| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_IA32 |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/base/utils/random-number-generator.h" |
| #include "src/bootstrapper.h" |
| #include "src/callable.h" |
| #include "src/code-stubs.h" |
| #include "src/debug/debug.h" |
| #include "src/external-reference-table.h" |
| #include "src/frame-constants.h" |
| #include "src/frames-inl.h" |
| #include "src/runtime/runtime.h" |
| |
| #include "src/ia32/assembler-ia32-inl.h" |
| #include "src/ia32/macro-assembler-ia32.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ------------------------------------------------------------------------- |
| // MacroAssembler implementation. |
| |
| MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, |
| CodeObjectRequired create_code_object) |
| : TurboAssembler(isolate, buffer, size, create_code_object) {} |
| |
| TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, |
| CodeObjectRequired create_code_object) |
| : Assembler(isolate, buffer, buffer_size), isolate_(isolate) { |
| if (create_code_object == CodeObjectRequired::kYes) { |
| code_object_ = |
| Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate); |
| } |
| } |
| |
| void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index) { |
| if (isolate()->heap()->RootCanBeTreatedAsConstant(index)) { |
| Handle<Object> object = isolate()->heap()->root_handle(index); |
| if (object->IsHeapObject()) { |
| mov(destination, Handle<HeapObject>::cast(object)); |
| } else { |
| mov(destination, Immediate(Smi::cast(*object))); |
| } |
| return; |
| } |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(isolate()); |
| mov(destination, Immediate(index)); |
| mov(destination, Operand::StaticArray(destination, |
| times_pointer_size, |
| roots_array_start)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register with, |
| Register scratch, |
| Heap::RootListIndex index) { |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(isolate()); |
| mov(scratch, Immediate(index)); |
| cmp(with, Operand::StaticArray(scratch, |
| times_pointer_size, |
| roots_array_start)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register with, Heap::RootListIndex index) { |
| DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); |
| Handle<Object> object = isolate()->heap()->root_handle(index); |
| if (object->IsHeapObject()) { |
| cmp(with, Handle<HeapObject>::cast(object)); |
| } else { |
| cmp(with, Immediate(Smi::cast(*object))); |
| } |
| } |
| |
| |
| void MacroAssembler::CompareRoot(const Operand& with, |
| Heap::RootListIndex index) { |
| DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); |
| Handle<Object> object = isolate()->heap()->root_handle(index); |
| if (object->IsHeapObject()) { |
| cmp(with, Handle<HeapObject>::cast(object)); |
| } else { |
| cmp(with, Immediate(Smi::cast(*object))); |
| } |
| } |
| |
| void MacroAssembler::PushRoot(Heap::RootListIndex index) { |
| DCHECK(isolate()->heap()->RootCanBeTreatedAsConstant(index)); |
| Handle<Object> object = isolate()->heap()->root_handle(index); |
| if (object->IsHeapObject()) { |
| Push(Handle<HeapObject>::cast(object)); |
| } else { |
| Push(Smi::cast(*object)); |
| } |
| } |
| |
| static constexpr Register saved_regs[] = {eax, ecx, edx}; |
| |
| static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| bytes += kPointerSize; |
| } |
| } |
| |
| if (fp_mode == kSaveFPRegs) { |
| // Count all XMM registers except XMM0. |
| bytes += kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| // We don't allow a GC during a store buffer overflow so there is no need to |
| // store the registers in any particular way, but we do have to store and |
| // restore them. |
| int bytes = 0; |
| for (int i = 0; i < kNumberOfSavedRegs; i++) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| push(reg); |
| bytes += kPointerSize; |
| } |
| } |
| |
| if (fp_mode == kSaveFPRegs) { |
| // Save all XMM registers except XMM0. |
| int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| sub(esp, Immediate(delta)); |
| for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(Operand(esp, (i - 1) * kDoubleSize), reg); |
| } |
| bytes += delta; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| // Restore all XMM registers except XMM0. |
| int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); |
| for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(reg, Operand(esp, (i - 1) * kDoubleSize)); |
| } |
| add(esp, Immediate(delta)); |
| bytes += delta; |
| } |
| |
| for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { |
| Register reg = saved_regs[i]; |
| if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { |
| pop(reg); |
| bytes += kPointerSize; |
| } |
