blob: 803c16b8294b56a5c2b6b3588c0026b75f4eb59b [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
// IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2012 the V8 project authors. All rights reserved.
#ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
#define V8_MIPS_ASSEMBLER_MIPS_INL_H_
#include "src/mips/assembler-mips.h"
#include "src/assembler.h"
#include "src/debug/debug.h"
#include "src/objects-inl.h"
namespace v8 {
namespace internal {
bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
// -----------------------------------------------------------------------------
// Operand and MemOperand.
bool Operand::is_reg() const {
return rm_.is_valid();
}
int32_t Operand::immediate() const {
DCHECK(!is_reg());
DCHECK(!IsHeapObjectRequest());
return value_.immediate;
}
// -----------------------------------------------------------------------------
// RelocInfo.
void RelocInfo::apply(intptr_t delta) {
if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
// Absolute code pointer inside code object moves with the code object.
byte* p = reinterpret_cast<byte*>(pc_);
Assembler::RelocateInternalReference(rmode_, p, delta);
}
}
Address RelocInfo::target_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_address_address() {
DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) ||
rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
// Read the address of the word containing the target_address in an
// instruction stream.
// The only architecture-independent user of this function is the serializer.
// The serializer uses it to find out how many raw bytes of instruction to
// output before the next target.
// For an instruction like LUI/ORI where the target bits are mixed into the
// instruction bits, the size of the target will be zero, indicating that the
// serializer should not step forward in memory after a target is resolved
// and written. In this case the target_address_address function should
// return the end of the instructions to be patched, allowing the
// deserializer to deserialize the instructions as raw bytes and put them in
// place, ready to be patched with the target. After jump optimization,
// that is the address of the instruction that follows J/JAL/JR/JALR
// instruction.
if (IsMipsArchVariant(kMips32r6)) {
// On R6 we don't move to the end of the instructions to be patched, but one
// instruction before, because if these instructions are at the end of the
// code object it can cause errors in the deserializer.
return reinterpret_cast<Address>(
pc_ +
(Assembler::kInstructionsFor32BitConstant - 1) * Assembler::kInstrSize);
} else {
return reinterpret_cast<Address>(
pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
}
}
Address RelocInfo::constant_pool_entry_address() {
UNREACHABLE();
}
int RelocInfo::target_address_size() {
return Assembler::kSpecialTargetSize;
}
Address Assembler::target_address_from_return_address(Address pc) {
return pc - kCallTargetAddressOffset;
}
void Assembler::deserialization_set_special_target_at(
Isolate* isolate, Address instruction_payload, Code* code, Address target) {
if (IsMipsArchVariant(kMips32r6)) {
// On R6 the address location is shifted by one instruction
set_target_address_at(
isolate,
instruction_payload - (kInstructionsFor32BitConstant - 1) * kInstrSize,
code ? code->constant_pool() : nullptr, target);
} else {
set_target_address_at(
isolate,
instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
code ? code->constant_pool() : nullptr, target);
}
}
void Assembler::set_target_internal_reference_encoded_at(Address pc,
Address target) {
Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
instr1 &= ~kImm16Mask;
instr2 &= ~kImm16Mask;
int32_t imm = reinterpret_cast<int32_t>(target);
DCHECK_EQ(imm & 3, 0);
if (Assembler::IsJicOrJialc(instr2)) {
// Encoded internal references are lui/jic load of 32-bit absolute address.
uint32_t lui_offset_u, jic_offset_u;
Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
instr1 | lui_offset_u);
Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
instr2 | jic_offset_u);
} else {
// Encoded internal references are lui/ori load of 32-bit absolute address.
Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
instr1 | ((imm >> kLuiShift) & kImm16Mask));
Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
instr2 | (imm & kImm16Mask));
}
// Currently used only by deserializer, and all code will be flushed
// after complete deserialization, no need to flush on each reference.
