| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| |
| #ifndef V8_MIPS_ASSEMBLER_MIPS_H_ |
| #define V8_MIPS_ASSEMBLER_MIPS_H_ |
| |
| #include <stdio.h> |
| |
| #include <set> |
| |
| #include "src/assembler.h" |
| #include "src/mips/constants-mips.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // clang-format off |
| #define GENERAL_REGISTERS(V) \ |
| V(zero_reg) V(at) V(v0) V(v1) V(a0) V(a1) V(a2) V(a3) \ |
| V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(t7) \ |
| V(s0) V(s1) V(s2) V(s3) V(s4) V(s5) V(s6) V(s7) V(t8) V(t9) \ |
| V(k0) V(k1) V(gp) V(sp) V(fp) V(ra) |
| |
| #define ALLOCATABLE_GENERAL_REGISTERS(V) \ |
| V(a0) V(a1) V(a2) V(a3) \ |
| V(t0) V(t1) V(t2) V(t3) V(t4) V(t5) V(t6) V(s7) \ |
| V(v0) V(v1) |
| |
| #define DOUBLE_REGISTERS(V) \ |
| V(f0) V(f1) V(f2) V(f3) V(f4) V(f5) V(f6) V(f7) \ |
| V(f8) V(f9) V(f10) V(f11) V(f12) V(f13) V(f14) V(f15) \ |
| V(f16) V(f17) V(f18) V(f19) V(f20) V(f21) V(f22) V(f23) \ |
| V(f24) V(f25) V(f26) V(f27) V(f28) V(f29) V(f30) V(f31) |
| |
| #define FLOAT_REGISTERS DOUBLE_REGISTERS |
| #define SIMD128_REGISTERS(V) \ |
| V(w0) V(w1) V(w2) V(w3) V(w4) V(w5) V(w6) V(w7) \ |
| V(w8) V(w9) V(w10) V(w11) V(w12) V(w13) V(w14) V(w15) \ |
| V(w16) V(w17) V(w18) V(w19) V(w20) V(w21) V(w22) V(w23) \ |
| V(w24) V(w25) V(w26) V(w27) V(w28) V(w29) V(w30) V(w31) |
| |
| #define ALLOCATABLE_DOUBLE_REGISTERS(V) \ |
| V(f0) V(f2) V(f4) V(f6) V(f8) V(f10) V(f12) V(f14) \ |
| V(f16) V(f18) V(f20) V(f22) V(f24) |
| // clang-format on |
| |
| // Register lists. |
| // Note that the bit values must match those used in actual instruction |
| // encoding. |
| const int kNumRegs = 32; |
| |
| const RegList kJSCallerSaved = 1 << 2 | // v0 |
| 1 << 3 | // v1 |
| 1 << 4 | // a0 |
| 1 << 5 | // a1 |
| 1 << 6 | // a2 |
| 1 << 7 | // a3 |
| 1 << 8 | // t0 |
| 1 << 9 | // t1 |
| 1 << 10 | // t2 |
| 1 << 11 | // t3 |
| 1 << 12 | // t4 |
| 1 << 13 | // t5 |
| 1 << 14 | // t6 |
| 1 << 15; // t7 |
| |
| const int kNumJSCallerSaved = 14; |
| |
| // Callee-saved registers preserved when switching from C to JavaScript. |
| const RegList kCalleeSaved = 1 << 16 | // s0 |
| 1 << 17 | // s1 |
| 1 << 18 | // s2 |
| 1 << 19 | // s3 |
| 1 << 20 | // s4 |
| 1 << 21 | // s5 |
| 1 << 22 | // s6 (roots in Javascript code) |
| 1 << 23 | // s7 (cp in Javascript code) |
| 1 << 30; // fp/s8 |
| |
| const int kNumCalleeSaved = 9; |
| |
| const RegList kCalleeSavedFPU = 1 << 20 | // f20 |
| 1 << 22 | // f22 |
| 1 << 24 | // f24 |
| 1 << 26 | // f26 |
| 1 << 28 | // f28 |
| 1 << 30; // f30 |
| |
| const int kNumCalleeSavedFPU = 6; |
| |
| const RegList kCallerSavedFPU = 1 << 0 | // f0 |
| 1 << 2 | // f2 |
| 1 << 4 | // f4 |
| 1 << 6 | // f6 |
| 1 << 8 | // f8 |
| 1 << 10 | // f10 |
| 1 << 12 | // f12 |
| 1 << 14 | // f14 |
| 1 << 16 | // f16 |
| 1 << 18; // f18 |
| |
| // Number of registers for which space is reserved in safepoints. Must be a |
| // multiple of 8. |
| const int kNumSafepointRegisters = 24; |
| |
| // Define the list of registers actually saved at safepoints. |
| // Note that the number of saved registers may be smaller than the reserved |
| // space, i.e. kNumSafepointSavedRegisters <= kNumSafepointRegisters. |
| const RegList kSafepointSavedRegisters = kJSCallerSaved | kCalleeSaved; |
| const int kNumSafepointSavedRegisters = kNumJSCallerSaved + kNumCalleeSaved; |
| |
| const int kUndefIndex = -1; |
| // Map with indexes on stack that corresponds to codes of saved registers. |
| const int kSafepointRegisterStackIndexMap[kNumRegs] = {kUndefIndex, // zero_reg |
| kUndefIndex, // at |
| 0, // v0 |
| 1, // v1 |
| 2, // a0 |
| 3, // a1 |
| 4, // a2 |
| 5, // a3 |
| 6, // t0 |
| 7, // t1 |
| 8, // t2 |
| 9, // t3 |
| 10, // t4 |
| 11, // t5 |
| 12, // t6 |
| 13, // t7 |
| 14, // s0 |
| 15, // s1 |
| 16, // s2 |
| 17, // s3 |
| 18, // s4 |
| 19, // s5 |
| 20, // s6 |
| 21, // s7 |
| kUndefIndex, // t8 |
| kUndefIndex, // t9 |
| kUndefIndex, // k0 |
| kUndefIndex, // k1 |
| kUndefIndex, // gp |
| kUndefIndex, // sp |
| 22, // fp |
| kUndefIndex}; |
| |
| // CPU Registers. |
| // |
| // 1) We would prefer to use an enum, but enum values are assignment- |
| // compatible with int, which has caused code-generation bugs. |
| // |
| // 2) We would prefer to use a class instead of a struct but we don't like |
| // the register initialization to depend on the particular initialization |
| // order (which appears to be different on OS X, Linux, and Windows for the |
| // installed versions of C++ we tried). Using a struct permits C-style |
| // "initialization". Also, the Register objects cannot be const as this |
| // forces initialization stubs in MSVC, making us dependent on initialization |
| // order. |
| // |
| // 3) By not using an enum, we are possibly preventing the compiler from |
| // doing certain constant folds, which may significantly reduce the |
| // code generated for some assembly instructions (because they boil down |
| // to a few constants). If this is a problem, we could change the code |
| // such that we use an enum in optimized mode, and the struct in debug |
| // mode. This way we get the compile-time error checking in debug mode |
| // and best performance in optimized code. |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Register and FPURegister. |
| |
| enum RegisterCode { |
| #define REGISTER_CODE(R) kRegCode_##R, |
| GENERAL_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kRegAfterLast |
| }; |
| |
| class Register : public RegisterBase<Register, kRegAfterLast> { |
| public: |
| #if defined(V8_TARGET_LITTLE_ENDIAN) |
| static constexpr int kMantissaOffset = 0; |
| static constexpr int kExponentOffset = 4; |
| #elif defined(V8_TARGET_BIG_ENDIAN) |
| static constexpr int kMantissaOffset = 4; |
| static constexpr int kExponentOffset = 0; |
| #else |
| #error Unknown endianness |
| #endif |
| |
| private: |
| friend class RegisterBase; |
| explicit constexpr Register(int code) : RegisterBase(code) {} |
| }; |
| |
| // s7: context register |
| // s3: lithium scratch |
| // s4: lithium scratch2 |
| #define DECLARE_REGISTER(R) \ |
| constexpr Register R = Register::from_code<kRegCode_##R>(); |
| GENERAL_REGISTERS(DECLARE_REGISTER) |
| #undef DECLARE_REGISTER |
| constexpr Register no_reg = Register::no_reg(); |
| |
| int ToNumber(Register reg); |
| |
| Register ToRegister(int num); |
| |
| constexpr bool kPadArguments = false; |
| constexpr bool kSimpleFPAliasing = true; |
| constexpr bool kSimdMaskRegisters = false; |
| |
| enum DoubleRegisterCode { |
| #define REGISTER_CODE(R) kDoubleCode_##R, |
| DOUBLE_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kDoubleAfterLast |
| }; |
| |
| // Coprocessor register. |
| class FPURegister : public RegisterBase<FPURegister, kDoubleAfterLast> { |
| public: |
| FPURegister low() const { |
| // Find low reg of a Double-reg pair, which is the reg itself. |
| DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even. |
| return FPURegister::from_code(code()); |
| } |
| FPURegister high() const { |
| // Find high reg of a Doubel-reg pair, which is reg + 1. |
| DCHECK_EQ(code() % 2, 0); // Specified Double reg must be even. |
| return FPURegister::from_code(code() + 1); |
| } |
| |
| private: |
| friend class RegisterBase; |
| explicit constexpr FPURegister(int code) : RegisterBase(code) {} |
| }; |
| |
| enum MSARegisterCode { |
| #define REGISTER_CODE(R) kMsaCode_##R, |
| SIMD128_REGISTERS(REGISTER_CODE) |
| #undef REGISTER_CODE |
| kMsaAfterLast |
| }; |
| |
| // MIPS SIMD (MSA) register |
| class MSARegister : public RegisterBase<MSARegister, kMsaAfterLast> { |
| friend class RegisterBase; |
| explicit constexpr MSARegister(int code) : RegisterBase(code) {} |
| }; |
| |
| // A few double registers are reserved: one as a scratch register and one to |
| // hold 0.0. |
| // f28: 0.0 |
| // f30: scratch register. |
| |
| // V8 now supports the O32 ABI, and the FPU Registers are organized as 32 |
| // 32-bit registers, f0 through f31. When used as 'double' they are used |
| // in pairs, starting with the even numbered register. So a double operation |
| // on f0 really uses f0 and f1. |
| // (Modern mips hardware also supports 32 64-bit registers, via setting |
| // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI, |
| // but it is not in common use. Someday we will want to support this in v8.) |
| |
| // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers. |
| typedef FPURegister FloatRegister; |
| |
| typedef FPURegister DoubleRegister; |
| |
| #define DECLARE_DOUBLE_REGISTER(R) \ |
| constexpr DoubleRegister R = DoubleRegister::from_code<kDoubleCode_##R>(); |
| DOUBLE_REGISTERS(DECLARE_DOUBLE_REGISTER) |
| #undef DECLARE_DOUBLE_REGISTER |
| |
| constexpr DoubleRegister no_freg = DoubleRegister::no_reg(); |
| |
| // SIMD registers. |
| typedef MSARegister Simd128Register; |
| |
| #define DECLARE_SIMD128_REGISTER(R) \ |
| constexpr Simd128Register R = Simd128Register::from_code<kMsaCode_##R>(); |
| SIMD128_REGISTERS(DECLARE_SIMD128_REGISTER) |
| #undef DECLARE_SIMD128_REGISTER |
| |
| const Simd128Register no_msareg = Simd128Register::no_reg(); |
| |
| // Register aliases. |
| // cp is assumed to be a callee saved register. |
| constexpr Register kRootRegister = s6; |
| constexpr Register cp = s7; |
| constexpr Register kLithiumScratchReg = s3; |
| constexpr Register kLithiumScratchReg2 = s4; |
| constexpr DoubleRegister kLithiumScratchDouble = f30; |
| constexpr DoubleRegister kDoubleRegZero = f28; |
| // Used on mips32r6 for compare operations. |
| constexpr DoubleRegister kDoubleCompareReg = f26; |
| // MSA zero and scratch regs must have the same numbers as FPU zero and scratch |
| constexpr Simd128Register kSimd128RegZero = w28; |
| constexpr Simd128Register kSimd128ScratchReg = w30; |
| |
| // FPU (coprocessor 1) control registers. |
| // Currently only FCSR (#31) is implemented. |
| struct FPUControlRegister { |
| bool is_valid() const { return reg_code == kFCSRRegister; } |
| bool is(FPUControlRegister creg) const { return reg_code == creg.reg_code; } |
| int code() const { |
| DCHECK(is_valid()); |
| return reg_code; |
| } |
| int bit() const { |
| DCHECK(is_valid()); |
| return 1 << reg_code; |
| } |
| void setcode(int f) { |
| reg_code = f; |
| DCHECK(is_valid()); |
| } |
| // Unfortunately we can't make this private in a struct. |