| } |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::SlowTruncateToIDelayed(Zone* zone, Register result_reg) { |
| CallStubDelayed(new (zone) DoubleToIStub(nullptr, result_reg)); |
| } |
| |
| void MacroAssembler::DoubleToI(Register result_reg, XMMRegister input_reg, |
| XMMRegister scratch, |
| MinusZeroMode minus_zero_mode, |
| Label* lost_precision, Label* is_nan, |
| Label* minus_zero, Label::Distance dst) { |
| DCHECK(input_reg != scratch); |
| cvttsd2si(result_reg, Operand(input_reg)); |
| Cvtsi2sd(scratch, Operand(result_reg)); |
| ucomisd(scratch, input_reg); |
| j(not_equal, lost_precision, dst); |
| j(parity_even, is_nan, dst); |
| if (minus_zero_mode == FAIL_ON_MINUS_ZERO) { |
| Label done; |
| // The integer converted back is equal to the original. We |
| // only have to test if we got -0 as an input. |
| test(result_reg, Operand(result_reg)); |
| j(not_zero, &done, Label::kNear); |
| movmskpd(result_reg, input_reg); |
| // Bit 0 contains the sign of the double in input_reg. |
| // If input was positive, we are ok and return 0, otherwise |
| // jump to minus_zero. |
| and_(result_reg, 1); |
| j(not_zero, minus_zero, dst); |
| bind(&done); |
| } |
| } |
| |
| void TurboAssembler::LoadUint32(XMMRegister dst, const Operand& src) { |
| Label done; |
| cmp(src, Immediate(0)); |
| ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); |
| Cvtsi2sd(dst, src); |
| j(not_sign, &done, Label::kNear); |
| addsd(dst, Operand::StaticVariable(uint32_bias)); |
| bind(&done); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done, Label::kNear); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| DCHECK(IsAligned(offset, kPointerSize)); |
| |
| lea(dst, FieldOperand(object, offset)); |
| if (emit_debug_code()) { |
| Label ok; |
| test_b(dst, Immediate(kPointerSize - 1)); |
| j(zero, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Immediate(bit_cast<int32_t>(kZapValue))); |
| mov(dst, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| push(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| for (int i = Register::kNumRegisters - 1; i >= 0; --i) { |
| if ((registers >> i) & 1u) { |
| pop(Register::from_code(i)); |
| } |
| } |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| Callable const callable = |
| Builtins::CallableFor(isolate(), Builtins::kRecordWrite); |
| RegList registers = callable.descriptor().allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register isolate_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kIsolate)); |
| Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kFPMode)); |
| |
| push(object); |
| push(address); |
| |
| pop(slot_parameter); |
| pop(object_parameter); |
| |
| mov(isolate_parameter, |
| Immediate(ExternalReference::isolate_address(isolate()))); |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(callable.code(), RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| DCHECK(object != address); |
| DCHECK(value != address); |
| AssertNotSmi(object); |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| if (emit_debug_code()) { |
| Label ok; |
| cmp(value, Operand(address, 0)); |
| j(equal, &ok, Label::kNear); |
| int3(); |
| bind(&ok); |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis and stores into young gen. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| // Skip barrier if writing a smi. |
| JumpIfSmi(value, &done, Label::kNear); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, |
| Label::kNear); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, |
| zero, |
| &done, |
| Label::kNear); |
| |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| |
| bind(&done); |
| |
| // Count number of write barriers in generated code. |
| isolate()->counters()->write_barriers_static()->Increment(); |
| IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Immediate(bit_cast<int32_t>(kZapValue))); |
| mov(value, Immediate(bit_cast<int32_t>(kZapValue))); |
| } |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| mov(ebx, Operand::StaticVariable(restart_fp)); |
| test(ebx, ebx); |
| j(not_zero, BUILTIN_CODE(isolate(), FrameDropperTrampoline), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| void TurboAssembler::Cvtsi2sd(XMMRegister dst, const Operand& src) { |
| xorps(dst, dst); |
| cvtsi2sd(dst, src); |
| } |
| |
| void TurboAssembler::Cvtui2ss(XMMRegister dst, Register src, Register tmp) { |
| Label msb_set_src; |
| Label jmp_return; |
| test(src, src); |
| j(sign, &msb_set_src, Label::kNear); |
| cvtsi2ss(dst, src); |
| jmp(&jmp_return, Label::kNear); |
| bind(&msb_set_src); |
| mov(tmp, src); |
| shr(src, 1); |
| // Recover the least significant bit to avoid rounding errors. |
| and_(tmp, Immediate(1)); |
| or_(src, tmp); |
| cvtsi2ss(dst, src); |
| addss(dst, dst); |
| bind(&jmp_return); |
