| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #if V8_TARGET_ARCH_MIPS |
| |
| #include "src/api-arguments.h" |
| #include "src/base/bits.h" |
| #include "src/bootstrapper.h" |
| #include "src/code-stubs.h" |
| #include "src/frame-constants.h" |
| #include "src/frames.h" |
| #include "src/heap/heap-inl.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/isolate.h" |
| #include "src/regexp/jsregexp.h" |
| #include "src/regexp/regexp-macro-assembler.h" |
| #include "src/runtime/runtime.h" |
| |
| #include "src/mips/code-stubs-mips.h" // Cannot be the first include. |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| void ArrayNArgumentsConstructorStub::Generate(MacroAssembler* masm) { |
| __ sll(t9, a0, kPointerSizeLog2); |
| __ Addu(t9, sp, t9); |
| __ sw(a1, MemOperand(t9, 0)); |
| __ Push(a1); |
| __ Push(a2); |
| __ Addu(a0, a0, Operand(3)); |
| __ TailCallRuntime(Runtime::kNewArray); |
| } |
| |
| |
| void DoubleToIStub::Generate(MacroAssembler* masm) { |
| Label out_of_range, only_low, negate, done; |
| Register result_reg = destination(); |
| |
| Register scratch = GetRegisterThatIsNotOneOf(result_reg); |
| Register scratch2 = GetRegisterThatIsNotOneOf(result_reg, scratch); |
| Register scratch3 = GetRegisterThatIsNotOneOf(result_reg, scratch, scratch2); |
| DoubleRegister double_scratch = kLithiumScratchDouble; |
| |
| // Account for saved regs. |
| const int kArgumentOffset = 3 * kPointerSize; |
| |
| __ Push(scratch, scratch2, scratch3); |
| |
| // Load double input. |
| __ Ldc1(double_scratch, MemOperand(sp, kArgumentOffset)); |
| |
| // Clear cumulative exception flags and save the FCSR. |
| __ cfc1(scratch2, FCSR); |
| __ ctc1(zero_reg, FCSR); |
| |
| // Try a conversion to a signed integer. |
| __ Trunc_w_d(double_scratch, double_scratch); |
| // Move the converted value into the result register. |
| __ mfc1(scratch3, double_scratch); |
| |
| // Retrieve and restore the FCSR. |
| __ cfc1(scratch, FCSR); |
| __ ctc1(scratch2, FCSR); |
| |
| // Check for overflow and NaNs. |
| __ And( |
| scratch, scratch, |
| kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); |
| // If we had no exceptions then set result_reg and we are done. |
| Label error; |
| __ Branch(&error, ne, scratch, Operand(zero_reg)); |
| __ Move(result_reg, scratch3); |
| __ Branch(&done); |
| __ bind(&error); |
| |
| // Load the double value and perform a manual truncation. |
| Register input_high = scratch2; |
| Register input_low = scratch3; |
| |
| __ lw(input_low, MemOperand(sp, kArgumentOffset + Register::kMantissaOffset)); |
| __ lw(input_high, |
| MemOperand(sp, kArgumentOffset + Register::kExponentOffset)); |
| |
| Label normal_exponent, restore_sign; |
| // Extract the biased exponent in result. |
| __ Ext(result_reg, |
| input_high, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // Check for Infinity and NaNs, which should return 0. |
| __ Subu(scratch, result_reg, HeapNumber::kExponentMask); |
| __ Movz(result_reg, zero_reg, scratch); |
| __ Branch(&done, eq, scratch, Operand(zero_reg)); |
| |
| // Express exponent as delta to (number of mantissa bits + 31). |
| __ Subu(result_reg, |
| result_reg, |
| Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); |
| |
| // If the delta is strictly positive, all bits would be shifted away, |
| // which means that we can return 0. |
| __ Branch(&normal_exponent, le, result_reg, Operand(zero_reg)); |
| __ mov(result_reg, zero_reg); |
| __ Branch(&done); |
| |
| __ bind(&normal_exponent); |
| const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| // Calculate shift. |
| __ Addu(scratch, result_reg, Operand(kShiftBase + HeapNumber::kMantissaBits)); |
| |