| int reg_code; |
| }; |
| |
| constexpr FPUControlRegister no_fpucreg = {kInvalidFPUControlRegister}; |
| constexpr FPUControlRegister FCSR = {kFCSRRegister}; |
| |
| // MSA control registers |
| struct MSAControlRegister { |
| bool is_valid() const { |
| return (reg_code == kMSAIRRegister) || (reg_code == kMSACSRRegister); |
| } |
| bool is(MSAControlRegister creg) const { return reg_code == creg.reg_code; } |
| int code() const { |
| DCHECK(is_valid()); |
| return reg_code; |
| } |
| int bit() const { |
| DCHECK(is_valid()); |
| return 1 << reg_code; |
| } |
| void setcode(int f) { |
| reg_code = f; |
| DCHECK(is_valid()); |
| } |
| // Unfortunately we can't make this private in a struct. |
| int reg_code; |
| }; |
| |
| constexpr MSAControlRegister no_msacreg = {kInvalidMSAControlRegister}; |
| constexpr MSAControlRegister MSAIR = {kMSAIRRegister}; |
| constexpr MSAControlRegister MSACSR = {kMSACSRRegister}; |
| |
| // ----------------------------------------------------------------------------- |
| // Machine instruction Operands. |
| |
| // Class Operand represents a shifter operand in data processing instructions. |
| class Operand BASE_EMBEDDED { |
| public: |
| // Immediate. |
| INLINE(explicit Operand(int32_t immediate, |
| RelocInfo::Mode rmode = RelocInfo::NONE32)) |
| : rm_(no_reg), rmode_(rmode) { |
| value_.immediate = immediate; |
| } |
| INLINE(explicit Operand(const ExternalReference& f)) |
| : rm_(no_reg), rmode_(RelocInfo::EXTERNAL_REFERENCE) { |
| value_.immediate = reinterpret_cast<int32_t>(f.address()); |
| } |
| INLINE(explicit Operand(const char* s)); |
| INLINE(explicit Operand(Object** opp)); |
| INLINE(explicit Operand(Context** cpp)); |
| explicit Operand(Handle<HeapObject> handle); |
| INLINE(explicit Operand(Smi* value)) |
| : rm_(no_reg), rmode_(RelocInfo::NONE32) { |
| value_.immediate = reinterpret_cast<intptr_t>(value); |
| } |
| |
| static Operand EmbeddedNumber(double number); // Smi or HeapNumber. |
| static Operand EmbeddedCode(CodeStub* stub); |
| |
| // Register. |
| INLINE(explicit Operand(Register rm)) : rm_(rm) {} |
| |
| // Return true if this is a register operand. |
| INLINE(bool is_reg() const); |
| |
| inline int32_t immediate() const; |
| |
| bool IsImmediate() const { return !rm_.is_valid(); } |
| |
| HeapObjectRequest heap_object_request() const { |
| DCHECK(IsHeapObjectRequest()); |
| return value_.heap_object_request; |
| } |
| |
| bool IsHeapObjectRequest() const { |
| DCHECK_IMPLIES(is_heap_object_request_, IsImmediate()); |
| DCHECK_IMPLIES(is_heap_object_request_, |
| rmode_ == RelocInfo::EMBEDDED_OBJECT || |
| rmode_ == RelocInfo::CODE_TARGET); |
| return is_heap_object_request_; |
| } |
| |
| Register rm() const { return rm_; } |
| |
| RelocInfo::Mode rmode() const { return rmode_; } |
| |
| private: |
| Register rm_; |
| union Value { |
| Value() {} |
| HeapObjectRequest heap_object_request; // if is_heap_object_request_ |
| int32_t immediate; // otherwise |
| } value_; // valid if rm_ == no_reg |
| bool is_heap_object_request_ = false; |
| RelocInfo::Mode rmode_; |
| |
| friend class Assembler; |
| // friend class MacroAssembler; |
| }; |
| |
| |
| // On MIPS we have only one addressing mode with base_reg + offset. |
| // Class MemOperand represents a memory operand in load and store instructions. |
| class MemOperand : public Operand { |
| public: |
| // Immediate value attached to offset. |
| enum OffsetAddend { |
| offset_minus_one = -1, |
| offset_zero = 0 |
| }; |
| |
| explicit MemOperand(Register rn, int32_t offset = 0); |
| explicit MemOperand(Register rn, int32_t unit, int32_t multiplier, |
| OffsetAddend offset_addend = offset_zero); |
| int32_t offset() const { return offset_; } |
| |
| bool OffsetIsInt16Encodable() const { |
| return is_int16(offset_); |
| } |
| |
| private: |
| int32_t offset_; |
| |
| friend class Assembler; |
| }; |
| |
| |
| class Assembler : public AssemblerBase { |
| public: |
| // Create an assembler. Instructions and relocation information are emitted |
| // into a buffer, with the instructions starting from the beginning and the |
| // relocation information starting from the end of the buffer. See CodeDesc |
| // for a detailed comment on the layout (globals.h). |
| // |
| // If the provided buffer is nullptr, the assembler allocates and grows its |
| // own buffer, and buffer_size determines the initial buffer size. The buffer |
| // is owned by the assembler and deallocated upon destruction of the |
| // assembler. |
| // |
| // If the provided buffer is not nullptr, the assembler uses the provided |
| // buffer for code generation and assumes its size to be buffer_size. If the |
| // buffer is too small, a fatal error occurs. No deallocation of the buffer is |
| // done upon destruction of the assembler. |
| Assembler(Isolate* isolate, void* buffer, int buffer_size) |
| : Assembler(IsolateData(isolate), buffer, buffer_size) {} |
| Assembler(IsolateData isolate_data, void* buffer, int buffer_size); |
| virtual ~Assembler() { } |
| |
| // GetCode emits any pending (non-emitted) code and fills the descriptor |
| // desc. GetCode() is idempotent; it returns the same result if no other |
| // Assembler functions are invoked in between GetCode() calls. |
| void GetCode(Isolate* isolate, CodeDesc* desc); |
| |
| // Label operations & relative jumps (PPUM Appendix D). |
| // |
| // Takes a branch opcode (cc) and a label (L) and generates |
| // either a backward branch or a forward branch and links it |
| // to the label fixup chain. Usage: |
| // |
| // Label L; // unbound label |
| // j(cc, &L); // forward branch to unbound label |
| // bind(&L); // bind label to the current pc |
| // j(cc, &L); // backward branch to bound label |
| // bind(&L); // illegal: a label may be bound only once |
| // |
| // Note: The same Label can be used for forward and backward branches |
| // but it may be bound only once. |
| void bind(Label* L); // Binds an unbound label L to current code position. |
| |
| enum OffsetSize : int { kOffset26 = 26, kOffset21 = 21, kOffset16 = 16 }; |
| |
| // Determines if Label is bound and near enough so that branch instruction |
| // can be used to reach it, instead of jump instruction. |
| bool is_near(Label* L); |
| bool is_near(Label* L, OffsetSize bits); |
| bool is_near_branch(Label* L); |
| inline bool is_near_pre_r6(Label* L) { |
| DCHECK(!IsMipsArchVariant(kMips32r6)); |
| return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize; |
| } |
| inline bool is_near_r6(Label* L) { |
| DCHECK(IsMipsArchVariant(kMips32r6)); |
| return pc_offset() - L->pos() < kMaxCompactBranchOffset - 4 * kInstrSize; |
| } |
| |
| int BranchOffset(Instr instr); |
| |
| // Returns the branch offset to the given label from the current code |
| // position. Links the label to the current position if it is still unbound. |
| // Manages the jump elimination optimization if the second parameter is true. |
| int32_t branch_offset_helper(Label* L, OffsetSize bits); |
| inline int32_t branch_offset(Label* L) { |
| return branch_offset_helper(L, OffsetSize::kOffset16); |
| } |
| inline int32_t branch_offset21(Label* L) { |
| return branch_offset_helper(L, OffsetSize::kOffset21); |
| } |
| inline int32_t branch_offset26(Label* L) { |
| return branch_offset_helper(L, OffsetSize::kOffset26); |
| } |
| inline int32_t shifted_branch_offset(Label* L) { |
| return branch_offset(L) >> 2; |
| } |
| inline int32_t shifted_branch_offset21(Label* L) { |
| return branch_offset21(L) >> 2; |
| } |
| inline int32_t shifted_branch_offset26(Label* L) { |
| return branch_offset26(L) >> 2; |
| } |
| uint32_t jump_address(Label* L); |
| |
| // Puts a labels target address at the given position. |
| // The high 8 bits are set to zero. |
| void label_at_put(Label* L, int at_offset); |
| |
| // Read/Modify the code target address in the branch/call instruction at pc. |
| // The isolate argument is unused (and may be nullptr) when skipping flushing. |
| static Address target_address_at(Address pc); |
| INLINE(static void set_target_address_at) |
| (Isolate* isolate, Address pc, Address target, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED) { |
| set_target_value_at(isolate, pc, reinterpret_cast<uint32_t>(target), |
| icache_flush_mode); |
| } |
| // On MIPS there is no Constant Pool so we skip that parameter. |
| INLINE(static Address target_address_at(Address pc, Address constant_pool)) { |
| return target_address_at(pc); |
| } |
| INLINE(static void set_target_address_at( |
| Isolate* isolate, Address pc, Address constant_pool, Address target, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED)) { |
| set_target_address_at(isolate, pc, target, icache_flush_mode); |
| } |
| |
| static void set_target_value_at( |
| Isolate* isolate, Address pc, uint32_t target, |
| ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED); |
| |
| // Return the code target address at a call site from the return address |
| // of that call in the instruction stream. |
| inline static Address target_address_from_return_address(Address pc); |
| |
| static void QuietNaN(HeapObject* nan); |
| |
| // This sets the branch destination (which gets loaded at the call address). |
| // This is for calls and branches within generated code. The serializer |
| // has already deserialized the lui/ori instructions etc. |
| inline static void deserialization_set_special_target_at( |
| Isolate* isolate, Address instruction_payload, Code* code, |
| Address target); |
| |
| // This sets the internal reference at the pc. |
| inline static void deserialization_set_target_internal_reference_at( |
| Isolate* isolate, Address pc, Address target, |
| RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE); |
| |
| // Size of an instruction. |
| static constexpr int kInstrSize = sizeof(Instr); |
| |
| // Difference between address of current opcode and target address offset. |
| static constexpr int kBranchPCOffset = 4; |
| |
| // Here we are patching the address in the LUI/ORI instruction pair. |
| // These values are used in the serialization process and must be zero for |
| // MIPS platform, as Code, Embedded Object or External-reference pointers |
| // are split across two consecutive instructions and don't exist separately |
| // in the code, so the serializer should not step forwards in memory after |
