
| if (final_result_reg != result_reg) { |
| DCHECK(final_result_reg == ecx); |
| __ mov(final_result_reg, result_reg); |
| } |
| __ pop(save_reg); |
| __ pop(scratch1); |
| __ ret(0); |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| const Register exponent = MathPowTaggedDescriptor::exponent(); |
| DCHECK(exponent == eax); |
| const Register scratch = ecx; |
| const XMMRegister double_result = xmm3; |
| const XMMRegister double_base = xmm2; |
| const XMMRegister double_exponent = xmm1; |
| const XMMRegister double_scratch = xmm4; |
| |
| Label call_runtime, done, exponent_not_smi, int_exponent; |
| |
| // Save 1 in double_result - we need this several times later on. |
| __ mov(scratch, Immediate(1)); |
| __ Cvtsi2sd(double_result, scratch); |
| |
| if (exponent_type() == TAGGED) { |
| __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); |
| __ SmiUntag(exponent); |
| __ jmp(&int_exponent); |
| |
| __ bind(&exponent_not_smi); |
| __ movsd(double_exponent, |
| FieldOperand(exponent, HeapNumber::kValueOffset)); |
| } |
| |
| if (exponent_type() != INTEGER) { |
| Label fast_power, try_arithmetic_simplification; |
| __ DoubleToI(exponent, double_exponent, double_scratch, |
| TREAT_MINUS_ZERO_AS_ZERO, &try_arithmetic_simplification, |
| &try_arithmetic_simplification, |
| &try_arithmetic_simplification); |
| __ jmp(&int_exponent); |
| |
| __ bind(&try_arithmetic_simplification); |
| // Skip to runtime if possibly NaN (indicated by the indefinite integer). |
| __ cvttsd2si(exponent, Operand(double_exponent)); |
| __ cmp(exponent, Immediate(0x1)); |
| __ j(overflow, &call_runtime); |
| |
| // Using FPU instructions to calculate power. |
| Label fast_power_failed; |
| __ bind(&fast_power); |
| __ fnclex(); // Clear flags to catch exceptions later. |
| // Transfer (B)ase and (E)xponent onto the FPU register stack. |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ movsd(Operand(esp, 0), double_exponent); |
| __ fld_d(Operand(esp, 0)); // E |
| __ movsd(Operand(esp, 0), double_base); |
| __ fld_d(Operand(esp, 0)); // B, E |
| |
| // Exponent is in st(1) and base is in st(0) |
| // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) |
| // FYL2X calculates st(1) * log2(st(0)) |
| __ fyl2x(); // X |
| __ fld(0); // X, X |
| __ frndint(); // rnd(X), X |
| __ fsub(1); // rnd(X), X-rnd(X) |
| __ fxch(1); // X - rnd(X), rnd(X) |
| // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 |
| __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) |
| __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) |
| __ faddp(1); // 2^(X-rnd(X)), rnd(X) |
| // FSCALE calculates st(0) * 2^st(1) |
| __ fscale(); // 2^X, rnd(X) |
| __ fstp(1); // 2^X |
| // Bail out to runtime in case of exceptions in the status word. |
| __ fnstsw_ax(); |
| __ test_b(eax, |
| Immediate(0x5F)); // We check for all but precision exception. |
| __ j(not_zero, &fast_power_failed, Label::kNear); |
| __ fstp_d(Operand(esp, 0)); |
| __ movsd(double_result, Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&done); |
| |
| __ bind(&fast_power_failed); |
| __ fninit(); |
| __ add(esp, Immediate(kDoubleSize)); |
| __ jmp(&call_runtime); |
| } |
| |
| // Calculate power with integer exponent. |
| __ bind(&int_exponent); |
| const XMMRegister double_scratch2 = double_exponent; |
| __ mov(scratch, exponent); // Back up exponent. |
| __ movsd(double_scratch, double_base); // Back up base. |
| __ movsd(double_scratch2, double_result); // Load double_exponent with 1. |
| |
| // Get absolute value of exponent. |
| Label no_neg, while_true, while_false; |
| __ test(scratch, scratch); |
| __ j(positive, &no_neg, Label::kNear); |
| __ neg(scratch); |
| __ bind(&no_neg); |
| |
| __ j(zero, &while_false, Label::kNear); |
| __ shr(scratch, 1); |
| // Above condition means CF==0 && ZF==0. This means that the |
| // bit that has been shifted out is 0 and the result is not 0. |
| __ j(above, &while_true, Label::kNear); |
| __ movsd(double_result, double_scratch); |
| __ j(zero, &while_false, Label::kNear); |
| |
| __ bind(&while_true); |
| __ shr(scratch, 1); |
| __ mulsd(double_scratch, double_scratch); |