| // Save the sign. |
| Register sign = result_reg; |
| result_reg = no_reg; |
| __ And(sign, input_high, Operand(HeapNumber::kSignMask)); |
| |
| // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need |
| // to check for this specific case. |
| Label high_shift_needed, high_shift_done; |
| __ Branch(&high_shift_needed, lt, scratch, Operand(32)); |
| __ mov(input_high, zero_reg); |
| __ Branch(&high_shift_done); |
| __ bind(&high_shift_needed); |
| |
| // Set the implicit 1 before the mantissa part in input_high. |
| __ Or(input_high, |
| input_high, |
| Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
| // Shift the mantissa bits to the correct position. |
| // We don't need to clear non-mantissa bits as they will be shifted away. |
| // If they weren't, it would mean that the answer is in the 32bit range. |
| __ sllv(input_high, input_high, scratch); |
| |
| __ bind(&high_shift_done); |
| |
| // Replace the shifted bits with bits from the lower mantissa word. |
| Label pos_shift, shift_done; |
| __ li(at, 32); |
| __ subu(scratch, at, scratch); |
| __ Branch(&pos_shift, ge, scratch, Operand(zero_reg)); |
| |
| // Negate scratch. |
| __ Subu(scratch, zero_reg, scratch); |
| __ sllv(input_low, input_low, scratch); |
| __ Branch(&shift_done); |
| |
| __ bind(&pos_shift); |
| __ srlv(input_low, input_low, scratch); |
| |
| __ bind(&shift_done); |
| __ Or(input_high, input_high, Operand(input_low)); |
| // Restore sign if necessary. |
| __ mov(scratch, sign); |
| result_reg = sign; |
| sign = no_reg; |
| __ Subu(result_reg, zero_reg, input_high); |
| __ Movz(result_reg, input_high, scratch); |
| |
| __ bind(&done); |
| |
| __ Pop(scratch, scratch2, scratch3); |
| __ Ret(); |
| } |
| |
| |
| void MathPowStub::Generate(MacroAssembler* masm) { |
| const Register exponent = MathPowTaggedDescriptor::exponent(); |
| DCHECK(exponent == a2); |
| const DoubleRegister double_base = f2; |
| const DoubleRegister double_exponent = f4; |
| const DoubleRegister double_result = f0; |
| const DoubleRegister double_scratch = f6; |
| const FPURegister single_scratch = f8; |
| const Register scratch = t5; |
| const Register scratch2 = t3; |
| |
| Label call_runtime, done, int_exponent; |
| if (exponent_type() == TAGGED) { |
| // Base is already in double_base. |
| __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); |
| |
| __ Ldc1(double_exponent, |
| FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
| } |
| |
| if (exponent_type() != INTEGER) { |
| Label int_exponent_convert; |
| // Detect integer exponents stored as double. |
| __ EmitFPUTruncate(kRoundToMinusInf, |
| scratch, |
| double_exponent, |
| at, |
| double_scratch, |
| scratch2, |
| kCheckForInexactConversion); |
| // scratch2 == 0 means there was no conversion error. |
| __ Branch(&int_exponent_convert, eq, scratch2, Operand(zero_reg)); |
| |
| __ push(ra); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(0, 2, scratch2); |
| __ MovToFloatParameters(double_base, double_exponent); |
| __ CallCFunction( |
| ExternalReference::power_double_double_function(isolate()), |
| 0, 2); |
| } |
| __ pop(ra); |
| __ MovFromFloatResult(double_result); |
| __ jmp(&done); |
| |
| __ bind(&int_exponent_convert); |
| } |
| |
| // Calculate power with integer exponent. |
| __ bind(&int_exponent); |
| |
| // Get two copies of exponent in the registers scratch and exponent. |
| if (exponent_type() == INTEGER) { |
| __ mov(scratch, exponent); |
| } else { |
| // Exponent has previously been stored into scratch as untagged integer. |
| __ mov(exponent, scratch); |
| } |
| |
| __ mov_d(double_scratch, double_base); // Back up base. |
| __ Move(double_result, 1.0); |