| // a target is resolved and written. |
| static constexpr int kSpecialTargetSize = 0; |
| |
| // Number of consecutive instructions used to store 32bit constant. This |
| // constant is used in RelocInfo::target_address_address() function to tell |
| // serializer address of the instruction that follows LUI/ORI instruction |
| // pair. |
| static constexpr int kInstructionsFor32BitConstant = 2; |
| |
| // Distance between the instruction referring to the address of the call |
| // target and the return address. |
| #ifdef _MIPS_ARCH_MIPS32R6 |
| static constexpr int kCallTargetAddressOffset = 2 * kInstrSize; |
| #else |
| static constexpr int kCallTargetAddressOffset = 4 * kInstrSize; |
| #endif |
| |
| // Difference between address of current opcode and value read from pc |
| // register. |
| static constexpr int kPcLoadDelta = 4; |
| |
| // Max offset for instructions with 16-bit offset field |
| static constexpr int kMaxBranchOffset = (1 << (18 - 1)) - 1; |
| |
| // Max offset for compact branch instructions with 26-bit offset field |
| static constexpr int kMaxCompactBranchOffset = (1 << (28 - 1)) - 1; |
| |
| #ifdef _MIPS_ARCH_MIPS32R6 |
| static constexpr int kTrampolineSlotsSize = 2 * kInstrSize; |
| #else |
| static constexpr int kTrampolineSlotsSize = 4 * kInstrSize; |
| #endif |
| |
| RegList* GetScratchRegisterList() { return &scratch_register_list_; } |
| |
| // --------------------------------------------------------------------------- |
| // Code generation. |
| |
| // Insert the smallest number of nop instructions |
| // possible to align the pc offset to a multiple |
| // of m. m must be a power of 2 (>= 4). |
| void Align(int m); |
| // Insert the smallest number of zero bytes possible to align the pc offset |
| // to a mulitple of m. m must be a power of 2 (>= 2). |
| void DataAlign(int m); |
| // Aligns code to something that's optimal for a jump target for the platform. |
| void CodeTargetAlign(); |
| |
| // Different nop operations are used by the code generator to detect certain |
| // states of the generated code. |
| enum NopMarkerTypes { |
| NON_MARKING_NOP = 0, |
| DEBUG_BREAK_NOP, |
| // IC markers. |
| PROPERTY_ACCESS_INLINED, |
| PROPERTY_ACCESS_INLINED_CONTEXT, |
| PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE, |
| // Helper values. |
| LAST_CODE_MARKER, |
| FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED, |
| // Code aging |
| CODE_AGE_MARKER_NOP = 6, |
| CODE_AGE_SEQUENCE_NOP |
| }; |
| |
| // Type == 0 is the default non-marking nop. For mips this is a |
| // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero |
| // marking, to avoid conflict with ssnop and ehb instructions. |
| void nop(unsigned int type = 0) { |
| DCHECK_LT(type, 32); |
| Register nop_rt_reg = (type == 0) ? zero_reg : at; |
| sll(zero_reg, nop_rt_reg, type, true); |
| } |
| |
| |
| // --------Branch-and-jump-instructions---------- |
| // We don't use likely variant of instructions. |
| void b(int16_t offset); |
| inline void b(Label* L) { b(shifted_branch_offset(L)); } |
| void bal(int16_t offset); |
| inline void bal(Label* L) { bal(shifted_branch_offset(L)); } |
| void bc(int32_t offset); |
| inline void bc(Label* L) { bc(shifted_branch_offset26(L)); } |
| void balc(int32_t offset); |
| inline void balc(Label* L) { balc(shifted_branch_offset26(L)); } |
| |
| void beq(Register rs, Register rt, int16_t offset); |
| inline void beq(Register rs, Register rt, Label* L) { |
| beq(rs, rt, shifted_branch_offset(L)); |
| } |
| void bgez(Register rs, int16_t offset); |
| void bgezc(Register rt, int16_t offset); |
| inline void bgezc(Register rt, Label* L) { |
| bgezc(rt, shifted_branch_offset(L)); |
| } |
| void bgeuc(Register rs, Register rt, int16_t offset); |
| inline void bgeuc(Register rs, Register rt, Label* L) { |
| bgeuc(rs, rt, shifted_branch_offset(L)); |
| } |
| void bgec(Register rs, Register rt, int16_t offset); |
| inline void bgec(Register rs, Register rt, Label* L) { |
| bgec(rs, rt, shifted_branch_offset(L)); |
| } |
| void bgezal(Register rs, int16_t offset); |
| void bgezalc(Register rt, int16_t offset); |
| inline void bgezalc(Register rt, Label* L) { |
| bgezalc(rt, shifted_branch_offset(L)); |
| } |
| void bgezall(Register rs, int16_t offset); |
| inline void bgezall(Register rs, Label* L) { |
| bgezall(rs, branch_offset(L) >> 2); |
| } |
| void bgtz(Register rs, int16_t offset); |
| void bgtzc(Register rt, int16_t offset); |
| inline void bgtzc(Register rt, Label* L) { |
| bgtzc(rt, shifted_branch_offset(L)); |
| } |
| void blez(Register rs, int16_t offset); |
| void blezc(Register rt, int16_t offset); |
| inline void blezc(Register rt, Label* L) { |
| blezc(rt, shifted_branch_offset(L)); |
| } |
| void bltz(Register rs, int16_t offset); |
| void bltzc(Register rt, int16_t offset); |
| inline void bltzc(Register rt, Label* L) { |
| bltzc(rt, shifted_branch_offset(L)); |
| } |
| void bltuc(Register rs, Register rt, int16_t offset); |
| inline void bltuc(Register rs, Register rt, Label* L) { |
| bltuc(rs, rt, shifted_branch_offset(L)); |
| } |
| void bltc(Register rs, Register rt, int16_t offset); |
| inline void bltc(Register rs, Register rt, Label* L) { |
| bltc(rs, rt, shifted_branch_offset(L)); |
| } |
| void bltzal(Register rs, int16_t offset); |
| void blezalc(Register rt, int16_t offset); |
| inline void blezalc(Register rt, Label* L) { |
| blezalc(rt, shifted_branch_offset(L)); |
| } |
| void bltzalc(Register rt, int16_t offset); |
| inline void bltzalc(Register rt, Label* L) { |
| bltzalc(rt, shifted_branch_offset(L)); |
| } |
| void bgtzalc(Register rt, int16_t offset); |
| inline void bgtzalc(Register rt, Label* L) { |
| bgtzalc(rt, shifted_branch_offset(L)); |
| } |
| void beqzalc(Register rt, int16_t offset); |
| inline void beqzalc(Register rt, Label* L) { |
| beqzalc(rt, shifted_branch_offset(L)); |
| } |
| void beqc(Register rs, Register rt, int16_t offset); |
| inline void beqc(Register rs, Register rt, Label* L) { |
| beqc(rs, rt, shifted_branch_offset(L)); |
| } |
| void beqzc(Register rs, int32_t offset); |
| inline void beqzc(Register rs, Label* L) { |
| beqzc(rs, shifted_branch_offset21(L)); |
| } |
| void bnezalc(Register rt, int16_t offset); |
| inline void bnezalc(Register rt, Label* L) { |
| bnezalc(rt, shifted_branch_offset(L)); |
| } |
| void bnec(Register rs, Register rt, int16_t offset); |
| inline void bnec(Register rs, Register rt, Label* L) { |
| bnec(rs, rt, shifted_branch_offset(L)); |
| } |
| void bnezc(Register rt, int32_t offset); |
| inline void bnezc(Register rt, Label* L) { |
| bnezc(rt, shifted_branch_offset21(L)); |
| } |
| void bne(Register rs, Register rt, int16_t offset); |
| inline void bne(Register rs, Register rt, Label* L) { |
| bne(rs, rt, shifted_branch_offset(L)); |
| } |
| void bovc(Register rs, Register rt, int16_t offset); |
| inline void bovc(Register rs, Register rt, Label* L) { |
| bovc(rs, rt, shifted_branch_offset(L)); |
| } |
| void bnvc(Register rs, Register rt, int16_t offset); |
| inline void bnvc(Register rs, Register rt, Label* L) { |
| bnvc(rs, rt, shifted_branch_offset(L)); |
| } |
| |
| // Never use the int16_t b(l)cond version with a branch offset |
| // instead of using the Label* version. |
| |
| // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits. |
| void j(int32_t target); |
| void jal(int32_t target); |
| void jalr(Register rs, Register rd = ra); |
| void jr(Register target); |
| void jic(Register rt, int16_t offset); |
| void jialc(Register rt, int16_t offset); |
| |
| |
| // -------Data-processing-instructions--------- |
| |
| // Arithmetic. |
| void addu(Register rd, Register rs, Register rt); |
| void subu(Register rd, Register rs, Register rt); |
| void mult(Register rs, Register rt); |
| void multu(Register rs, Register rt); |
| void div(Register rs, Register rt); |
| void divu(Register rs, Register rt); |
| void div(Register rd, Register rs, Register rt); |
| void divu(Register rd, Register rs, Register rt); |
| void mod(Register rd, Register rs, Register rt); |
| void modu(Register rd, Register rs, Register rt); |
| void mul(Register rd, Register rs, Register rt); |
| void muh(Register rd, Register rs, Register rt); |
| void mulu(Register rd, Register rs, Register rt); |
| void muhu(Register rd, Register rs, Register rt); |
| |
| void addiu(Register rd, Register rs, int32_t j); |
| |
| // Logical. |
| void and_(Register rd, Register rs, Register rt); |
| void or_(Register rd, Register rs, Register rt); |
| void xor_(Register rd, Register rs, Register rt); |
| void nor(Register rd, Register rs, Register rt); |
| |
| void andi(Register rd, Register rs, int32_t j); |
| void ori(Register rd, Register rs, int32_t j); |
| void xori(Register rd, Register rs, int32_t j); |
| void lui(Register rd, int32_t j); |
| void aui(Register rs, Register rt, int32_t j); |
| |
| // Shifts. |
| // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop |
| // and may cause problems in normal code. coming_from_nop makes sure this |
| // doesn't happen. |
| void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false); |
| void sllv(Register rd, Register rt, Register rs); |
| void srl(Register rd, Register rt, uint16_t sa); |
| void srlv(Register rd, Register rt, Register rs); |
| void sra(Register rt, Register rd, uint16_t sa); |
| void srav(Register rt, Register rd, Register rs); |
| void rotr(Register rd, Register rt, uint16_t sa); |
| void rotrv(Register rd, Register rt, Register rs); |
| |
| // ------------Memory-instructions------------- |
| |
| void lb(Register rd, const MemOperand& rs); |
| void lbu(Register rd, const MemOperand& rs); |
| void lh(Register rd, const MemOperand& rs); |
| void lhu(Register rd, const MemOperand& rs); |
| void lw(Register rd, const MemOperand& rs); |
| void lwl(Register rd, const MemOperand& rs); |
| void lwr(Register rd, const MemOperand& rs); |
| void sb(Register rd, const MemOperand& rs); |
| void sh(Register rd, const MemOperand& rs); |
| void sw(Register rd, const MemOperand& rs); |
| void swl(Register rd, const MemOperand& rs); |
| void swr(Register rd, const MemOperand& rs); |
| |
| // ----------Atomic instructions-------------- |
| |
| void ll(Register rd, const MemOperand& rs); |
| void sc(Register rd, const MemOperand& rs); |
| |
