| |
| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| |
| #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_ |
| #define V8_MIPS_ASSEMBLER_MIPS_INL_H_ |
| |
| #include "src/mips/assembler-mips.h" |
| |
| #include "src/assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); } |
| |
| // ----------------------------------------------------------------------------- |
| // Operand and MemOperand. |
| |
| bool Operand::is_reg() const { |
| return rm_.is_valid(); |
| } |
| |
| int32_t Operand::immediate() const { |
| DCHECK(!is_reg()); |
| DCHECK(!IsHeapObjectRequest()); |
| return value_.immediate; |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // RelocInfo. |
| |
| void RelocInfo::apply(intptr_t delta) { |
| if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { |
| // Absolute code pointer inside code object moves with the code object. |
| byte* p = reinterpret_cast<byte*>(pc_); |
| Assembler::RelocateInternalReference(rmode_, p, delta); |
| } |
| } |
| |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || |
| rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); |
| // Read the address of the word containing the target_address in an |
| // instruction stream. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. |
| // For an instruction like LUI/ORI where the target bits are mixed into the |
| // instruction bits, the size of the target will be zero, indicating that the |
| // serializer should not step forward in memory after a target is resolved |
| // and written. In this case the target_address_address function should |
| // return the end of the instructions to be patched, allowing the |
| // deserializer to deserialize the instructions as raw bytes and put them in |
| // place, ready to be patched with the target. After jump optimization, |
| // that is the address of the instruction that follows J/JAL/JR/JALR |
| // instruction. |
| if (IsMipsArchVariant(kMips32r6)) { |
| // On R6 we don't move to the end of the instructions to be patched, but one |
| // instruction before, because if these instructions are at the end of the |
| // code object it can cause errors in the deserializer. |
| return reinterpret_cast<Address>( |
| pc_ + |
| (Assembler::kInstructionsFor32BitConstant - 1) * Assembler::kInstrSize); |
| } else { |
| return reinterpret_cast<Address>( |
| pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize); |
| } |
| } |
| |
| |
| Address RelocInfo::constant_pool_entry_address() { |
| UNREACHABLE(); |
| } |
| |
| |
| int RelocInfo::target_address_size() { |
| return Assembler::kSpecialTargetSize; |
| } |
| |
| Address Assembler::target_address_from_return_address(Address pc) { |
| return pc - kCallTargetAddressOffset; |
| } |
| |
| void Assembler::deserialization_set_special_target_at( |
| Isolate* isolate, Address instruction_payload, Code* code, Address target) { |
| if (IsMipsArchVariant(kMips32r6)) { |
| // On R6 the address location is shifted by one instruction |
| set_target_address_at( |
| isolate, |
| instruction_payload - (kInstructionsFor32BitConstant - 1) * kInstrSize, |
| code ? code->constant_pool() : nullptr, target); |
| } else { |
| set_target_address_at( |
| isolate, |
| instruction_payload - kInstructionsFor32BitConstant * kInstrSize, |
| code ? code->constant_pool() : nullptr, target); |
| } |
| } |
| |
| void Assembler::set_target_internal_reference_encoded_at(Address pc, |
| Address target) { |
| Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize); |
| Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize); |
| DCHECK(Assembler::IsLui(instr1)); |
| DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2)); |
| instr1 &= ~kImm16Mask; |
| instr2 &= ~kImm16Mask; |
| int32_t imm = reinterpret_cast<int32_t>(target); |
| DCHECK_EQ(imm & 3, 0); |
| if (Assembler::IsJicOrJialc(instr2)) { |
| // Encoded internal references are lui/jic load of 32-bit absolute address. |
| uint32_t lui_offset_u, jic_offset_u; |
| Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u); |
| |
| Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize, |
| instr1 | lui_offset_u); |
| Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize, |
| instr2 | jic_offset_u); |
| } else { |
| // Encoded internal references are lui/ori load of 32-bit absolute address. |
| Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize, |
| instr1 | ((imm >> kLuiShift) & kImm16Mask)); |
| Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize, |
| instr2 | (imm & kImm16Mask)); |
| } |
| |
| // Currently used only by deserializer, and all code will be flushed |
| // after complete deserialization, no need to flush on each reference. |
| } |
| |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { |
| if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
| DCHECK(IsLui(instr_at(pc))); |
| set_target_internal_reference_encoded_at(pc, target); |
| } else { |
| DCHECK(mode == RelocInfo::INTERNAL_REFERENCE); |
| Memory::Address_at(pc) = target; |
| } |
| } |
| |