| __ j(above, &while_true, Label::kNear); |
| __ mulsd(double_result, double_scratch); |
| __ j(not_zero, &while_true); |
| |
| __ bind(&while_false); |
| // scratch has the original value of the exponent - if the exponent is |
| // negative, return 1/result. |
| __ test(exponent, exponent); |
| __ j(positive, &done); |
| __ divsd(double_scratch2, double_result); |
| __ movsd(double_result, double_scratch2); |
| // Test whether result is zero. Bail out to check for subnormal result. |
| // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
| __ xorps(double_scratch2, double_scratch2); |
| __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. |
| // double_exponent aliased as double_scratch2 has already been overwritten |
| // and may not have contained the exponent value in the first place when the |
| // exponent is a smi. We reset it with exponent value before bailing out. |
| __ j(not_equal, &done); |
| __ Cvtsi2sd(double_exponent, exponent); |
| |
| // Returning or bailing out. |
| __ bind(&call_runtime); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(4, scratch); |
| __ movsd(Operand(esp, 0 * kDoubleSize), double_base); |
| __ movsd(Operand(esp, 1 * kDoubleSize), double_exponent); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 4); |
| } |
| // Return value is in st(0) on ia32. |
| // Store it into the (fixed) result register. |
| __ sub(esp, Immediate(kDoubleSize)); |
| __ fstp_d(Operand(esp, 0)); |
| __ movsd(double_result, Operand(esp, 0)); |
| __ add(esp, Immediate(kDoubleSize)); |
| |
| __ bind(&done); |
| __ ret(0); |
| } |
| |
| Movability CEntryStub::NeedsImmovableCode() { return kMovable; } |
| |
| void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| CEntryStub::GenerateAheadOfTime(isolate); |
| // It is important that the store buffer overflow stubs are generated first. |
| CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); |
| StoreFastElementStub::GenerateAheadOfTime(isolate); |
| } |
| |
| |
| void CodeStub::GenerateFPStubs(Isolate* isolate) { |
| // Generate if not already in cache. |
| CEntryStub(isolate, 1, kSaveFPRegs).GetCode(); |
| } |
| |
| |
| void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
| CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
| stub.GetCode(); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // eax: number of arguments including receiver |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // esi: current context (C callee-saved) |
| // edi: JS function of the caller (C callee-saved) |
| // |
| // If argv_in_register(): |
| // ecx: pointer to the first argument |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Reserve space on the stack for the three arguments passed to the call. If |
| // result size is greater than can be returned in registers, also reserve |
| // space for the hidden argument for the result location, and space for the |
| // result itself. |
| int arg_stack_space = 3; |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| if (argv_in_register()) { |
| DCHECK(!save_doubles()); |
| DCHECK(!is_builtin_exit()); |
| __ EnterApiExitFrame(arg_stack_space); |
| |
| // Move argc and argv into the correct registers. |
| __ mov(esi, ecx); |
| __ mov(edi, eax); |
| } else { |
| __ EnterExitFrame( |
| arg_stack_space, save_doubles(), |
| is_builtin_exit() ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT); |
| } |
| |
| // ebx: pointer to C function (C callee-saved) |
| // ebp: frame pointer (restored after C call) |
| // esp: stack pointer (restored after C call) |
| // edi: number of arguments including receiver (C callee-saved) |
| // esi: pointer to the first argument (C callee-saved) |
| |
| // Result returned in eax, or eax+edx if result size is 2. |
| |
| // Check stack alignment. |
| if (FLAG_debug_code) { |
| __ CheckStackAlignment(); |
| } |
| // Call C function. |
| __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. |
| __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. |
| __ mov(Operand(esp, 2 * kPointerSize), |
| Immediate(ExternalReference::isolate_address(isolate()))); |
| __ call(ebx); |
| |