| // ---------PC-Relative-instructions----------- |
| |
| void addiupc(Register rs, int32_t imm19); |
| void lwpc(Register rs, int32_t offset19); |
| void auipc(Register rs, int16_t imm16); |
| void aluipc(Register rs, int16_t imm16); |
| |
| |
| // ----------------Prefetch-------------------- |
| |
| void pref(int32_t hint, const MemOperand& rs); |
| |
| |
| // -------------Misc-instructions-------------- |
| |
| // Break / Trap instructions. |
| void break_(uint32_t code, bool break_as_stop = false); |
| void stop(const char* msg, uint32_t code = kMaxStopCode); |
| void tge(Register rs, Register rt, uint16_t code); |
| void tgeu(Register rs, Register rt, uint16_t code); |
| void tlt(Register rs, Register rt, uint16_t code); |
| void tltu(Register rs, Register rt, uint16_t code); |
| void teq(Register rs, Register rt, uint16_t code); |
| void tne(Register rs, Register rt, uint16_t code); |
| |
| // Memory barrier instruction. |
| void sync(); |
| |
| // Move from HI/LO register. |
| void mfhi(Register rd); |
| void mflo(Register rd); |
| |
| // Set on less than. |
| void slt(Register rd, Register rs, Register rt); |
| void sltu(Register rd, Register rs, Register rt); |
| void slti(Register rd, Register rs, int32_t j); |
| void sltiu(Register rd, Register rs, int32_t j); |
| |
| // Conditional move. |
| void movz(Register rd, Register rs, Register rt); |
| void movn(Register rd, Register rs, Register rt); |
| void movt(Register rd, Register rs, uint16_t cc = 0); |
| void movf(Register rd, Register rs, uint16_t cc = 0); |
| |
| void sel(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); |
| void sel_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void sel_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void seleqz(Register rd, Register rs, Register rt); |
| void seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs, |
| FPURegister ft); |
| void selnez(Register rd, Register rs, Register rt); |
| void selnez(SecondaryField fmt, FPURegister fd, FPURegister fs, |
| FPURegister ft); |
| void seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void selnez_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void selnez_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| |
| void movz_s(FPURegister fd, FPURegister fs, Register rt); |
| void movz_d(FPURegister fd, FPURegister fs, Register rt); |
| void movt_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); |
| void movt_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); |
| void movf_s(FPURegister fd, FPURegister fs, uint16_t cc = 0); |
| void movf_d(FPURegister fd, FPURegister fs, uint16_t cc = 0); |
| void movn_s(FPURegister fd, FPURegister fs, Register rt); |
| void movn_d(FPURegister fd, FPURegister fs, Register rt); |
| // Bit twiddling. |
| void clz(Register rd, Register rs); |
| void ins_(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void ext_(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void bitswap(Register rd, Register rt); |
| void align(Register rd, Register rs, Register rt, uint8_t bp); |
| |
| void wsbh(Register rd, Register rt); |
| void seh(Register rd, Register rt); |
| void seb(Register rd, Register rt); |
| |
| // --------Coprocessor-instructions---------------- |
| |
| // Load, store, and move. |
| void lwc1(FPURegister fd, const MemOperand& src); |
| void swc1(FPURegister fs, const MemOperand& dst); |
| |
| void mtc1(Register rt, FPURegister fs); |
| void mthc1(Register rt, FPURegister fs); |
| |
| void mfc1(Register rt, FPURegister fs); |
| void mfhc1(Register rt, FPURegister fs); |
| |
| void ctc1(Register rt, FPUControlRegister fs); |
| void cfc1(Register rt, FPUControlRegister fs); |
| |
| // Arithmetic. |
| void add_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void add_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void sub_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void sub_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void mul_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void mul_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft); |
| void maddf_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void maddf_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void msubf_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void msubf_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void div_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void div_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void abs_s(FPURegister fd, FPURegister fs); |
| void abs_d(FPURegister fd, FPURegister fs); |
| void mov_d(FPURegister fd, FPURegister fs); |
| void mov_s(FPURegister fd, FPURegister fs); |
| void neg_s(FPURegister fd, FPURegister fs); |
| void neg_d(FPURegister fd, FPURegister fs); |
| void sqrt_s(FPURegister fd, FPURegister fs); |
| void sqrt_d(FPURegister fd, FPURegister fs); |
| void rsqrt_s(FPURegister fd, FPURegister fs); |
| void rsqrt_d(FPURegister fd, FPURegister fs); |
| void recip_d(FPURegister fd, FPURegister fs); |
| void recip_s(FPURegister fd, FPURegister fs); |
| |
| // Conversion. |
| void cvt_w_s(FPURegister fd, FPURegister fs); |
| void cvt_w_d(FPURegister fd, FPURegister fs); |
| void trunc_w_s(FPURegister fd, FPURegister fs); |
| void trunc_w_d(FPURegister fd, FPURegister fs); |
| void round_w_s(FPURegister fd, FPURegister fs); |
| void round_w_d(FPURegister fd, FPURegister fs); |
| void floor_w_s(FPURegister fd, FPURegister fs); |
| void floor_w_d(FPURegister fd, FPURegister fs); |
| void ceil_w_s(FPURegister fd, FPURegister fs); |
| void ceil_w_d(FPURegister fd, FPURegister fs); |
| void rint_s(FPURegister fd, FPURegister fs); |
| void rint_d(FPURegister fd, FPURegister fs); |
| void rint(SecondaryField fmt, FPURegister fd, FPURegister fs); |
| |
| void cvt_l_s(FPURegister fd, FPURegister fs); |
| void cvt_l_d(FPURegister fd, FPURegister fs); |
| void trunc_l_s(FPURegister fd, FPURegister fs); |
| void trunc_l_d(FPURegister fd, FPURegister fs); |
| void round_l_s(FPURegister fd, FPURegister fs); |
| void round_l_d(FPURegister fd, FPURegister fs); |
| void floor_l_s(FPURegister fd, FPURegister fs); |
| void floor_l_d(FPURegister fd, FPURegister fs); |
| void ceil_l_s(FPURegister fd, FPURegister fs); |
| void ceil_l_d(FPURegister fd, FPURegister fs); |
| |
| void class_s(FPURegister fd, FPURegister fs); |
| void class_d(FPURegister fd, FPURegister fs); |
| |
| void min(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); |
| void mina(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); |
| void max(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); |
| void maxa(SecondaryField fmt, FPURegister fd, FPURegister fs, FPURegister ft); |
| void min_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void min_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void max_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void max_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void mina_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void mina_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| void maxa_s(FPURegister fd, FPURegister fs, FPURegister ft); |
| void maxa_d(FPURegister fd, FPURegister fs, FPURegister ft); |
| |
| void cvt_s_w(FPURegister fd, FPURegister fs); |
| void cvt_s_l(FPURegister fd, FPURegister fs); |
| void cvt_s_d(FPURegister fd, FPURegister fs); |
| |
| void cvt_d_w(FPURegister fd, FPURegister fs); |
| void cvt_d_l(FPURegister fd, FPURegister fs); |
| void cvt_d_s(FPURegister fd, FPURegister fs); |
| |
| // Conditions and branches for MIPSr6. |
| void cmp(FPUCondition cond, SecondaryField fmt, |
| FPURegister fd, FPURegister ft, FPURegister fs); |
| void cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); |
| void cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs, FPURegister ft); |
| |
| void bc1eqz(int16_t offset, FPURegister ft); |
| inline void bc1eqz(Label* L, FPURegister ft) { |
| bc1eqz(shifted_branch_offset(L), ft); |
| } |
| void bc1nez(int16_t offset, FPURegister ft); |
| inline void bc1nez(Label* L, FPURegister ft) { |
| bc1nez(shifted_branch_offset(L), ft); |
| } |
| |
| // Conditions and branches for non MIPSr6. |
| void c(FPUCondition cond, SecondaryField fmt, |
| FPURegister ft, FPURegister fs, uint16_t cc = 0); |
| void c_s(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); |
| void c_d(FPUCondition cond, FPURegister ft, FPURegister fs, uint16_t cc = 0); |
| |
| void bc1f(int16_t offset, uint16_t cc = 0); |
| inline void bc1f(Label* L, uint16_t cc = 0) { |
| bc1f(shifted_branch_offset(L), cc); |
| } |
| void bc1t(int16_t offset, uint16_t cc = 0); |
| inline void bc1t(Label* L, uint16_t cc = 0) { |
| bc1t(shifted_branch_offset(L), cc); |
| } |
| void fcmp(FPURegister src1, const double src2, FPUCondition cond); |
| |
| // MSA instructions |
| void bz_v(MSARegister wt, int16_t offset); |
| inline void bz_v(MSARegister wt, Label* L) { |
| bz_v(wt, shifted_branch_offset(L)); |
| } |
| void bz_b(MSARegister wt, int16_t offset); |
| inline void bz_b(MSARegister wt, Label* L) { |
| bz_b(wt, shifted_branch_offset(L)); |
| } |
| void bz_h(MSARegister wt, int16_t offset); |
| inline void bz_h(MSARegister wt, Label* L) { |
| bz_h(wt, shifted_branch_offset(L)); |
| } |
| void bz_w(MSARegister wt, int16_t offset); |
| inline void bz_w(MSARegister wt, Label* L) { |
| bz_w(wt, shifted_branch_offset(L)); |
| } |
| void bz_d(MSARegister wt, int16_t offset); |
| inline void bz_d(MSARegister wt, Label* L) { |
| bz_d(wt, shifted_branch_offset(L)); |
| } |
| void bnz_v(MSARegister wt, int16_t offset); |
| inline void bnz_v(MSARegister wt, Label* L) { |
| bnz_v(wt, shifted_branch_offset(L)); |
| } |
| void bnz_b(MSARegister wt, int16_t offset); |
| inline void bnz_b(MSARegister wt, Label* L) { |
| bnz_b(wt, shifted_branch_offset(L)); |
| } |
| void bnz_h(MSARegister wt, int16_t offset); |
| inline void bnz_h(MSARegister wt, Label* L) { |
| bnz_h(wt, shifted_branch_offset(L)); |
| } |
| void bnz_w(MSARegister wt, int16_t offset); |
| inline void bnz_w(MSARegister wt, Label* L) { |
| bnz_w(wt, shifted_branch_offset(L)); |
| } |
| void bnz_d(MSARegister wt, int16_t offset); |
| inline void bnz_d(MSARegister wt, Label* L) { |
| bnz_d(wt, shifted_branch_offset(L)); |
| } |
| |
| void ld_b(MSARegister wd, const MemOperand& rs); |
| void ld_h(MSARegister wd, const MemOperand& rs); |
| void ld_w(MSARegister wd, const MemOperand& rs); |