| HeapObject* RelocInfo::target_object() { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| return HeapObject::cast(reinterpret_cast<Object*>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| return Handle<HeapObject>(reinterpret_cast<HeapObject**>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| void RelocInfo::set_target_object(HeapObject* target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| Assembler::set_target_address_at(target->GetIsolate(), pc_, constant_pool_, |
| reinterpret_cast<Address>(target), |
| icache_flush_mode); |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) { |
| host()->GetHeap()->incremental_marking()->RecordWriteIntoCode( |
| host(), this, HeapObject::cast(target)); |
| host()->GetHeap()->RecordWriteIntoCode(host(), this, target); |
| } |
| } |
| |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| |
| Address RelocInfo::target_internal_reference() { |
| if (rmode_ == INTERNAL_REFERENCE) { |
| return Memory::Address_at(pc_); |
| } else { |
| // Encoded internal references are lui/ori or lui/jic load of 32-bit |
| // absolute address. |
| DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED); |
| Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize); |
| Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize); |
| DCHECK(Assembler::IsLui(instr1)); |
| DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2)); |
| if (Assembler::IsJicOrJialc(instr2)) { |
| return reinterpret_cast<Address>( |
| Assembler::CreateTargetAddress(instr1, instr2)); |
| } |
| int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift; |
| imm |= (instr2 & static_cast<int32_t>(kImm16Mask)); |
| return reinterpret_cast<Address>(imm); |
| } |
| } |
| |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED); |
| return reinterpret_cast<Address>(pc_); |
| } |
| |
| |
| Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| return target_address(); |
| } |
| |
| void RelocInfo::set_target_runtime_entry(Isolate* isolate, Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| if (target_address() != target) |
| set_target_address(isolate, target, write_barrier_mode, icache_flush_mode); |
| } |
| |
| void RelocInfo::WipeOut(Isolate* isolate) { |
| DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
| IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| if (IsInternalReference(rmode_)) { |
| Memory::Address_at(pc_) = nullptr; |
| } else if (IsInternalReferenceEncoded(rmode_)) { |
| Assembler::set_target_internal_reference_encoded_at(pc_, nullptr); |
| } else { |
| Assembler::set_target_address_at(isolate, pc_, constant_pool_, nullptr); |
| } |
| } |
| |
| template <typename ObjectVisitor> |
| void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
| RelocInfo::Mode mode = rmode(); |
| if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| visitor->VisitEmbeddedPointer(host(), this); |
| } else if (RelocInfo::IsCodeTarget(mode)) { |
| visitor->VisitCodeTarget(host(), this); |
| } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| visitor->VisitExternalReference(host(), this); |
| } else if (mode == RelocInfo::INTERNAL_REFERENCE || |
| mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
| visitor->VisitInternalReference(host(), this); |
| } else if (RelocInfo::IsRuntimeEntry(mode)) { |
| visitor->VisitRuntimeEntry(host(), this); |
| } |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Assembler. |
| |
| |
| void Assembler::CheckBuffer() { |
| if (buffer_space() <= kGap) { |
| GrowBuffer(); |
| } |
| } |
| |
| |
| void Assembler::CheckTrampolinePoolQuick(int extra_instructions) { |
| if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) { |
| CheckTrampolinePool(); |
| } |
| } |
| |
| |
| void Assembler::CheckForEmitInForbiddenSlot() { |
| if (!is_buffer_growth_blocked()) { |
| CheckBuffer(); |
| } |
| if (IsPrevInstrCompactBranch()) { |
| // Nop instruction to precede a CTI in forbidden slot: |
| Instr nop = SPECIAL | SLL; |
| *reinterpret_cast<Instr*>(pc_) = nop; |
| pc_ += kInstrSize; |
| |
| ClearCompactBranchState(); |
| } |
| } |
| |
| |
| void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) { |
| if (IsPrevInstrCompactBranch()) { |
| if (Instruction::IsForbiddenAfterBranchInstr(x)) { |
| // Nop instruction to precede a CTI in forbidden slot: |
| Instr nop = SPECIAL | SLL; |
| *reinterpret_cast<Instr*>(pc_) = nop; |
| pc_ += kInstrSize; |
| } |
| ClearCompactBranchState(); |
| } |
| *reinterpret_cast<Instr*>(pc_) = x; |
| pc_ += kInstrSize; |
| if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) { |
| EmittedCompactBranchInstruction(); |
| } |
| CheckTrampolinePoolQuick(); |
| } |
| |
| template <> |
| inline void Assembler::EmitHelper(uint8_t x); |
| |
| template <typename T> |
| void Assembler::EmitHelper(T x) { |
| *reinterpret_cast<T*>(pc_) = x; |
| pc_ += sizeof(x); |
| CheckTrampolinePoolQuick(); |
| } |
| |
| template <> |
| void Assembler::EmitHelper(uint8_t x) { |
| *reinterpret_cast<uint8_t*>(pc_) = x; |
| pc_ += sizeof(x); |
| if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) { |
| CheckTrampolinePoolQuick(); |
| } |
| } |
| |
| void Assembler::emit(Instr x, CompactBranchType is_compact_branch) { |
| if (!is_buffer_growth_blocked()) { |
| CheckBuffer(); |
| } |
| EmitHelper(x, is_compact_branch); |
| } |
| |
| EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_ |