| // Result is in eax or edx:eax - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ cmp(eax, isolate()->factory()->exception()); |
| __ j(equal, &exception_returned); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| __ push(edx); |
| __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); |
| Label okay; |
| ExternalReference pending_exception_address( |
| IsolateAddressId::kPendingExceptionAddress, isolate()); |
| __ cmp(edx, Operand::StaticVariable(pending_exception_address)); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ j(equal, &okay, Label::kNear); |
| __ int3(); |
| __ bind(&okay); |
| __ pop(edx); |
| } |
| |
| // Exit the JavaScript to C++ exit frame. |
| __ LeaveExitFrame(save_doubles(), !argv_in_register()); |
| __ ret(0); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address( |
| IsolateAddressId::kPendingHandlerContextAddress, isolate()); |
| ExternalReference pending_handler_entrypoint_address( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, isolate()); |
| ExternalReference pending_handler_fp_address( |
| IsolateAddressId::kPendingHandlerFPAddress, isolate()); |
| ExternalReference pending_handler_sp_address( |
| IsolateAddressId::kPendingHandlerSPAddress, isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set eax to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, |
| isolate()); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, eax); |
| __ mov(Operand(esp, 0 * kPointerSize), Immediate(0)); // argc. |
| __ mov(Operand(esp, 1 * kPointerSize), Immediate(0)); // argv. |
| __ mov(Operand(esp, 2 * kPointerSize), |
| Immediate(ExternalReference::isolate_address(isolate()))); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ mov(esi, Operand::StaticVariable(pending_handler_context_address)); |
| __ mov(esp, Operand::StaticVariable(pending_handler_sp_address)); |
| __ mov(ebp, Operand::StaticVariable(pending_handler_fp_address)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (esi == 0) for non-JS frames. |
| Label skip; |
| __ test(esi, esi); |
| __ j(zero, &skip, Label::kNear); |
| __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), esi); |
| __ bind(&skip); |
| |
| // Compute the handler entry address and jump to it. |
| __ mov(edi, Operand::StaticVariable(pending_handler_entrypoint_address)); |
| __ jmp(edi); |
| } |
| |
| |
| void JSEntryStub::Generate(MacroAssembler* masm) { |
| Label invoke, handler_entry, exit; |
| Label not_outermost_js, not_outermost_js_2; |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Set up frame. |
| __ push(ebp); |
| __ mov(ebp, esp); |
| |
| // Push marker in two places. |
| StackFrame::Type marker = type(); |
| __ push(Immediate(StackFrame::TypeToMarker(marker))); // marker |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| isolate()); |
| __ push(Operand::StaticVariable(context_address)); // context |
| // Save callee-saved registers (C calling conventions). |
| __ push(edi); |
| __ push(esi); |
| __ push(ebx); |
| |
| // Save copies of the top frame descriptor on the stack. |
| ExternalReference c_entry_fp(IsolateAddressId::kCEntryFPAddress, isolate()); |
| __ push(Operand::StaticVariable(c_entry_fp)); |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate()); |
| __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ j(not_equal, ¬_outermost_js, Label::kNear); |
| __ mov(Operand::StaticVariable(js_entry_sp), ebp); |
| __ push(Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ jmp(&invoke, Label::kNear); |
| __ bind(¬_outermost_js); |
| __ push(Immediate(StackFrame::INNER_JSENTRY_FRAME)); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| handler_offset_ = handler_entry.pos(); |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. |
| ExternalReference pending_exception( |
| IsolateAddressId::kPendingExceptionAddress, isolate()); |
| __ mov(Operand::StaticVariable(pending_exception), eax); |
| __ mov(eax, Immediate(isolate()->factory()->exception())); |
| __ jmp(&exit); |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| |
| // Invoke the function by calling through JS entry trampoline builtin and |
| // pop the faked function when we return. Notice that we cannot store a |