| void ld_d(MSARegister wd, const MemOperand& rs); |
| void st_b(MSARegister wd, const MemOperand& rs); |
| void st_h(MSARegister wd, const MemOperand& rs); |
| void st_w(MSARegister wd, const MemOperand& rs); |
| void st_d(MSARegister wd, const MemOperand& rs); |
| |
| void ldi_b(MSARegister wd, int32_t imm10); |
| void ldi_h(MSARegister wd, int32_t imm10); |
| void ldi_w(MSARegister wd, int32_t imm10); |
| void ldi_d(MSARegister wd, int32_t imm10); |
| |
| void addvi_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void addvi_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void addvi_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void addvi_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void subvi_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void subvi_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void subvi_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void subvi_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void maxi_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void mini_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void ceqi_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void ceqi_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void ceqi_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void ceqi_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clti_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_s_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_s_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_s_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_s_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_u_b(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_u_h(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_u_w(MSARegister wd, MSARegister ws, uint32_t imm5); |
| void clei_u_d(MSARegister wd, MSARegister ws, uint32_t imm5); |
| |
| void andi_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void ori_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void nori_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void xori_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void bmnzi_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void bmzi_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void bseli_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void shf_b(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void shf_h(MSARegister wd, MSARegister ws, uint32_t imm8); |
| void shf_w(MSARegister wd, MSARegister ws, uint32_t imm8); |
| |
| void and_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void or_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void nor_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void xor_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bmnz_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bmz_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bsel_v(MSARegister wd, MSARegister ws, MSARegister wt); |
| |
| void fill_b(MSARegister wd, Register rs); |
| void fill_h(MSARegister wd, Register rs); |
| void fill_w(MSARegister wd, Register rs); |
| void pcnt_b(MSARegister wd, MSARegister ws); |
| void pcnt_h(MSARegister wd, MSARegister ws); |
| void pcnt_w(MSARegister wd, MSARegister ws); |
| void pcnt_d(MSARegister wd, MSARegister ws); |
| void nloc_b(MSARegister wd, MSARegister ws); |
| void nloc_h(MSARegister wd, MSARegister ws); |
| void nloc_w(MSARegister wd, MSARegister ws); |
| void nloc_d(MSARegister wd, MSARegister ws); |
| void nlzc_b(MSARegister wd, MSARegister ws); |
| void nlzc_h(MSARegister wd, MSARegister ws); |
| void nlzc_w(MSARegister wd, MSARegister ws); |
| void nlzc_d(MSARegister wd, MSARegister ws); |
| |
| void fclass_w(MSARegister wd, MSARegister ws); |
| void fclass_d(MSARegister wd, MSARegister ws); |
| void ftrunc_s_w(MSARegister wd, MSARegister ws); |
| void ftrunc_s_d(MSARegister wd, MSARegister ws); |
| void ftrunc_u_w(MSARegister wd, MSARegister ws); |
| void ftrunc_u_d(MSARegister wd, MSARegister ws); |
| void fsqrt_w(MSARegister wd, MSARegister ws); |
| void fsqrt_d(MSARegister wd, MSARegister ws); |
| void frsqrt_w(MSARegister wd, MSARegister ws); |
| void frsqrt_d(MSARegister wd, MSARegister ws); |
| void frcp_w(MSARegister wd, MSARegister ws); |
| void frcp_d(MSARegister wd, MSARegister ws); |
| void frint_w(MSARegister wd, MSARegister ws); |
| void frint_d(MSARegister wd, MSARegister ws); |
| void flog2_w(MSARegister wd, MSARegister ws); |
| void flog2_d(MSARegister wd, MSARegister ws); |
| void fexupl_w(MSARegister wd, MSARegister ws); |
| void fexupl_d(MSARegister wd, MSARegister ws); |
| void fexupr_w(MSARegister wd, MSARegister ws); |
| void fexupr_d(MSARegister wd, MSARegister ws); |
| void ffql_w(MSARegister wd, MSARegister ws); |
| void ffql_d(MSARegister wd, MSARegister ws); |
| void ffqr_w(MSARegister wd, MSARegister ws); |
| void ffqr_d(MSARegister wd, MSARegister ws); |
| void ftint_s_w(MSARegister wd, MSARegister ws); |
| void ftint_s_d(MSARegister wd, MSARegister ws); |
| void ftint_u_w(MSARegister wd, MSARegister ws); |
| void ftint_u_d(MSARegister wd, MSARegister ws); |
| void ffint_s_w(MSARegister wd, MSARegister ws); |
| void ffint_s_d(MSARegister wd, MSARegister ws); |
| void ffint_u_w(MSARegister wd, MSARegister ws); |
| void ffint_u_d(MSARegister wd, MSARegister ws); |
| |
| void sll_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sll_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sll_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sll_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sra_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sra_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sra_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sra_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srl_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srl_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srl_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srl_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bclr_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bclr_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bclr_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bclr_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bset_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bset_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bset_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bset_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bneg_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bneg_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bneg_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void bneg_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsl_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsl_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsl_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsl_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsr_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsr_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsr_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void binsr_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void addv_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void addv_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void addv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void addv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subv_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subv_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_a_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_a_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void max_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_a_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_a_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void min_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ceq_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ceq_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ceq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ceq_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void clt_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void cle_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void add_a_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void add_a_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void add_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void add_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_a_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_a_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void adds_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ave_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void aver_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subs_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsus_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void subsuu_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void asub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulv_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulv_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddv_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddv_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubv_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubv_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void div_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mod_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dotp_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void dpsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void sld_b(MSARegister wd, MSARegister ws, Register rt); |
| void sld_h(MSARegister wd, MSARegister ws, Register rt); |
| void sld_w(MSARegister wd, MSARegister ws, Register rt); |
| void sld_d(MSARegister wd, MSARegister ws, Register rt); |
| void splat_b(MSARegister wd, MSARegister ws, Register rt); |
| void splat_h(MSARegister wd, MSARegister ws, Register rt); |
| void splat_w(MSARegister wd, MSARegister ws, Register rt); |
| void splat_d(MSARegister wd, MSARegister ws, Register rt); |