| |
| // Get absolute value of exponent. |
| Label positive_exponent, bail_out; |
| __ Branch(&positive_exponent, ge, scratch, Operand(zero_reg)); |
| __ Subu(scratch, zero_reg, scratch); |
| // Check when Subu overflows and we get negative result |
| // (happens only when input is MIN_INT). |
| __ Branch(&bail_out, gt, zero_reg, Operand(scratch)); |
| __ bind(&positive_exponent); |
| __ Assert(ge, AbortReason::kUnexpectedNegativeValue, scratch, |
| Operand(zero_reg)); |
| |
| Label while_true, no_carry, loop_end; |
| __ bind(&while_true); |
| |
| __ And(scratch2, scratch, 1); |
| |
| __ Branch(&no_carry, eq, scratch2, Operand(zero_reg)); |
| __ mul_d(double_result, double_result, double_scratch); |
| __ bind(&no_carry); |
| |
| __ sra(scratch, scratch, 1); |
| |
| __ Branch(&loop_end, eq, scratch, Operand(zero_reg)); |
| __ mul_d(double_scratch, double_scratch, double_scratch); |
| |
| __ Branch(&while_true); |
| |
| __ bind(&loop_end); |
| |
| __ Branch(&done, ge, exponent, Operand(zero_reg)); |
| __ Move(double_scratch, 1.0); |
| __ div_d(double_result, double_scratch, double_result); |
| // Test whether result is zero. Bail out to check for subnormal result. |
| // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
| __ BranchF(&done, nullptr, ne, double_result, kDoubleRegZero); |
| |
| // double_exponent may not contain the exponent value if the input was a |
| // smi. We set it with exponent value before bailing out. |
| __ bind(&bail_out); |
| __ mtc1(exponent, single_scratch); |
| __ cvt_d_w(double_exponent, single_scratch); |
| |
| // Returning or bailing out. |
| __ push(ra); |
| { |
| AllowExternalCallThatCantCauseGC scope(masm); |
| __ PrepareCallCFunction(0, 2, scratch); |
| __ MovToFloatParameters(double_base, double_exponent); |
| __ CallCFunction(ExternalReference::power_double_double_function(isolate()), |
| 0, 2); |
| } |
| __ pop(ra); |
| __ MovFromFloatResult(double_result); |
| |
| __ bind(&done); |
| __ Ret(); |
| } |
| |
| Movability CEntryStub::NeedsImmovableCode() { return kImmovable; } |
| |
| void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| CEntryStub::GenerateAheadOfTime(isolate); |
| CommonArrayConstructorStub::GenerateStubsAheadOfTime(isolate); |
| StoreFastElementStub::GenerateAheadOfTime(isolate); |
| } |
| |
| |
| void CodeStub::GenerateFPStubs(Isolate* isolate) { |
| // Generate if not already in cache. |
| SaveFPRegsMode mode = kSaveFPRegs; |
| CEntryStub(isolate, 1, mode).GetCode(); |
| } |
| |
| |
| void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
| CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
| stub.GetCode(); |
| CEntryStub save_doubles(isolate, 1, kSaveFPRegs); |
| save_doubles.GetCode(); |
| } |
| |
| |
| void CEntryStub::Generate(MacroAssembler* masm) { |
| // Called from JavaScript; parameters are on stack as if calling JS function |
| // a0: number of arguments including receiver |
| // a1: pointer to builtin function |
| // fp: frame pointer (restored after C call) |
| // sp: stack pointer (restored as callee's sp after C call) |
| // cp: current context (C callee-saved) |
| // |
| // If argv_in_register(): |
| // a2: pointer to the first argument |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| if (argv_in_register()) { |
| // Move argv into the correct register. |
| __ mov(s1, a2); |
| } else { |
| // Compute the argv pointer in a callee-saved register. |
| __ Lsa(s1, sp, a0, kPointerSizeLog2); |
| __ Subu(s1, s1, kPointerSize); |
| } |
| |
| // Enter the exit frame that transitions from JavaScript to C++. |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(save_doubles(), 0, is_builtin_exit() |
| ? StackFrame::BUILTIN_EXIT |