| // reference to the trampoline code directly in this stub, because the |
| // builtin stubs may not have been generated yet. |
| __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); |
| // Check if the current stack frame is marked as the outermost JS frame. |
| __ pop(ebx); |
| __ cmp(ebx, Immediate(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ j(not_equal, ¬_outermost_js_2); |
| __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); |
| __ bind(¬_outermost_js_2); |
| |
| // Restore the top frame descriptor from the stack. |
| __ pop(Operand::StaticVariable( |
| ExternalReference(IsolateAddressId::kCEntryFPAddress, isolate()))); |
| |
| // Restore callee-saved registers (C calling conventions). |
| __ pop(ebx); |
| __ pop(esi); |
| __ pop(edi); |
| __ add(esp, Immediate(2 * kPointerSize)); // remove markers |
| |
| // Restore frame pointer and return. |
| __ pop(ebp); |
| __ ret(0); |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, |
| Zone* zone) { |
| if (tasm->isolate()->function_entry_hook() != nullptr) { |
| tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); |
| } |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
| if (masm->isolate()->function_entry_hook() != nullptr) { |
| ProfileEntryHookStub stub(masm->isolate()); |
| masm->CallStub(&stub); |
| } |
| } |
| |
| |
| void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
| // Save volatile registers. |
| const int kNumSavedRegisters = 3; |
| __ push(eax); |
| __ push(ecx); |
| __ push(edx); |
| |
| // Calculate and push the original stack pointer. |
| __ lea(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); |
| __ push(eax); |
| |
| // Retrieve our return address and use it to calculate the calling |
| // function's address. |
| __ mov(eax, Operand(esp, (kNumSavedRegisters + 1) * kPointerSize)); |
| __ sub(eax, Immediate(Assembler::kCallInstructionLength)); |
| __ push(eax); |
| |
| // Call the entry hook. |
| DCHECK_NOT_NULL(isolate()->function_entry_hook()); |
| __ call(FUNCTION_ADDR(isolate()->function_entry_hook()), |
| RelocInfo::RUNTIME_ENTRY); |
| __ add(esp, Immediate(2 * kPointerSize)); |
| |
| // Restore ecx. |
| __ pop(edx); |
| __ pop(ecx); |
| __ pop(eax); |
| |
| __ ret(0); |
| } |
| |
| |
| template<class T> |
| static void CreateArrayDispatch(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| T stub(masm->isolate(), |
| GetInitialFastElementsKind(), |
| mode); |
| __ TailCallStub(&stub); |
| } else if (mode == DONT_OVERRIDE) { |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| __ cmp(edx, kind); |
| __ j(not_equal, &next); |
| T stub(masm->isolate(), kind); |
| __ TailCallStub(&stub); |
| __ bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| // ebx - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
| // edx - kind (if mode != DISABLE_ALLOCATION_SITES) |
| // eax - number of arguments |
| // edi - constructor? |
| // esp[0] - return address |
| // esp[4] - last argument |
| STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); |
| STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); |
| STATIC_ASSERT(PACKED_ELEMENTS == 2); |
| STATIC_ASSERT(HOLEY_ELEMENTS == 3); |
| STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); |
| STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); |
| |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| ElementsKind initial = GetInitialFastElementsKind(); |
| ElementsKind holey_initial = GetHoleyElementsKind(initial); |
| |
| ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), |
| holey_initial, |
| DISABLE_ALLOCATION_SITES); |
| __ TailCallStub(&stub_holey); |
| } else if (mode == DONT_OVERRIDE) { |
| // is the low bit set? If so, we are holey and that is good. |
| Label normal_sequence; |
| __ test_b(edx, Immediate(1)); |
| __ j(not_zero, &normal_sequence); |
| |
| // We are going to create a holey array, but our kind is non-holey. |
| // Fix kind and retry. |
| __ inc(edx); |
| |
| if (FLAG_debug_code) { |
| Handle<Map> allocation_site_map = |
| masm->isolate()->factory()->allocation_site_map(); |
| __ cmp(FieldOperand(ebx, 0), Immediate(allocation_site_map)); |
| __ Assert(equal, AbortReason::kExpectedAllocationSite); |