| void pckev_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckev_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckev_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckev_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckod_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckod_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckod_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void pckod_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvl_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvl_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvl_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvl_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvr_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvr_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvr_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvr_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvev_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvev_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvev_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvev_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvod_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvod_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvod_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ilvod_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void vshf_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void vshf_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void vshf_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void vshf_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srar_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srar_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srar_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srar_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srlr_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srlr_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srlr_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void srlr_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hadd_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_s_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_s_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_s_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_s_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_u_b(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_u_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_u_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void hsub_u_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| |
| void fcaf_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcaf_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcun_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcun_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fceq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fceq_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcueq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcueq_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fclt_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fclt_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcult_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcult_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcle_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcle_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcule_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcule_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsaf_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsaf_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsun_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsun_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fseq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fseq_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsueq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsueq_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fslt_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fslt_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsult_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsult_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsle_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsle_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsule_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsule_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fadd_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fadd_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsub_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsub_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmul_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmul_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fdiv_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fdiv_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmadd_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmadd_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmsub_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmsub_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fexp2_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fexp2_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fexdo_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fexdo_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ftq_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void ftq_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmin_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmin_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmin_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmin_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmax_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmax_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmax_a_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fmax_a_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcor_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcor_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcune_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcune_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcne_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fcne_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mul_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mul_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void madd_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void madd_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msub_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msub_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsor_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsor_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsune_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsune_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsne_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void fsne_d(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void mulr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void maddr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubr_q_h(MSARegister wd, MSARegister ws, MSARegister wt); |
| void msubr_q_w(MSARegister wd, MSARegister ws, MSARegister wt); |
| |
| void sldi_b(MSARegister wd, MSARegister ws, uint32_t n); |
| void sldi_h(MSARegister wd, MSARegister ws, uint32_t n); |
| void sldi_w(MSARegister wd, MSARegister ws, uint32_t n); |
| void sldi_d(MSARegister wd, MSARegister ws, uint32_t n); |
| void splati_b(MSARegister wd, MSARegister ws, uint32_t n); |
| void splati_h(MSARegister wd, MSARegister ws, uint32_t n); |
| void splati_w(MSARegister wd, MSARegister ws, uint32_t n); |
| void splati_d(MSARegister wd, MSARegister ws, uint32_t n); |
| void copy_s_b(Register rd, MSARegister ws, uint32_t n); |
| void copy_s_h(Register rd, MSARegister ws, uint32_t n); |
| void copy_s_w(Register rd, MSARegister ws, uint32_t n); |
| void copy_u_b(Register rd, MSARegister ws, uint32_t n); |
| void copy_u_h(Register rd, MSARegister ws, uint32_t n); |
| void copy_u_w(Register rd, MSARegister ws, uint32_t n); |
| void insert_b(MSARegister wd, uint32_t n, Register rs); |
| void insert_h(MSARegister wd, uint32_t n, Register rs); |
| void insert_w(MSARegister wd, uint32_t n, Register rs); |
| void insve_b(MSARegister wd, uint32_t n, MSARegister ws); |
| void insve_h(MSARegister wd, uint32_t n, MSARegister ws); |
| void insve_w(MSARegister wd, uint32_t n, MSARegister ws); |
| void insve_d(MSARegister wd, uint32_t n, MSARegister ws); |
| void move_v(MSARegister wd, MSARegister ws); |
| void ctcmsa(MSAControlRegister cd, Register rs); |
| void cfcmsa(Register rd, MSAControlRegister cs); |
| |
| void slli_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void slli_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void slli_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void slli_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void srai_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void srai_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void srai_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void srai_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void srli_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void srli_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void srli_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void srli_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void bclri_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void bclri_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void bclri_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void bclri_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void bseti_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void bseti_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void bseti_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void bseti_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void bnegi_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void bnegi_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void bnegi_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void bnegi_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsli_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsli_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsli_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsli_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsri_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsri_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsri_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void binsri_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_s_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_s_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_s_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_s_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_u_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_u_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_u_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void sat_u_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void srari_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void srari_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void srari_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void srari_d(MSARegister wd, MSARegister ws, uint32_t m); |