| : StackFrame::EXIT); |
| |
| // s0: number of arguments including receiver (C callee-saved) |
| // s1: pointer to first argument (C callee-saved) |
| // s2: pointer to builtin function (C callee-saved) |
| |
| // Prepare arguments for C routine. |
| // a0 = argc |
| __ mov(s0, a0); |
| __ mov(s2, a1); |
| |
| // We are calling compiled C/C++ code. a0 and a1 hold our two arguments. We |
| // also need to reserve the 4 argument slots on the stack. |
| |
| __ AssertStackIsAligned(); |
| |
| // a0 = argc, a1 = argv, a2 = isolate |
| __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); |
| __ mov(a1, s1); |
| |
| // To let the GC traverse the return address of the exit frames, we need to |
| // know where the return address is. The CEntryStub is unmovable, so |
| // we can store the address on the stack to be able to find it again and |
| // we never have to restore it, because it will not change. |
| { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
| int kNumInstructionsToJump = 4; |
| Label find_ra; |
| // Adjust the value in ra to point to the correct return location, 2nd |
| // instruction past the real call into C code (the jalr(t9)), and push it. |
| // This is the return address of the exit frame. |
| if (kArchVariant >= kMips32r6) { |
| __ addiupc(ra, kNumInstructionsToJump + 1); |
| } else { |
| // This branch-and-link sequence is needed to find the current PC on mips |
| // before r6, saved to the ra register. |
| __ bal(&find_ra); // bal exposes branch delay slot. |
| __ Addu(ra, ra, kNumInstructionsToJump * Instruction::kInstrSize); |
| } |
| __ bind(&find_ra); |
| |
| // This spot was reserved in EnterExitFrame. |
| __ sw(ra, MemOperand(sp)); |
| // Stack space reservation moved to the branch delay slot below. |
| // Stack is still aligned. |
| |
| // Call the C routine. |
| __ mov(t9, s2); // Function pointer to t9 to conform to ABI for PIC. |
| __ jalr(t9); |
| // Set up sp in the delay slot. |
| __ addiu(sp, sp, -kCArgsSlotsSize); |
| // Make sure the stored 'ra' points to this position. |
| DCHECK_EQ(kNumInstructionsToJump, |
| masm->InstructionsGeneratedSince(&find_ra)); |
| } |
| |
| // Result returned in v0 or v1:v0 - do not destroy these registers! |
| |
| // Check result for exception sentinel. |
| Label exception_returned; |
| __ LoadRoot(t0, Heap::kExceptionRootIndex); |
| __ Branch(&exception_returned, eq, t0, Operand(v0)); |
| |
| // Check that there is no pending exception, otherwise we |
| // should have returned the exception sentinel. |
| if (FLAG_debug_code) { |
| Label okay; |
| ExternalReference pending_exception_address( |
| IsolateAddressId::kPendingExceptionAddress, isolate()); |
| __ li(a2, Operand(pending_exception_address)); |
| __ lw(a2, MemOperand(a2)); |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| // Cannot use check here as it attempts to generate call into runtime. |
| __ Branch(&okay, eq, t0, Operand(a2)); |
| __ stop("Unexpected pending exception"); |
| __ bind(&okay); |
| } |
| |
| // Exit C frame and return. |
| // v0:v1: result |
| // sp: stack pointer |
| // fp: frame pointer |
| Register argc = argv_in_register() |
| // We don't want to pop arguments so set argc to no_reg. |
| ? no_reg |
| // s0: still holds argc (callee-saved). |
| : s0; |
| __ LeaveExitFrame(save_doubles(), argc, EMIT_RETURN); |
| |
| // Handling of exception. |
| __ bind(&exception_returned); |
| |
| ExternalReference pending_handler_context_address( |
| IsolateAddressId::kPendingHandlerContextAddress, isolate()); |
| ExternalReference pending_handler_entrypoint_address( |
| IsolateAddressId::kPendingHandlerEntrypointAddress, isolate()); |