| } |
| |
| // Save the resulting elements kind in type info. We can't just store r3 |
| // in the AllocationSite::transition_info field because elements kind is |
| // restricted to a portion of the field...upper bits need to be left alone. |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ add( |
| FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset), |
| Immediate(Smi::FromInt(kFastElementsKindPackedToHoley))); |
| |
| __ bind(&normal_sequence); |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| Label next; |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| __ cmp(edx, kind); |
| __ j(not_equal, &next); |
| ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); |
| __ TailCallStub(&stub); |
| __ bind(&next); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| template<class T> |
| static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
| int to_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= to_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| T stub(isolate, kind); |
| stub.GetCode(); |
| if (AllocationSite::ShouldTrack(kind)) { |
| T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); |
| stub1.GetCode(); |
| } |
| } |
| } |
| |
| void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
| isolate); |
| ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
| isolate); |
| ArrayNArgumentsConstructorStub stub(isolate); |
| stub.GetCode(); |
| |
| ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; |
| for (int i = 0; i < 2; i++) { |
| // For internal arrays we only need a few things |
| InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); |
| stubh1.GetCode(); |
| InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); |
| stubh2.GetCode(); |
| } |
| } |
| |
| void ArrayConstructorStub::GenerateDispatchToArrayStub( |
| MacroAssembler* masm, AllocationSiteOverrideMode mode) { |
| Label not_zero_case, not_one_case; |
| __ test(eax, eax); |
| __ j(not_zero, ¬_zero_case); |
| CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| |
| __ bind(¬_zero_case); |
| __ cmp(eax, 1); |
| __ j(greater, ¬_one_case); |
| CreateArrayDispatchOneArgument(masm, mode); |
| |
| __ bind(¬_one_case); |
| ArrayNArgumentsConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc (only if argument_count() is ANY or MORE_THAN_ONE) |
| // -- ebx : AllocationSite or undefined |
| // -- edi : constructor |
| // -- edx : Original constructor |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(ecx, MAP_TYPE, ecx); |
| __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| |
| // We should either have undefined in ebx or a valid AllocationSite |
| __ AssertUndefinedOrAllocationSite(ebx); |
| } |
| |
| Label subclassing; |
| |
| // Enter the context of the Array function. |
| __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| __ cmp(edx, edi); |
| __ j(not_equal, &subclassing); |
| |
| Label no_info; |
| // If the feedback vector is the undefined value call an array constructor |
| // that doesn't use AllocationSites. |
| __ cmp(ebx, isolate()->factory()->undefined_value()); |
| __ j(equal, &no_info); |
| |
| // Only look at the lower 16 bits of the transition info. |
| __ mov(edx, |
| FieldOperand(ebx, AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ SmiUntag(edx); |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ and_(edx, Immediate(AllocationSite::ElementsKindBits::kMask)); |
| GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
| |
| __ bind(&no_info); |
| GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
| |
| // Subclassing. |
| __ bind(&subclassing); |
| __ mov(Operand(esp, eax, times_pointer_size, kPointerSize), edi); |
| __ add(eax, Immediate(3)); |
| __ PopReturnAddressTo(ecx); |
| __ Push(edx); |
| __ Push(ebx); |
| __ PushReturnAddressFrom(ecx); |
| __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); |
| } |
| |
| |
| void InternalArrayConstructorStub::GenerateCase( |
| MacroAssembler* masm, ElementsKind kind) { |
| Label not_zero_case, not_one_case; |
| Label normal_sequence; |
| |
| __ test(eax, eax); |
| __ j(not_zero, ¬_zero_case); |
| InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