| } |
| |
| void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { |
| if (shift >= 32) { |
| mov(high, low); |
| shl(high, shift - 32); |
| xor_(low, low); |
| } else { |
| shld(high, low, shift); |
| shl(low, shift); |
| } |
| } |
| |
| void TurboAssembler::ShlPair_cl(Register high, Register low) { |
| shld_cl(high, low); |
| shl_cl(low); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(high, low); |
| xor_(low, low); |
| bind(&done); |
| } |
| |
| void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) { |
| if (shift >= 32) { |
| mov(low, high); |
| shr(low, shift - 32); |
| xor_(high, high); |
| } else { |
| shrd(high, low, shift); |
| shr(high, shift); |
| } |
| } |
| |
| void TurboAssembler::ShrPair_cl(Register high, Register low) { |
| shrd_cl(low, high); |
| shr_cl(high); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(low, high); |
| xor_(high, high); |
| bind(&done); |
| } |
| |
| void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) { |
| if (shift >= 32) { |
| mov(low, high); |
| sar(low, shift - 32); |
| sar(high, 31); |
| } else { |
| shrd(high, low, shift); |
| sar(high, shift); |
| } |
| } |
| |
| void TurboAssembler::SarPair_cl(Register high, Register low) { |
| shrd_cl(low, high); |
| sar_cl(high); |
| Label done; |
| test(ecx, Immediate(0x20)); |
| j(equal, &done, Label::kNear); |
| mov(low, high); |
| sar(high, 31); |
| bind(&done); |
| } |
| |
| void MacroAssembler::CmpObjectType(Register heap_object, |
| InstanceType type, |
| Register map) { |
| mov(map, FieldOperand(heap_object, HeapObject::kMapOffset)); |
| CmpInstanceType(map, type); |
| } |
| |
| |
| void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { |
| cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); |
| } |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(equal, AbortReason::kOperandIsNotASmi); |
| } |
| } |
| |
| void MacroAssembler::AssertFixedArray(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFixedArray); |
| Push(object); |
| CmpObjectType(object, FIXED_ARRAY_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFixedArray); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); |
| Push(object); |
| CmpObjectType(object, JS_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); |
| Push(object); |
| CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); |
| Pop(object); |
| Check(equal, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); |
| |
| { |
| Push(object); |
| Register map = object; |
| |
| // Load map |
| mov(map, FieldOperand(object, HeapObject::kMapOffset)); |
| |
| Label do_check; |
| // Check if JSGeneratorObject |
| CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); |
| j(equal, &do_check, Label::kNear); |
| |
| // Check if JSAsyncGeneratorObject |
| CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); |
| |
| bind(&do_check); |
| Pop(object); |
| } |
| |
| Check(equal, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| cmp(object, isolate()->factory()->undefined_value()); |
| j(equal, &done_checking); |
| cmp(FieldOperand(object, 0), |
| Immediate(isolate()->factory()->allocation_site_map())); |
| Assert(equal, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| test(object, Immediate(kSmiTagMask)); |
| Check(not_equal, AbortReason::kOperandIsASmi); |
| } |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type) { |
| push(ebp); // Caller's frame pointer. |
| mov(ebp, esp); |
| push(Immediate(StackFrame::TypeToMarker(type))); |
| } |
| |
| void TurboAssembler::Prologue() { |
| push(ebp); // Caller's frame pointer. |
| mov(ebp, esp); |
| push(esi); // Callee's context. |
| push(edi); // Callee's JS function. |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type) { |
| push(ebp); |
| mov(ebp, esp); |
| push(Immediate(StackFrame::TypeToMarker(type))); |
| if (type == StackFrame::INTERNAL) { |
| push(Immediate(CodeObject())); |
| } |
| if (emit_debug_code()) { |
| cmp(Operand(esp, 0), Immediate(isolate()->factory()->undefined_value())); |
| Check(not_equal, AbortReason::kCodeObjectNotProperlyPatched); |
| } |
| } |
| |
| void TurboAssembler::LeaveFrame(StackFrame::Type type) { |
| if (emit_debug_code()) { |
| cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), |
| Immediate(StackFrame::TypeToMarker(type))); |
| Check(equal, AbortReason::kStackFrameTypesMustMatch); |
| } |
| leave(); |
| } |
| |
| void MacroAssembler::EnterBuiltinFrame(Register context, Register target, |
| Register argc) { |
| Push(ebp); |
| Move(ebp, esp); |
| Push(context); |
| Push(target); |
| Push(argc); |
| } |
| |
| void MacroAssembler::LeaveBuiltinFrame(Register context, Register target, |
| Register argc) { |
| Pop(argc); |
| Pop(target); |
| Pop(context); |
| leave(); |
| } |
| |