}
void Assembler::deserialization_set_target_internal_reference_at(
Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
DCHECK(IsLui(instr_at(pc)));
set_target_internal_reference_encoded_at(pc, target);
} else {
DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
Memory::Address_at(pc) = target;
}
}
HeapObject* RelocInfo::target_object() {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return HeapObject::cast(reinterpret_cast<Object*>(
Assembler::target_address_at(pc_, constant_pool_)));
}
Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
return Handle<HeapObject>(reinterpret_cast<HeapObject**>(
Assembler::target_address_at(pc_, constant_pool_)));
}
void RelocInfo::set_target_object(HeapObject* target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
Assembler::set_target_address_at(target->GetIsolate(), pc_, constant_pool_,
reinterpret_cast<Address>(target),
icache_flush_mode);
if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) {
host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
host(), this, HeapObject::cast(target));
host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
}
}
Address RelocInfo::target_external_reference() {
DCHECK(rmode_ == EXTERNAL_REFERENCE);
return Assembler::target_address_at(pc_, constant_pool_);
}
Address RelocInfo::target_internal_reference() {
if (rmode_ == INTERNAL_REFERENCE) {
return Memory::Address_at(pc_);
} else {
// Encoded internal references are lui/ori or lui/jic load of 32-bit
// absolute address.
DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
DCHECK(Assembler::IsLui(instr1));
DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
if (Assembler::IsJicOrJialc(instr2)) {
return reinterpret_cast<Address>(
Assembler::CreateTargetAddress(instr1, instr2));
}
int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
return reinterpret_cast<Address>(imm);
}
}
Address RelocInfo::target_internal_reference_address() {
DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
return reinterpret_cast<Address>(pc_);
}
Address RelocInfo::target_runtime_entry(Assembler* origin) {
DCHECK(IsRuntimeEntry(rmode_));
return target_address();
}
void RelocInfo::set_target_runtime_entry(Isolate* isolate, Address target,
WriteBarrierMode write_barrier_mode,
ICacheFlushMode icache_flush_mode) {
DCHECK(IsRuntimeEntry(rmode_));
if (target_address() != target)
set_target_address(isolate, target, write_barrier_mode, icache_flush_mode);
}
void RelocInfo::WipeOut(Isolate* isolate) {
DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
if (IsInternalReference(rmode_)) {
Memory::Address_at(pc_) = nullptr;
} else if (IsInternalReferenceEncoded(rmode_)) {
Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
} else {
Assembler::set_target_address_at(isolate, pc_, constant_pool_, nullptr);
}
}
template <typename ObjectVisitor>
void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
RelocInfo::Mode mode = rmode();
if (mode == RelocInfo::EMBEDDED_OBJECT) {
visitor->VisitEmbeddedPointer(host(), this);
} else if (RelocInfo::IsCodeTarget(mode)) {
visitor->VisitCodeTarget(host(), this);
} else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
visitor->VisitExternalReference(host(), this);
} else if (mode == RelocInfo::INTERNAL_REFERENCE ||
mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
visitor->VisitInternalReference(host(), this);
} else if (RelocInfo::IsRuntimeEntry(mode)) {
visitor->VisitRuntimeEntry(host(), this);
}
}
// -----------------------------------------------------------------------------
// Assembler.
void Assembler::CheckBuffer() {
if (buffer_space() <= kGap) {
GrowBuffer();
}
}
void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
CheckTrampolinePool();
}
}
void Assembler::CheckForEmitInForbiddenSlot() {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
if (IsPrevInstrCompactBranch()) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
ClearCompactBranchState();
}
}
void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
if (IsPrevInstrCompactBranch()) {
if (Instruction::IsForbiddenAfterBranchInstr(x)) {
// Nop instruction to precede a CTI in forbidden slot:
Instr nop = SPECIAL | SLL;
*reinterpret_cast<Instr*>(pc_) = nop;
pc_ += kInstrSize;
}
ClearCompactBranchState();
}
*reinterpret_cast<Instr*>(pc_) = x;
pc_ += kInstrSize;
if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
EmittedCompactBranchInstruction();
}
CheckTrampolinePoolQuick();
}
template <>
inline void Assembler::EmitHelper(uint8_t x);
template <typename T>
void Assembler::EmitHelper(T x) {
*reinterpret_cast<T*>(pc_) = x;
pc_ += sizeof(x);
CheckTrampolinePoolQuick();
}
template <>
void Assembler::EmitHelper(uint8_t x) {
*reinterpret_cast<uint8_t*>(pc_) = x;
pc_ += sizeof(x);
if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
CheckTrampolinePoolQuick();
}
}
void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
if (!is_buffer_growth_blocked()) {
CheckBuffer();
}
EmitHelper(x, is_compact_branch);
}
EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
} // namespace internal
} // namespace v8
#endif // V8_MIPS_ASSEMBLER_MIPS_INL_H_