| __ TailCallStub(&stub0); |
| |
| __ bind(¬_zero_case); |
| __ cmp(eax, 1); |
| __ j(greater, ¬_one_case); |
| |
| if (IsFastPackedElementsKind(kind)) { |
| // We might need to create a holey array |
| // look at the first argument |
| __ mov(ecx, Operand(esp, kPointerSize)); |
| __ test(ecx, ecx); |
| __ j(zero, &normal_sequence); |
| |
| InternalArraySingleArgumentConstructorStub |
| stub1_holey(isolate(), GetHoleyElementsKind(kind)); |
| __ TailCallStub(&stub1_holey); |
| } |
| |
| __ bind(&normal_sequence); |
| InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
| __ TailCallStub(&stub1); |
| |
| __ bind(¬_one_case); |
| ArrayNArgumentsConstructorStub stubN(isolate()); |
| __ TailCallStub(&stubN); |
| } |
| |
| |
| void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- eax : argc |
| // -- edi : constructor |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ test(ecx, Immediate(kSmiTagMask)); |
| __ Assert(not_zero, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| __ CmpObjectType(ecx, MAP_TYPE, ecx); |
| __ Assert(equal, AbortReason::kUnexpectedInitialMapForArrayFunction); |
| } |
| |
| // Figure out the right elements kind |
| __ mov(ecx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into |result|. We only need the first byte, |
| // but the following masking takes care of that anyway. |
| __ mov(ecx, FieldOperand(ecx, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(ecx); |
| |
| if (FLAG_debug_code) { |
| Label done; |
| __ cmp(ecx, Immediate(PACKED_ELEMENTS)); |
| __ j(equal, &done); |
| __ cmp(ecx, Immediate(HOLEY_ELEMENTS)); |
| __ Assert( |
| equal, |
| AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
| __ bind(&done); |
| } |
| |
| Label fast_elements_case; |
| __ cmp(ecx, Immediate(PACKED_ELEMENTS)); |
| __ j(equal, &fast_elements_case); |
| GenerateCase(masm, HOLEY_ELEMENTS); |
| |
| __ bind(&fast_elements_case); |
| GenerateCase(masm, PACKED_ELEMENTS); |
| } |
| |
| // Generates an Operand for saving parameters after PrepareCallApiFunction. |
| static Operand ApiParameterOperand(int index) { |
| return Operand(esp, index * kPointerSize); |
| } |
| |
| |
| // Prepares stack to put arguments (aligns and so on). Reserves |
| // space for return value if needed (assumes the return value is a handle). |
| // Arguments must be stored in ApiParameterOperand(0), ApiParameterOperand(1) |
| // etc. Saves context (esi). If space was reserved for return value then |
| // stores the pointer to the reserved slot into esi. |
| static void PrepareCallApiFunction(MacroAssembler* masm, int argc) { |
| __ EnterApiExitFrame(argc); |
| if (__ emit_debug_code()) { |
| __ mov(esi, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Clobbers ebx, edi and |
| // caller-save registers. Restores context. On return removes |
| // stack_space * kPointerSize (GCed). |
| static void CallApiFunctionAndReturn(MacroAssembler* masm, |
| Register function_address, |
| ExternalReference thunk_ref, |
| Operand thunk_last_arg, int stack_space, |
| Operand* stack_space_operand, |
| Operand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| ExternalReference limit_address = |
| ExternalReference::handle_scope_limit_address(isolate); |
| ExternalReference level_address = |
| ExternalReference::handle_scope_level_address(isolate); |
| |
| DCHECK(edx == function_address); |
| // Allocate HandleScope in callee-save registers. |
| __ mov(ebx, Operand::StaticVariable(next_address)); |
| __ mov(edi, Operand::StaticVariable(limit_address)); |
| __ add(Operand::StaticVariable(level_address), Immediate(1)); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1, eax); |
| __ mov(Operand(esp, 0), |
| Immediate(ExternalReference::isolate_address(isolate))); |
| __ CallCFunction(ExternalReference::log_enter_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| |
| Label profiler_disabled; |
| Label end_profiler_check; |
| __ mov(eax, Immediate(ExternalReference::is_profiling_address(isolate))); |
| __ cmpb(Operand(eax, 0), Immediate(0)); |
| __ j(zero, &profiler_disabled); |
| |
| // Additional parameter is the address of the actual getter function. |