| ExternalReference pending_handler_fp_address( |
| IsolateAddressId::kPendingHandlerFPAddress, isolate()); |
| ExternalReference pending_handler_sp_address( |
| IsolateAddressId::kPendingHandlerSPAddress, isolate()); |
| |
| // Ask the runtime for help to determine the handler. This will set v0 to |
| // contain the current pending exception, don't clobber it. |
| ExternalReference find_handler(Runtime::kUnwindAndFindExceptionHandler, |
| isolate()); |
| { |
| FrameScope scope(masm, StackFrame::MANUAL); |
| __ PrepareCallCFunction(3, 0, a0); |
| __ mov(a0, zero_reg); |
| __ mov(a1, zero_reg); |
| __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); |
| __ CallCFunction(find_handler, 3); |
| } |
| |
| // Retrieve the handler context, SP and FP. |
| __ li(cp, Operand(pending_handler_context_address)); |
| __ lw(cp, MemOperand(cp)); |
| __ li(sp, Operand(pending_handler_sp_address)); |
| __ lw(sp, MemOperand(sp)); |
| __ li(fp, Operand(pending_handler_fp_address)); |
| __ lw(fp, MemOperand(fp)); |
| |
| // If the handler is a JS frame, restore the context to the frame. Note that |
| // the context will be set to (cp == 0) for non-JS frames. |
| Label zero; |
| __ Branch(&zero, eq, cp, Operand(zero_reg)); |
| __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| __ bind(&zero); |
| |
| // Compute the handler entry address and jump to it. |
| __ li(t9, Operand(pending_handler_entrypoint_address)); |
| __ lw(t9, MemOperand(t9)); |
| __ Jump(t9); |
| } |
| |
| |
| void JSEntryStub::Generate(MacroAssembler* masm) { |
| Label invoke, handler_entry, exit; |
| Isolate* isolate = masm->isolate(); |
| |
| // Registers: |
| // a0: entry address |
| // a1: function |
| // a2: receiver |
| // a3: argc |
| // |
| // Stack: |
| // 4 args slots |
| // args |
| |
| ProfileEntryHookStub::MaybeCallEntryHook(masm); |
| |
| // Save callee saved registers on the stack. |
| __ MultiPush(kCalleeSaved | ra.bit()); |
| |
| // Save callee-saved FPU registers. |
| __ MultiPushFPU(kCalleeSavedFPU); |
| // Set up the reserved register for 0.0. |
| __ Move(kDoubleRegZero, 0.0); |
| |
| |
| // Load argv in s0 register. |
| int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; |
| offset_to_argv += kNumCalleeSavedFPU * kDoubleSize; |
| |
| __ InitializeRootRegister(); |
| __ lw(s0, MemOperand(sp, offset_to_argv + kCArgsSlotsSize)); |
| |
| // We build an EntryFrame. |
| __ li(t3, Operand(-1)); // Push a bad frame pointer to fail if it is used. |
| StackFrame::Type marker = type(); |
| __ li(t2, Operand(StackFrame::TypeToMarker(marker))); |
| __ li(t1, Operand(StackFrame::TypeToMarker(marker))); |
| __ li(t0, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate))); |
| __ lw(t0, MemOperand(t0)); |
| __ Push(t3, t2, t1, t0); |
| // Set up frame pointer for the frame to be pushed. |
| __ addiu(fp, sp, -EntryFrameConstants::kCallerFPOffset); |
| |
| // Registers: |
| // a0: entry_address |
| // a1: function |
| // a2: receiver_pointer |
| // a3: argc |
| // s0: argv |
| // |
| // Stack: |
| // caller fp | |
| // function slot | entry frame |
| // context slot | |
| // bad fp (0xFF...F) | |
| // callee saved registers + ra |
| // 4 args slots |
| // args |
| |
| // If this is the outermost JS call, set js_entry_sp value. |
| Label non_outermost_js; |
| ExternalReference js_entry_sp(IsolateAddressId::kJSEntrySPAddress, isolate); |
| __ li(t1, Operand(ExternalReference(js_entry_sp))); |
| __ lw(t2, MemOperand(t1)); |
| __ Branch(&non_outermost_js, ne, t2, Operand(zero_reg)); |
| __ sw(fp, MemOperand(t1)); |
| __ li(t0, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| Label cont; |
| __ b(&cont); |
| __ nop(); // Branch delay slot nop. |