| void srlri_b(MSARegister wd, MSARegister ws, uint32_t m); |
| void srlri_h(MSARegister wd, MSARegister ws, uint32_t m); |
| void srlri_w(MSARegister wd, MSARegister ws, uint32_t m); |
| void srlri_d(MSARegister wd, MSARegister ws, uint32_t m); |
| |
| // Check the code size generated from label to here. |
| int SizeOfCodeGeneratedSince(Label* label) { |
| return pc_offset() - label->pos(); |
| } |
| |
| // Check the number of instructions generated from label to here. |
| int InstructionsGeneratedSince(Label* label) { |
| return SizeOfCodeGeneratedSince(label) / kInstrSize; |
| } |
| |
| // Class for scoping postponing the trampoline pool generation. |
| class BlockTrampolinePoolScope { |
| public: |
| explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) { |
| assem_->StartBlockTrampolinePool(); |
| } |
| ~BlockTrampolinePoolScope() { |
| assem_->EndBlockTrampolinePool(); |
| } |
| |
| private: |
| Assembler* assem_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope); |
| }; |
| |
| // Class for postponing the assembly buffer growth. Typically used for |
| // sequences of instructions that must be emitted as a unit, before |
| // buffer growth (and relocation) can occur. |
| // This blocking scope is not nestable. |
| class BlockGrowBufferScope { |
| public: |
| explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) { |
| assem_->StartBlockGrowBuffer(); |
| } |
| ~BlockGrowBufferScope() { |
| assem_->EndBlockGrowBuffer(); |
| } |
| |
| private: |
| Assembler* assem_; |
| |
| DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope); |
| }; |
| |
| // Record a comment relocation entry that can be used by a disassembler. |
| // Use --code-comments to enable. |
| void RecordComment(const char* msg); |
| |
| // Record a deoptimization reason that can be used by a log or cpu profiler. |
| // Use --trace-deopt to enable. |
| void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position, |
| int id); |
| |
| static int RelocateInternalReference(RelocInfo::Mode rmode, byte* pc, |
| intptr_t pc_delta); |
| |
| // Writes a single byte or word of data in the code stream. Used for |
| // inline tables, e.g., jump-tables. |
| void db(uint8_t data); |
| void dd(uint32_t data); |
| void dq(uint64_t data); |
| void dp(uintptr_t data) { dd(data); } |
| void dd(Label* label); |
| |
| // Postpone the generation of the trampoline pool for the specified number of |
| // instructions. |
| void BlockTrampolinePoolFor(int instructions); |
| |
| // Check if there is less than kGap bytes available in the buffer. |
| // If this is the case, we need to grow the buffer before emitting |
| // an instruction or relocation information. |
| inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; } |
| |
| // Get the number of bytes available in the buffer. |
| inline int available_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Read/patch instructions. |
| static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); } |
| static void instr_at_put(byte* pc, Instr instr) { |
| *reinterpret_cast<Instr*>(pc) = instr; |
| } |
| Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); } |
| void instr_at_put(int pos, Instr instr) { |
| *reinterpret_cast<Instr*>(buffer_ + pos) = instr; |
| } |
| |
| // Check if an instruction is a branch of some kind. |
| static bool IsBranch(Instr instr); |
| static bool IsMsaBranch(Instr instr); |
| static bool IsBc(Instr instr); |
| static bool IsBzc(Instr instr); |
| static bool IsBeq(Instr instr); |
| static bool IsBne(Instr instr); |
| static bool IsBeqzc(Instr instr); |
| static bool IsBnezc(Instr instr); |
| static bool IsBeqc(Instr instr); |
| static bool IsBnec(Instr instr); |
| static bool IsJicOrJialc(Instr instr); |
| |
| static bool IsJump(Instr instr); |
| static bool IsJ(Instr instr); |
| static bool IsLui(Instr instr); |
| static bool IsOri(Instr instr); |
| |
| static bool IsJal(Instr instr); |
| static bool IsJr(Instr instr); |
| static bool IsJalr(Instr instr); |
| |
| static bool IsNop(Instr instr, unsigned int type); |
| static bool IsPop(Instr instr); |
| static bool IsPush(Instr instr); |
| static bool IsLwRegFpOffset(Instr instr); |
| static bool IsSwRegFpOffset(Instr instr); |
| static bool IsLwRegFpNegOffset(Instr instr); |
| static bool IsSwRegFpNegOffset(Instr instr); |
| |
| static Register GetRtReg(Instr instr); |
| static Register GetRsReg(Instr instr); |
| static Register GetRdReg(Instr instr); |
| |
| static uint32_t GetRt(Instr instr); |
| static uint32_t GetRtField(Instr instr); |
| static uint32_t GetRs(Instr instr); |
| static uint32_t GetRsField(Instr instr); |
| static uint32_t GetRd(Instr instr); |
| static uint32_t GetRdField(Instr instr); |
| static uint32_t GetSa(Instr instr); |
| static uint32_t GetSaField(Instr instr); |
| static uint32_t GetOpcodeField(Instr instr); |
| static uint32_t GetFunction(Instr instr); |
| static uint32_t GetFunctionField(Instr instr); |
| static uint32_t GetImmediate16(Instr instr); |
| static uint32_t GetLabelConst(Instr instr); |
| |
| static int32_t GetBranchOffset(Instr instr); |
| static bool IsLw(Instr instr); |
| static int16_t GetLwOffset(Instr instr); |
| static int16_t GetJicOrJialcOffset(Instr instr); |
| static int16_t GetLuiOffset(Instr instr); |
| static Instr SetLwOffset(Instr instr, int16_t offset); |
| |
| static bool IsSw(Instr instr); |
| static Instr SetSwOffset(Instr instr, int16_t offset); |
| static bool IsAddImmediate(Instr instr); |
| static Instr SetAddImmediateOffset(Instr instr, int16_t offset); |
| static uint32_t CreateTargetAddress(Instr instr_lui, Instr instr_jic); |
| static void UnpackTargetAddress(uint32_t address, int16_t& lui_offset, |
| int16_t& jic_offset); |
| static void UnpackTargetAddressUnsigned(uint32_t address, |
| uint32_t& lui_offset, |
| uint32_t& jic_offset); |
| |
| static bool IsAndImmediate(Instr instr); |
| static bool IsEmittedConstant(Instr instr); |
| |
| void CheckTrampolinePool(); |
| |
| void PatchConstantPoolAccessInstruction(int pc_offset, int offset, |
| ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| // No embedded constant pool support. |
| UNREACHABLE(); |
| } |
| |
| bool IsPrevInstrCompactBranch() { return prev_instr_compact_branch_; } |
| static bool IsCompactBranchSupported() { |
| return IsMipsArchVariant(kMips32r6); |
| } |
| |
| inline int UnboundLabelsCount() { return unbound_labels_count_; } |
| |
| protected: |
| // Load Scaled Address instruction. |
| void lsa(Register rd, Register rt, Register rs, uint8_t sa); |
| |
| // Readable constants for base and offset adjustment helper, these indicate if |
| // aside from offset, another value like offset + 4 should fit into int16. |
| enum class OffsetAccessType : bool { |
| SINGLE_ACCESS = false, |
| TWO_ACCESSES = true |
| }; |
| |
| // Helper function for memory load/store using base register and offset. |
| void AdjustBaseAndOffset( |
| MemOperand& src, |
| OffsetAccessType access_type = OffsetAccessType::SINGLE_ACCESS, |
| int second_access_add_to_offset = 4); |
| |
| int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; } |
| |
| // Decode branch instruction at pos and return branch target pos. |
| int target_at(int pos, bool is_internal); |
| |
| // Patch branch instruction at pos to branch to given branch target pos. |
| void target_at_put(int pos, int target_pos, bool is_internal); |
| |
| // Say if we need to relocate with this mode. |
| bool MustUseReg(RelocInfo::Mode rmode); |
| |
| // Record reloc info for current pc_. |
| void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0); |
| |
| // Block the emission of the trampoline pool before pc_offset. |
| void BlockTrampolinePoolBefore(int pc_offset) { |
| if (no_trampoline_pool_before_ < pc_offset) |
| no_trampoline_pool_before_ = pc_offset; |
| } |
| |
| void StartBlockTrampolinePool() { |
| trampoline_pool_blocked_nesting_++; |
| } |
| |
| void EndBlockTrampolinePool() { |
| trampoline_pool_blocked_nesting_--; |
| } |
| |
| bool is_trampoline_pool_blocked() const { |
| return trampoline_pool_blocked_nesting_ > 0; |
| } |
| |
| bool has_exception() const { |
| return internal_trampoline_exception_; |
| } |
| |
| void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi); |
| |
| bool is_trampoline_emitted() const { |
| return trampoline_emitted_; |
| } |
| |
| // Temporarily block automatic assembly buffer growth. |
| void StartBlockGrowBuffer() { |
| DCHECK(!block_buffer_growth_); |
| block_buffer_growth_ = true; |
| } |
| |
| void EndBlockGrowBuffer() { |
| DCHECK(block_buffer_growth_); |
| block_buffer_growth_ = false; |
| } |
| |
| bool is_buffer_growth_blocked() const { |
| return block_buffer_growth_; |
| } |
| |
| void EmitForbiddenSlotInstruction() { |
| if (IsPrevInstrCompactBranch()) { |
| nop(); |
| } |
| } |
| |
| inline void CheckTrampolinePoolQuick(int extra_instructions = 0); |
| |
| inline void CheckBuffer(); |
| |
| RegList scratch_register_list_; |
| |
| private: |
| // Avoid overflows for displacements etc. |
| static const int kMaximalBufferSize = 512 * MB; |
| |
| inline static void set_target_internal_reference_encoded_at(Address pc, |
| Address target); |
| |
| // Buffer size and constant pool distance are checked together at regular |
| // intervals of kBufferCheckInterval emitted bytes. |
| static constexpr int kBufferCheckInterval = 1 * KB / 2; |
| |
| // Code generation. |
| // The relocation writer's position is at least kGap bytes below the end of |