| void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(+2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(+1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| push(ebp); |
| mov(ebp, esp); |
| |
| // Reserve room for entry stack pointer and push the code object. |
| push(Immediate(StackFrame::TypeToMarker(frame_type))); |
| DCHECK_EQ(-2 * kPointerSize, ExitFrameConstants::kSPOffset); |
| push(Immediate(0)); // Saved entry sp, patched before call. |
| DCHECK_EQ(-3 * kPointerSize, ExitFrameConstants::kCodeOffset); |
| push(Immediate(CodeObject())); // Accessed from ExitFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress, |
| isolate()); |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| isolate()); |
| ExternalReference c_function_address(IsolateAddressId::kCFunctionAddress, |
| isolate()); |
| mov(Operand::StaticVariable(c_entry_fp_address), ebp); |
| mov(Operand::StaticVariable(context_address), esi); |
| mov(Operand::StaticVariable(c_function_address), ebx); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { |
| // Optionally save all XMM registers. |
| if (save_doubles) { |
| int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kPointerSize; |
| sub(esp, Immediate(space)); |
| const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); |
| } |
| } else { |
| sub(esp, Immediate(argc * kPointerSize)); |
| } |
| |
| // Get the required frame alignment for the OS. |
| const int kFrameAlignment = base::OS::ActivationFrameAlignment(); |
| if (kFrameAlignment > 0) { |
| DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); |
| and_(esp, -kFrameAlignment); |
| } |
| |
| // Patch the saved entry sp. |
| mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); |
| } |
| |
| void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, |
| StackFrame::Type frame_type) { |
| EnterExitFramePrologue(frame_type); |
| |
| // Set up argc and argv in callee-saved registers. |
| int offset = StandardFrameConstants::kCallerSPOffset - kPointerSize; |
| mov(edi, eax); |
| lea(esi, Operand(ebp, eax, times_4, offset)); |
| |
| // Reserve space for argc, argv and isolate. |
| EnterExitFrameEpilogue(argc, save_doubles); |
| } |
| |
| |
| void MacroAssembler::EnterApiExitFrame(int argc) { |
| EnterExitFramePrologue(StackFrame::EXIT); |
| EnterExitFrameEpilogue(argc, false); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { |
| // Optionally restore all XMM registers. |
| if (save_doubles) { |
| const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; |
| for (int i = 0; i < XMMRegister::kNumRegisters; i++) { |
| XMMRegister reg = XMMRegister::from_code(i); |
| movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); |
| } |
| } |
| |
| if (pop_arguments) { |
| // Get the return address from the stack and restore the frame pointer. |
| mov(ecx, Operand(ebp, 1 * kPointerSize)); |
| mov(ebp, Operand(ebp, 0 * kPointerSize)); |
| |
| // Pop the arguments and the receiver from the caller stack. |
| lea(esp, Operand(esi, 1 * kPointerSize)); |
| |
| // Push the return address to get ready to return. |
| push(ecx); |
| } else { |
| // Otherwise just leave the exit frame. |
| leave(); |
| } |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| void MacroAssembler::LeaveExitFrameEpilogue() { |
| // Restore current context from top and clear it in debug mode. |
| ExternalReference context_address(IsolateAddressId::kContextAddress, |
| isolate()); |
| mov(esi, Operand::StaticVariable(context_address)); |
| #ifdef DEBUG |
| mov(Operand::StaticVariable(context_address), |
| Immediate(Context::kInvalidContext)); |
| #endif |
| |
| // Clear the top frame. |
| ExternalReference c_entry_fp_address(IsolateAddressId::kCEntryFPAddress, |
| isolate()); |
| mov(Operand::StaticVariable(c_entry_fp_address), Immediate(0)); |
| } |
| |
| void MacroAssembler::LeaveApiExitFrame() { |
| mov(esp, ebp); |
| pop(ebp); |
| |
| LeaveExitFrameEpilogue(); |
| } |
| |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| push(Immediate(0)); // Padding. |
| |
| // Link the current handler as the next handler. |
| ExternalReference handler_address(IsolateAddressId::kHandlerAddress, |
| isolate()); |
| push(Operand::StaticVariable(handler_address)); |
| |
| // Set this new handler as the current one. |
| mov(Operand::StaticVariable(handler_address), esp); |
| } |
| |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| ExternalReference handler_address(IsolateAddressId::kHandlerAddress, |
| isolate()); |
| pop(Operand::StaticVariable(handler_address)); |
| add(esp, Immediate(StackHandlerConstants::kSize - kPointerSize)); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. |
| call(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| void TurboAssembler::CallStubDelayed(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Calls are not allowed in some stubs. |