| __ mov(thunk_last_arg, function_address); |
| // Call the api function. |
| __ mov(eax, Immediate(thunk_ref)); |
| __ call(eax); |
| __ jmp(&end_profiler_check); |
| |
| __ bind(&profiler_disabled); |
| // Call the api function. |
| __ call(function_address); |
| __ bind(&end_profiler_check); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1, eax); |
| __ mov(Operand(esp, 0), |
| Immediate(ExternalReference::isolate_address(isolate))); |
| __ CallCFunction(ExternalReference::log_leave_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| Label prologue; |
| // Load the value from ReturnValue |
| __ mov(eax, return_value_operand); |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| |
| __ bind(&prologue); |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ mov(Operand::StaticVariable(next_address), ebx); |
| __ sub(Operand::StaticVariable(level_address), Immediate(1)); |
| __ Assert(above_equal, AbortReason::kInvalidHandleScopeLevel); |
| __ cmp(edi, Operand::StaticVariable(limit_address)); |
| __ j(not_equal, &delete_allocated_handles); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| if (stack_space_operand != nullptr) { |
| __ mov(ebx, *stack_space_operand); |
| } |
| __ LeaveApiExitFrame(); |
| |
| // Check if the function scheduled an exception. |
| ExternalReference scheduled_exception_address = |
| ExternalReference::scheduled_exception_address(isolate); |
| __ cmp(Operand::StaticVariable(scheduled_exception_address), |
| Immediate(isolate->factory()->the_hole_value())); |
| __ j(not_equal, &promote_scheduled_exception); |
| |
| #if DEBUG |
| // Check if the function returned a valid JavaScript value. |
| Label ok; |
| Register return_value = eax; |
| Register map = ecx; |
| |
| __ JumpIfSmi(return_value, &ok, Label::kNear); |
| __ mov(map, FieldOperand(return_value, HeapObject::kMapOffset)); |
| |
| __ CmpInstanceType(map, LAST_NAME_TYPE); |
| __ j(below_equal, &ok, Label::kNear); |
| |
| __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE); |
| __ j(above_equal, &ok, Label::kNear); |
| |
| __ cmp(map, isolate->factory()->heap_number_map()); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ cmp(return_value, isolate->factory()->undefined_value()); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ cmp(return_value, isolate->factory()->true_value()); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ cmp(return_value, isolate->factory()->false_value()); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ cmp(return_value, isolate->factory()->null_value()); |
| __ j(equal, &ok, Label::kNear); |
| |
| __ Abort(AbortReason::kAPICallReturnedInvalidObject); |
| |
| __ bind(&ok); |
| #endif |
| |
| if (stack_space_operand != nullptr) { |
| DCHECK_EQ(0, stack_space); |
| __ pop(ecx); |
| __ add(esp, ebx); |
| __ jmp(ecx); |
| } else { |
| __ ret(stack_space * kPointerSize); |
| } |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| ExternalReference delete_extensions = |
| ExternalReference::delete_handle_scope_extensions(isolate); |
| __ bind(&delete_allocated_handles); |
| __ mov(Operand::StaticVariable(limit_address), edi); |
| __ mov(edi, eax); |
| __ mov(Operand(esp, 0), |
| Immediate(ExternalReference::isolate_address(isolate))); |
| __ mov(eax, Immediate(delete_extensions)); |
| __ call(eax); |
| __ mov(eax, edi); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| void CallApiCallbackStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- ebx : call_data |
| // -- ecx : holder |
| // -- edx : api_function_address |
| // -- esi : context |
| // -- |
| // -- esp[0] : return address |
| // -- esp[4] : last argument |
| // -- ... |
| // -- esp[argc * 4] : first argument |
| // -- esp[(argc + 1) * 4] : receiver |
| // ----------------------------------- |
| |
| Register call_data = ebx; |
| Register holder = ecx; |
| Register api_function_address = edx; |
| Register return_address = eax; |
| |
| typedef FunctionCallbackArguments FCA; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| __ pop(return_address); |
| |
| // new target |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| |
| // call data |
| __ push(call_data); |