| __ bind(&non_outermost_js); |
| __ li(t0, Operand(StackFrame::INNER_JSENTRY_FRAME)); |
| __ bind(&cont); |
| __ push(t0); |
| |
| // Jump to a faked try block that does the invoke, with a faked catch |
| // block that sets the pending exception. |
| __ jmp(&invoke); |
| __ bind(&handler_entry); |
| handler_offset_ = handler_entry.pos(); |
| // Caught exception: Store result (exception) in the pending exception |
| // field in the JSEnv and return a failure sentinel. Coming in here the |
| // fp will be invalid because the PushStackHandler below sets it to 0 to |
| // signal the existence of the JSEntry frame. |
| __ li(t0, Operand(ExternalReference( |
| IsolateAddressId::kPendingExceptionAddress, isolate))); |
| __ sw(v0, MemOperand(t0)); // We come back from 'invoke'. result is in v0. |
| __ LoadRoot(v0, Heap::kExceptionRootIndex); |
| __ b(&exit); // b exposes branch delay slot. |
| __ nop(); // Branch delay slot nop. |
| |
| // Invoke: Link this frame into the handler chain. |
| __ bind(&invoke); |
| __ PushStackHandler(); |
| // If an exception not caught by another handler occurs, this handler |
| // returns control to the code after the bal(&invoke) above, which |
| // restores all kCalleeSaved registers (including cp and fp) to their |
| // saved values before returning a failure to C. |
| |
| // Invoke the function by calling through JS entry trampoline builtin. |
| // Notice that we cannot store a reference to the trampoline code directly in |
| // this stub, because runtime stubs are not traversed when doing GC. |
| |
| // Registers: |
| // a0: entry_address |
| // a1: function |
| // a2: receiver_pointer |
| // a3: argc |
| // s0: argv |
| // |
| // Stack: |
| // handler frame |
| // entry frame |
| // callee saved registers + ra |
| // 4 args slots |
| // args |
| __ Call(EntryTrampoline(), RelocInfo::CODE_TARGET); |
| |
| // Unlink this frame from the handler chain. |
| __ PopStackHandler(); |
| |
| __ bind(&exit); // v0 holds result |
| // Check if the current stack frame is marked as the outermost JS frame. |
| Label non_outermost_js_2; |
| __ pop(t1); |
| __ Branch(&non_outermost_js_2, ne, t1, |
| Operand(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
| __ li(t1, Operand(ExternalReference(js_entry_sp))); |
| __ sw(zero_reg, MemOperand(t1)); |
| __ bind(&non_outermost_js_2); |
| |
| // Restore the top frame descriptors from the stack. |
| __ pop(t1); |
| __ li(t0, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate))); |
| __ sw(t1, MemOperand(t0)); |
| |
| // Reset the stack to the callee saved registers. |
| __ addiu(sp, sp, -EntryFrameConstants::kCallerFPOffset); |
| |
| // Restore callee-saved fpu registers. |
| __ MultiPopFPU(kCalleeSavedFPU); |
| |
| // Restore callee saved registers from the stack. |
| __ MultiPop(kCalleeSaved | ra.bit()); |
| // Return. |
| __ Jump(ra); |
| } |
| |
| void DirectCEntryStub::Generate(MacroAssembler* masm) { |
| // Make place for arguments to fit C calling convention. Most of the callers |
| // of DirectCEntryStub::GenerateCall are using EnterExitFrame/LeaveExitFrame |
| // so they handle stack restoring and we don't have to do that here. |
| // Any caller of DirectCEntryStub::GenerateCall must take care of dropping |
| // kCArgsSlotsSize stack space after the call. |
| __ Subu(sp, sp, Operand(kCArgsSlotsSize)); |
| // Place the return address on the stack, making the call |
| // GC safe. The RegExp backend also relies on this. |
| __ sw(ra, MemOperand(sp, kCArgsSlotsSize)); |
| __ Call(t9); // Call the C++ function. |
| __ lw(t9, MemOperand(sp, kCArgsSlotsSize)); |
| |
| if (FLAG_debug_code && FLAG_enable_slow_asserts) { |