| call(stub); |
| } |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| jmp(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { |
| return has_frame() || !stub->SometimesSetsUpAFrame(); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Move(eax, Immediate(num_arguments)); |
| mov(ebx, Immediate(ExternalReference(f, isolate()))); |
| CEntryStub ces(isolate(), 1, save_doubles); |
| CallStub(&ces); |
| } |
| |
| void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles) { |
| const Runtime::Function* f = Runtime::FunctionForId(fid); |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| Move(eax, Immediate(f->nargs)); |
| mov(ebx, Immediate(ExternalReference(f, isolate()))); |
| CallStubDelayed(new (zone) CEntryStub(nullptr, 1, save_doubles)); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| // ----------- S t a t e ------------- |
| // -- esp[0] : return address |
| // -- esp[8] : argument num_arguments - 1 |
| // ... |
| // -- esp[8 * num_arguments] : argument 0 (receiver) |
| // |
| // For runtime functions with variable arguments: |
| // -- eax : number of arguments |
| // ----------------------------------- |
| |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(eax, Immediate(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference(fid, isolate())); |
| } |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, |
| bool builtin_exit_frame) { |
| // Set the entry point and jump to the C entry runtime stub. |
| mov(ebx, Immediate(ext)); |
| CEntryStub ces(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| builtin_exit_frame); |
| jmp(ces.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| void TurboAssembler::PrepareForTailCall( |
| const ParameterCount& callee_args_count, Register caller_args_count_reg, |
| Register scratch0, Register scratch1, |
| int number_of_temp_values_after_return_address) { |
| #if DEBUG |
| if (callee_args_count.is_reg()) { |
| DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, |
| scratch1)); |
| } else { |
| DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); |
| } |
| #endif |
| |
| // Calculate the destination address where we will put the return address |
| // after we drop current frame. |
| Register new_sp_reg = scratch0; |
| if (callee_args_count.is_reg()) { |
| sub(caller_args_count_reg, callee_args_count.reg()); |
| lea(new_sp_reg, |
| Operand(ebp, caller_args_count_reg, times_pointer_size, |
| StandardFrameConstants::kCallerPCOffset - |
| number_of_temp_values_after_return_address * kPointerSize)); |
| } else { |
| lea(new_sp_reg, Operand(ebp, caller_args_count_reg, times_pointer_size, |
| StandardFrameConstants::kCallerPCOffset - |
| (callee_args_count.immediate() + |
| number_of_temp_values_after_return_address) * |
| kPointerSize)); |
| } |
| |
| if (FLAG_debug_code) { |
| cmp(esp, new_sp_reg); |
| Check(below, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Copy return address from caller's frame to current frame's return address |
| // to avoid its trashing and let the following loop copy it to the right |
| // place. |
| Register tmp_reg = scratch1; |
| mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset)); |
| mov(Operand(esp, number_of_temp_values_after_return_address * kPointerSize), |
| tmp_reg); |
| |
| // Restore caller's frame pointer now as it could be overwritten by |
| // the copying loop. |
| mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); |
| |
| // +2 here is to copy both receiver and return address. |
| Register count_reg = caller_args_count_reg; |
| if (callee_args_count.is_reg()) { |
| lea(count_reg, Operand(callee_args_count.reg(), |
| 2 + number_of_temp_values_after_return_address)); |
| } else { |
| mov(count_reg, Immediate(callee_args_count.immediate() + 2 + |
| number_of_temp_values_after_return_address)); |
| // TODO(ishell): Unroll copying loop for small immediate values. |
| } |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| Label loop, entry; |
| jmp(&entry, Label::kNear); |
| bind(&loop); |
| dec(count_reg); |
| mov(tmp_reg, Operand(esp, count_reg, times_pointer_size, 0)); |
| mov(Operand(new_sp_reg, count_reg, times_pointer_size, 0), tmp_reg); |
| bind(&entry); |
| cmp(count_reg, Immediate(0)); |
| j(not_equal, &loop, Label::kNear); |
| |
| // Leave current frame. |
| mov(esp, new_sp_reg); |
| } |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| Label::Distance done_near) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label invoke; |
| if (expected.is_immediate()) { |
| DCHECK(actual.is_immediate()); |
| mov(eax, actual.immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| mov(ebx, expected.immediate()); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| // Expected is in register, actual is immediate. This is the |