| |
| // return value |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| // return value default |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| // isolate |
| __ push(Immediate(ExternalReference::isolate_address(isolate()))); |
| // holder |
| __ push(holder); |
| |
| Register scratch = call_data; |
| |
| __ mov(scratch, esp); |
| |
| // push return address |
| __ push(return_address); |
| |
| // API function gets reference to the v8::Arguments. If CPU profiler |
| // is enabled wrapper function will be called and we need to pass |
| // address of the callback as additional parameter, always allocate |
| // space for it. |
| const int kApiArgc = 1 + 1; |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| const int kApiStackSpace = 3; |
| |
| PrepareCallApiFunction(masm, kApiArgc + kApiStackSpace); |
| |
| // FunctionCallbackInfo::implicit_args_. |
| __ mov(ApiParameterOperand(2), scratch); |
| __ add(scratch, Immediate((argc() + FCA::kArgsLength - 1) * kPointerSize)); |
| // FunctionCallbackInfo::values_. |
| __ mov(ApiParameterOperand(3), scratch); |
| // FunctionCallbackInfo::length_. |
| __ Move(ApiParameterOperand(4), Immediate(argc())); |
| |
| // v8::InvocationCallback's argument. |
| __ lea(scratch, ApiParameterOperand(2)); |
| __ mov(ApiParameterOperand(0), scratch); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_function_callback(masm->isolate()); |
| |
| // Stores return the first js argument |
| int return_value_offset = 2 + FCA::kReturnValueOffset; |
| Operand return_value_operand(ebp, return_value_offset * kPointerSize); |
| const int stack_space = argc() + FCA::kArgsLength + 1; |
| Operand* stack_space_operand = nullptr; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| ApiParameterOperand(1), stack_space, |
| stack_space_operand, return_value_operand); |
| } |
| |
| |
| void CallApiGetterStub::Generate(MacroAssembler* masm) { |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = ebx; |
| DCHECK(!AreAliased(receiver, holder, callback, scratch)); |
| |
| __ pop(scratch); // Pop return address to extend the frame. |
| __ push(receiver); |
| __ push(FieldOperand(callback, AccessorInfo::kDataOffset)); |
| __ PushRoot(Heap::kUndefinedValueRootIndex); // ReturnValue |
| // ReturnValue default value |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| __ push(Immediate(ExternalReference::isolate_address(isolate()))); |
| __ push(holder); |
| __ push(Immediate(Smi::kZero)); // should_throw_on_error -> false |
| __ push(FieldOperand(callback, AccessorInfo::kNameOffset)); |
| __ push(scratch); // Restore return address. |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Allocate v8::PropertyCallbackInfo object, arguments for callback and |
| // space for optional callback address parameter (in case CPU profiler is |
| // active) in non-GCed stack space. |
| const int kApiArgc = 3 + 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array. |
| __ lea(scratch, Operand(esp, 2 * kPointerSize)); |
| |
| PrepareCallApiFunction(masm, kApiArgc); |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| Operand info_object = ApiParameterOperand(3); |
| __ mov(info_object, scratch); |
| |
| // Name as handle. |
| __ sub(scratch, Immediate(kPointerSize)); |
| __ mov(ApiParameterOperand(0), scratch); |
| // Arguments pointer. |
| __ lea(scratch, info_object); |
| __ mov(ApiParameterOperand(1), scratch); |
| // Reserve space for optional callback address parameter. |
| Operand thunk_last_arg = ApiParameterOperand(2); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(isolate()); |
| |
| __ mov(scratch, FieldOperand(callback, AccessorInfo::kJsGetterOffset)); |
| Register function_address = edx; |
| __ mov(function_address, |
| FieldOperand(scratch, Foreign::kForeignAddressOffset)); |
| // +3 is to skip prolog, return address and name handle. |
| Operand return_value_operand( |
| ebp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); |
| CallApiFunctionAndReturn(masm, function_address, thunk_ref, thunk_last_arg, |
| kStackUnwindSpace, nullptr, return_value_operand); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_IA32 |