| // the generated instructions. This is so that multi-instruction sequences do |
| // not have to check for overflow. The same is true for writes of large |
| // relocation info entries. |
| static constexpr int kGap = 32; |
| |
| // Repeated checking whether the trampoline pool should be emitted is rather |
| // expensive. By default we only check again once a number of instructions |
| // has been generated. |
| static constexpr int kCheckConstIntervalInst = 32; |
| static constexpr int kCheckConstInterval = |
| kCheckConstIntervalInst * kInstrSize; |
| |
| int next_buffer_check_; // pc offset of next buffer check. |
| |
| // Emission of the trampoline pool may be blocked in some code sequences. |
| int trampoline_pool_blocked_nesting_; // Block emission if this is not zero. |
| int no_trampoline_pool_before_; // Block emission before this pc offset. |
| |
| // Keep track of the last emitted pool to guarantee a maximal distance. |
| int last_trampoline_pool_end_; // pc offset of the end of the last pool. |
| |
| // Automatic growth of the assembly buffer may be blocked for some sequences. |
| bool block_buffer_growth_; // Block growth when true. |
| |
| // Relocation information generation. |
| // Each relocation is encoded as a variable size value. |
| static constexpr int kMaxRelocSize = RelocInfoWriter::kMaxSize; |
| RelocInfoWriter reloc_info_writer; |
| |
| // The bound position, before this we cannot do instruction elimination. |
| int last_bound_pos_; |
| |
| // Readable constants for compact branch handling in emit() |
| enum class CompactBranchType : bool { NO = false, COMPACT_BRANCH = true }; |
| |
| // Code emission. |
| void GrowBuffer(); |
| inline void emit(Instr x, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| inline void emit(uint64_t x); |
| inline void CheckForEmitInForbiddenSlot(); |
| template <typename T> |
| inline void EmitHelper(T x); |
| inline void EmitHelper(Instr x, CompactBranchType is_compact_branch); |
| |
| // Instruction generation. |
| // We have 3 different kind of encoding layout on MIPS. |
| // However due to many different types of objects encoded in the same fields |
| // we have quite a few aliases for each mode. |
| // Using the same structure to refer to Register and FPURegister would spare a |
| // few aliases, but mixing both does not look clean to me. |
| // Anyway we could surely implement this differently. |
| |
| void GenInstrRegister(Opcode opcode, Register rs, Register rt, Register rd, |
| uint16_t sa = 0, SecondaryField func = nullptrSF); |
| |
| void GenInstrRegister(Opcode opcode, |
| Register rs, |
| Register rt, |
| uint16_t msb, |
| uint16_t lsb, |
| SecondaryField func); |
| |
| void GenInstrRegister(Opcode opcode, SecondaryField fmt, FPURegister ft, |
| FPURegister fs, FPURegister fd, |
| SecondaryField func = nullptrSF); |
| |
| void GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft, |
| FPURegister fs, FPURegister fd, |
| SecondaryField func = nullptrSF); |
| |
| void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, |
| FPURegister fs, FPURegister fd, |
| SecondaryField func = nullptrSF); |
| |
| void GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt, |
| FPUControlRegister fs, SecondaryField func = nullptrSF); |
| |
| void GenInstrImmediate( |
| Opcode opcode, Register rs, Register rt, int32_t j, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| void GenInstrImmediate( |
| Opcode opcode, Register rs, SecondaryField SF, int32_t j, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| void GenInstrImmediate( |
| Opcode opcode, Register r1, FPURegister r2, int32_t j, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| void GenInstrImmediate(Opcode opcode, Register base, Register rt, |
| int32_t offset9, int bit6, SecondaryField func); |
| void GenInstrImmediate( |
| Opcode opcode, Register rs, int32_t offset21, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| void GenInstrImmediate(Opcode opcode, Register rs, uint32_t offset21); |
| void GenInstrImmediate( |
| Opcode opcode, int32_t offset26, |
| CompactBranchType is_compact_branch = CompactBranchType::NO); |
| |
| |
| void GenInstrJump(Opcode opcode, |
| uint32_t address); |
| |
| // MSA |
| void GenInstrMsaI8(SecondaryField operation, uint32_t imm8, MSARegister ws, |
| MSARegister wd); |
| |
| void GenInstrMsaI5(SecondaryField operation, SecondaryField df, int32_t imm5, |
| MSARegister ws, MSARegister wd); |
| |
| void GenInstrMsaBit(SecondaryField operation, SecondaryField df, uint32_t m, |
| MSARegister ws, MSARegister wd); |
| |
| void GenInstrMsaI10(SecondaryField operation, SecondaryField df, |
| int32_t imm10, MSARegister wd); |
| |
| template <typename RegType> |
| void GenInstrMsa3R(SecondaryField operation, SecondaryField df, RegType t, |
| MSARegister ws, MSARegister wd); |
| |
| template <typename DstType, typename SrcType> |
| void GenInstrMsaElm(SecondaryField operation, SecondaryField df, uint32_t n, |
| SrcType src, DstType dst); |
| |
| void GenInstrMsa3RF(SecondaryField operation, uint32_t df, MSARegister wt, |
| MSARegister ws, MSARegister wd); |
| |
| void GenInstrMsaVec(SecondaryField operation, MSARegister wt, MSARegister ws, |
| MSARegister wd); |
| |
| void GenInstrMsaMI10(SecondaryField operation, int32_t s10, Register rs, |
| MSARegister wd); |
| |
| void GenInstrMsa2R(SecondaryField operation, SecondaryField df, |
| MSARegister ws, MSARegister wd); |
| |
| void GenInstrMsa2RF(SecondaryField operation, SecondaryField df, |
| MSARegister ws, MSARegister wd); |
| |
| void GenInstrMsaBranch(SecondaryField operation, MSARegister wt, |
| int32_t offset16); |
| |
| inline bool is_valid_msa_df_m(SecondaryField bit_df, uint32_t m) { |
| switch (bit_df) { |
| case BIT_DF_b: |
| return is_uint3(m); |
| case BIT_DF_h: |
| return is_uint4(m); |
| case BIT_DF_w: |
| return is_uint5(m); |
| case BIT_DF_d: |
| return is_uint6(m); |
| default: |
| return false; |
| } |
| } |
| |
| inline bool is_valid_msa_df_n(SecondaryField elm_df, uint32_t n) { |
| switch (elm_df) { |
| case ELM_DF_B: |
| return is_uint4(n); |
| case ELM_DF_H: |
| return is_uint3(n); |
| case ELM_DF_W: |
| return is_uint2(n); |
| case ELM_DF_D: |
| return is_uint1(n); |
| default: |
| return false; |
| } |
| } |
| |
| // Labels. |
| void print(const Label* L); |
| void bind_to(Label* L, int pos); |
| void next(Label* L, bool is_internal); |
| |
| // One trampoline consists of: |
| // - space for trampoline slots, |
| // - space for labels. |
| // |
| // Space for trampoline slots is equal to slot_count * 2 * kInstrSize. |
| // Space for trampoline slots precedes space for labels. Each label is of one |
| // instruction size, so total amount for labels is equal to |
| // label_count * kInstrSize. |
| class Trampoline { |
| public: |
| Trampoline() { |
| start_ = 0; |
| next_slot_ = 0; |
| free_slot_count_ = 0; |
| end_ = 0; |
| } |
| Trampoline(int start, int slot_count) { |
| start_ = start; |
| next_slot_ = start; |
| free_slot_count_ = slot_count; |
| end_ = start + slot_count * kTrampolineSlotsSize; |
| } |
| int start() { |
| return start_; |
| } |
| int end() { |
| return end_; |
| } |
| int take_slot() { |
| int trampoline_slot = kInvalidSlotPos; |
| if (free_slot_count_ <= 0) { |
| // We have run out of space on trampolines. |
| // Make sure we fail in debug mode, so we become aware of each case |
| // when this happens. |
| DCHECK(0); |
| // Internal exception will be caught. |
| } else { |
| trampoline_slot = next_slot_; |
| free_slot_count_--; |
| next_slot_ += kTrampolineSlotsSize; |
| } |
| return trampoline_slot; |
| } |
| |
| private: |
| int start_; |
| int end_; |
| int next_slot_; |
| int free_slot_count_; |
| }; |
| |
| int32_t get_trampoline_entry(int32_t pos); |
| int unbound_labels_count_; |
| // If trampoline is emitted, generated code is becoming large. As this is |
| // already a slow case which can possibly break our code generation for the |
| // extreme case, we use this information to trigger different mode of |
| // branch instruction generation, where we use jump instructions rather |
| // than regular branch instructions. |
| bool trampoline_emitted_; |
| static constexpr int kInvalidSlotPos = -1; |
| |
| // Internal reference positions, required for unbounded internal reference |
| // labels. |
| std::set<int> internal_reference_positions_; |
| bool is_internal_reference(Label* L) { |
| return internal_reference_positions_.find(L->pos()) != |
| internal_reference_positions_.end(); |
| } |
| |
| void EmittedCompactBranchInstruction() { prev_instr_compact_branch_ = true; } |
| void ClearCompactBranchState() { prev_instr_compact_branch_ = false; } |
| bool prev_instr_compact_branch_ = false; |
| |
| Trampoline trampoline_; |
| bool internal_trampoline_exception_; |
| |
| // The following functions help with avoiding allocations of embedded heap |
| // objects during the code assembly phase. {RequestHeapObject} records the |
| // need for a future heap number allocation or code stub generation. After |
| // code assembly, {AllocateAndInstallRequestedHeapObjects} will allocate these |
| // objects and place them where they are expected (determined by the pc offset |
| // associated with each request). That is, for each request, it will patch the |
| // dummy heap object handle that we emitted during code assembly with the |
| // actual heap object handle. |
| protected: |
| // TODO(neis): Make private if its use can be moved out of TurboAssembler. |
| void RequestHeapObject(HeapObjectRequest request); |
| |
| private: |
| void AllocateAndInstallRequestedHeapObjects(Isolate* isolate); |
| |
| std::forward_list<HeapObjectRequest> heap_object_requests_; |
| |
| friend class RegExpMacroAssemblerMIPS; |
| friend class RelocInfo; |
| friend class BlockTrampolinePoolScope; |
| friend class EnsureSpace; |
| }; |
| |
| |
| class EnsureSpace BASE_EMBEDDED { |
| public: |
| explicit inline EnsureSpace(Assembler* assembler); |
| }; |
| |
| class UseScratchRegisterScope { |
| public: |
| explicit UseScratchRegisterScope(Assembler* assembler); |
| ~UseScratchRegisterScope(); |
| |
| Register Acquire(); |
| bool hasAvailable() const; |
| |
| private: |
| RegList* available_; |
| RegList old_available_; |
| }; |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_ARM_ASSEMBLER_MIPS_H_ |