| // case when we invoke function values without going through the |
| // IC mechanism. |
| mov(eax, actual.immediate()); |
| cmp(expected.reg(), actual.immediate()); |
| j(equal, &invoke); |
| DCHECK(expected.reg() == ebx); |
| } else if (expected.reg() != actual.reg()) { |
| // Both expected and actual are in (different) registers. This |
| // is the case when we invoke functions using call and apply. |
| cmp(expected.reg(), actual.reg()); |
| j(equal, &invoke); |
| DCHECK(actual.reg() == eax); |
| DCHECK(expected.reg() == ebx); |
| } else { |
| definitely_matches = true; |
| Move(eax, actual.reg()); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| call(adaptor, RelocInfo::CODE_TARGET); |
| if (!*definitely_mismatches) { |
| jmp(done, done_near); |
| } |
| } else { |
| jmp(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(&invoke); |
| } |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual) { |
| Label skip_hook; |
| ExternalReference debug_hook_active = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| cmpb(Operand::StaticVariable(debug_hook_active), Immediate(0)); |
| j(equal, &skip_hook); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| if (expected.is_reg()) { |
| SmiTag(expected.reg()); |
| Push(expected.reg()); |
| } |
| if (actual.is_reg()) { |
| SmiTag(actual.reg()); |
| Push(actual.reg()); |
| } |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun); |
| Push(fun); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| if (actual.is_reg()) { |
| Pop(actual.reg()); |
| SmiUntag(actual.reg()); |
| } |
| if (expected.is_reg()) { |
| Pop(expected.reg()); |
| SmiUntag(expected.reg()); |
| } |
| } |
| bind(&skip_hook); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| DCHECK(function == edi); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == edx); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected, actual); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| mov(edx, isolate()->factory()->undefined_value()); |
| } |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, &done, &definitely_mismatches, flag, |
| Label::kNear); |
| if (!definitely_mismatches) { |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| mov(ecx, FieldOperand(function, JSFunction::kCodeOffset)); |
| add(ecx, Immediate(Code::kHeaderSize - kHeapObjectTag)); |
| if (flag == CALL_FUNCTION) { |
| call(ecx); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| jmp(ecx); |
| } |
| bind(&done); |
| } |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, Register new_target, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| DCHECK(fun == edi); |
| mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); |
| mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| ParameterCount expected(ebx); |
| InvokeFunctionCode(edi, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| DCHECK(fun == edi); |
| mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); |
| |
| InvokeFunctionCode(edi, no_reg, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Move(edi, function); |
| InvokeFunction(edi, expected, actual, flag); |
| } |
| |
| void MacroAssembler::LoadGlobalProxy(Register dst) { |
| mov(dst, NativeContextOperand()); |
| mov(dst, ContextOperand(dst, Context::GLOBAL_PROXY_INDEX)); |
| } |
| |
| void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| // Load the native context from the current context. |
| mov(function, NativeContextOperand()); |
| // Load the function from the native context. |
| mov(function, ContextOperand(function, index)); |
| } |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the lowest encoding, |
| // which means that lowest encodings are furthest away from |
| // the stack pointer. |
| DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); |
| return kNumSafepointRegisters - reg_code - 1; |
| } |
| |
| void TurboAssembler::Ret() { ret(0); } |
| |
| void TurboAssembler::Ret(int bytes_dropped, Register scratch) { |
| if (is_uint16(bytes_dropped)) { |
| ret(bytes_dropped); |
| } else { |
| pop(scratch); |
| add(esp, Immediate(bytes_dropped)); |
| push(scratch); |
| ret(0); |
| } |
| } |
| |
| |
| void MacroAssembler::Drop(int stack_elements) { |
| if (stack_elements > 0) { |
| add(esp, Immediate(stack_elements * kPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src) { |
| if (dst != src) { |
| mov(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(Register dst, const Immediate& x) { |
| if (!x.is_heap_object_request() && x.is_zero() && |
| RelocInfo::IsNone(x.rmode())) { |
| xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. |
| } else { |
| mov(dst, x); |
| } |
| } |
| |
| void TurboAssembler::Move(const Operand& dst, const Immediate& x) { |
| mov(dst, x); |
| } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> object) { |
| mov(dst, object); |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint32_t src) { |
| if (src == 0) { |
| pxor(dst, dst); |
| } else { |
| unsigned cnt = base::bits::CountPopulation(src); |
| unsigned nlz = base::bits::CountLeadingZeros32(src); |
| unsigned ntz = base::bits::CountTrailingZeros32(src); |
| if (nlz + cnt + ntz == 32) { |
| pcmpeqd(dst, dst); |
| if (ntz == 0) { |
| psrld(dst, 32 - cnt); |
| } else { |
| pslld(dst, 32 - cnt); |
| if (nlz != 0) psrld(dst, nlz); |
| } |
| } else { |
| push(eax); |
| mov(eax, Immediate(src)); |
| movd(dst, Operand(eax)); |
| pop(eax); |
| } |
| } |
| } |
| |
| void TurboAssembler::Move(XMMRegister dst, uint64_t src) { |
| if (src == 0) { |
| pxor(dst, dst); |
| } else { |
| uint32_t lower = static_cast<uint32_t>(src); |
| uint32_t upper = static_cast<uint32_t>(src >> 32); |
| unsigned cnt = base::bits::CountPopulation(src); |
| unsigned nlz = base::bits::CountLeadingZeros64(src); |
| unsigned ntz = base::bits::CountTrailingZeros64(src); |
| if (nlz + cnt + ntz == 64) { |
| pcmpeqd(dst, dst); |
| if (ntz == 0) { |
| psrlq(dst, 64 - cnt); |
| } else { |
| psllq(dst, 64 - cnt); |
| if (nlz != 0) psrlq(dst, nlz); |
| } |
| } else if (lower == 0) { |
| Move(dst, upper); |
| psllq(dst, 32); |
| } else if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope scope(this, SSE4_1); |
| push(eax); |
| Move(eax, Immediate(lower)); |
| movd(dst, Operand(eax)); |
| Move(eax, Immediate(upper)); |
| pinsrd(dst, Operand(eax), 1); |
| pop(eax); |
| } else { |
| push(Immediate(upper)); |
| push(Immediate(lower)); |
| movsd(dst, Operand(esp, 0)); |
| add(esp, Immediate(kDoubleSize)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Pshuflw(XMMRegister dst, const Operand& src, |
| uint8_t shuffle) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshuflw(dst, src, shuffle); |
| } else { |
| pshuflw(dst, src, shuffle); |
| } |
| } |
| |
| void TurboAssembler::Pshufd(XMMRegister dst, const Operand& src, |
| uint8_t shuffle) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshufd(dst, src, shuffle); |
| } else { |
| pshufd(dst, src, shuffle); |
| } |
| } |
| |
| void TurboAssembler::Psignb(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignb(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignb(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Psignw(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignw(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignw(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Psignd(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpsignd(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| psignd(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Pshufb(XMMRegister dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpshufb(dst, dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSSE3)) { |
| CpuFeatureScope sse_scope(this, SSSE3); |
| pshufb(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Pextrb(Register dst, XMMRegister src, int8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrb(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrb(dst, src, imm8); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Pextrw(Register dst, XMMRegister src, int8_t imm8) { |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrw(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrw(dst, src, imm8); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::Pextrd(Register dst, XMMRegister src, int8_t imm8) { |
| if (imm8 == 0) { |
| Movd(dst, src); |
| return; |
| } |
| if (CpuFeatures::IsSupported(AVX)) { |
| CpuFeatureScope scope(this, AVX); |
| vpextrd(dst, src, imm8); |
| return; |
| } |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pextrd(dst, src, imm8); |
| return; |
| } |
| DCHECK_LT(imm8, 4); |
| pshufd(xmm0, src, imm8); |
| movd(dst, xmm0); |
| } |
| |
| void TurboAssembler::Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8, |
| bool is_64_bits) { |
| if (CpuFeatures::IsSupported(SSE4_1)) { |
| CpuFeatureScope sse_scope(this, SSE4_1); |
| pinsrd(dst, src, imm8); |
| return; |
| } |
| if (is_64_bits) { |
| movd(xmm0, src); |
| if (imm8 == 1) { |
| punpckldq(dst, xmm0); |
| } else { |
| DCHECK_EQ(0, imm8); |
| psrlq(dst, 32); |
| punpckldq(xmm0, dst); |
| movaps(dst, xmm0); |
| } |
| } else { |
| DCHECK_LT(imm8, 4); |
| push(eax); |
| mov(eax, src); |
| pinsrw(dst, eax, imm8 * 2); |
| shr(eax, 16); |
| pinsrw(dst, eax, imm8 * 2 + 1); |
| pop(eax); |
| } |
| } |
| |
| void TurboAssembler::Lzcnt(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(LZCNT)) { |
| CpuFeatureScope scope(this, LZCNT); |
| lzcnt(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsr(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Move(dst, Immediate(63)); // 63^31 == 32 |
| bind(¬_zero_src); |
| xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. |
| } |
| |
| void TurboAssembler::Tzcnt(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(BMI1)) { |
| CpuFeatureScope scope(this, BMI1); |
| tzcnt(dst, src); |
| return; |
| } |
| Label not_zero_src; |
| bsf(dst, src); |
| j(not_zero, ¬_zero_src, Label::kNear); |
| Move(dst, Immediate(32)); // The result of tzcnt is 32 if src = 0. |
| bind(¬_zero_src); |
| } |
| |
| void TurboAssembler::Popcnt(Register dst, const Operand& src) { |
| if (CpuFeatures::IsSupported(POPCNT)) { |
| CpuFeatureScope scope(this, POPCNT); |
| popcnt(dst, src); |
| return; |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
| if (value == 1) { |
| inc(operand); |
| } else { |
| add(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| Operand operand = Operand::StaticVariable(ExternalReference(counter)); |
| if (value == 1) { |
| dec(operand); |
| } else { |
| sub(operand, Immediate(value)); |
| } |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cc, AbortReason reason) { |
| if (emit_debug_code()) Check(cc, reason); |
| } |
| |
| void TurboAssembler::AssertUnreachable(AbortReason reason) { |
| if (emit_debug_code()) Abort(reason); |
| } |
| |
| void TurboAssembler::Check(Condition cc, AbortReason reason) { |
| Label L; |
| j(cc, &L); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::CheckStackAlignment() { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| Label alignment_as_expected; |
| test(esp, Immediate(frame_alignment_mask)); |
| j(zero, &alignment_as_expected); |
| // Abort if stack is not aligned. |
| int3(); |
| bind(&alignment_as_expected); |
| } |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| #ifdef DEBUG |
| const char* msg = GetAbortReason(reason); |
| if (msg != nullptr) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| |
| if (FLAG_trap_on_abort) { |
| int3(); |
| return; |
| } |
| #endif |
| |
| Move(edx, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame()) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| int3(); |
| } |
| |
| |
| void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { |
| int frame_alignment = base::OS::ActivationFrameAlignment(); |
| if (frame_alignment != 0) { |
| // Make stack end at alignment and make room for num_arguments words |
| // and the original value of esp. |
| mov(scratch, esp); |
| sub(esp, Immediate((num_arguments + 1) * kPointerSize)); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| and_(esp, -frame_alignment); |
| mov(Operand(esp, num_arguments * kPointerSize), scratch); |
| } else { |
| sub(esp, Immediate(num_arguments * kPointerSize)); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| // Trashing eax is ok as it will be the return value. |
| mov(eax, Immediate(function)); |
| CallCFunction(eax, num_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| DCHECK_LE(num_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| // Check stack alignment. |
| if (emit_debug_code()) { |
| CheckStackAlignment(); |
| } |
| |
| call(function); |
| if (base::OS::ActivationFrameAlignment() != 0) { |
| mov(esp, Operand(esp, num_arguments * kPointerSize)); |
| } else { |
| add(esp, Immediate(num_arguments * kPointerSize)); |
| } |
| } |
| |
| |
| #ifdef DEBUG |
| bool AreAliased(Register reg1, |
| Register reg2, |
| Register reg3, |
| Register reg4, |
| Register reg5, |
| Register reg6, |
| Register reg7, |
| Register reg8) { |
| int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + |
| reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid() + |
| reg7.is_valid() + reg8.is_valid(); |
| |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| if (reg7.is_valid()) regs |= reg7.bit(); |
| if (reg8.is_valid()) regs |= reg8.bit(); |
| int n_of_non_aliasing_regs = NumRegs(regs); |
| |
| return n_of_valid_regs != n_of_non_aliasing_regs; |
| } |
| #endif |
| |
| |
| void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, |
| Condition cc, Label* condition_met, |
| Label::Distance condition_met_distance) { |
| DCHECK(cc == zero || cc == not_zero); |
| if (scratch == object) { |
| and_(scratch, Immediate(~Page::kPageAlignmentMask)); |
| } else { |
| mov(scratch, Immediate(~Page::kPageAlignmentMask)); |
| and_(scratch, object); |
| } |
| if (mask < (1 << kBitsPerByte)) { |
| test_b(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); |
| } else { |
| test(Operand(scratch, MemoryChunk::kFlagsOffset), Immediate(mask)); |
| } |
| j(cc, condition_met, condition_met_distance); |
| } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_IA32 |