| // In case of an error the return address may point to a memory area |
| // filled with kZapValue by the GC. |
| // Dereference the address and check for this. |
| __ lw(t0, MemOperand(t9)); |
| __ Assert(ne, AbortReason::kReceivedInvalidReturnAddress, t0, |
| Operand(reinterpret_cast<uint32_t>(kZapValue))); |
| } |
| __ Jump(t9); |
| } |
| |
| |
| void DirectCEntryStub::GenerateCall(MacroAssembler* masm, |
| Register target) { |
| intptr_t loc = |
| reinterpret_cast<intptr_t>(GetCode().location()); |
| __ Move(t9, target); |
| __ li(at, Operand(loc, RelocInfo::CODE_TARGET), CONSTANT_SIZE); |
| __ Call(at); |
| } |
| |
| |
| void ProfileEntryHookStub::MaybeCallEntryHookDelayed(TurboAssembler* tasm, |
| Zone* zone) { |
| if (tasm->isolate()->function_entry_hook() != nullptr) { |
| tasm->push(ra); |
| tasm->CallStubDelayed(new (zone) ProfileEntryHookStub(nullptr)); |
| tasm->pop(ra); |
| } |
| } |
| |
| void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
| if (masm->isolate()->function_entry_hook() != nullptr) { |
| ProfileEntryHookStub stub(masm->isolate()); |
| __ push(ra); |
| __ CallStub(&stub); |
| __ pop(ra); |
| } |
| } |
| |
| |
| void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
| // The entry hook is a "push ra" instruction, followed by a call. |
| // Note: on MIPS "push" is 2 instruction |
| const int32_t kReturnAddressDistanceFromFunctionStart = |
| Assembler::kCallTargetAddressOffset + (2 * Assembler::kInstrSize); |
| |
| // This should contain all kJSCallerSaved registers. |
| const RegList kSavedRegs = |
| kJSCallerSaved | // Caller saved registers. |
| s5.bit(); // Saved stack pointer. |
| |
| // We also save ra, so the count here is one higher than the mask indicates. |
| const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; |
| |
| // Save all caller-save registers as this may be called from anywhere. |
| __ MultiPush(kSavedRegs | ra.bit()); |
| |
| // Compute the function's address for the first argument. |
| __ Subu(a0, ra, Operand(kReturnAddressDistanceFromFunctionStart)); |
| |
| // The caller's return address is above the saved temporaries. |
| // Grab that for the second argument to the hook. |
| __ Addu(a1, sp, Operand(kNumSavedRegs * kPointerSize)); |
| |
| // Align the stack if necessary. |
| int frame_alignment = masm->ActivationFrameAlignment(); |
| if (frame_alignment > kPointerSize) { |
| __ mov(s5, sp); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| __ And(sp, sp, Operand(-frame_alignment)); |
| } |
| __ Subu(sp, sp, kCArgsSlotsSize); |
| #if defined(V8_HOST_ARCH_MIPS) |
| int32_t entry_hook = |
| reinterpret_cast<int32_t>(isolate()->function_entry_hook()); |
| __ li(t9, Operand(entry_hook)); |
| #else |
| // Under the simulator we need to indirect the entry hook through a |
| // trampoline function at a known address. |
| // It additionally takes an isolate as a third parameter. |
| __ li(a2, Operand(ExternalReference::isolate_address(isolate()))); |
| |
| ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
| __ li(t9, Operand(ExternalReference(&dispatcher, |
| ExternalReference::BUILTIN_CALL, |
| isolate()))); |
| #endif |
| // Call C function through t9 to conform ABI for PIC. |
| __ Call(t9); |
| |
| // Restore the stack pointer if needed. |
| if (frame_alignment > kPointerSize) { |
| __ mov(sp, s5); |
| } else { |
| __ Addu(sp, sp, kCArgsSlotsSize); |
| } |
| |
| // Also pop ra to get Ret(0). |
| __ MultiPop(kSavedRegs | ra.bit()); |
| __ Ret(); |
| } |
| |
| |
| template<class T> |
| static void CreateArrayDispatch(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| T stub(masm->isolate(), GetInitialFastElementsKind(), mode); |
| __ TailCallStub(&stub); |
| } else if (mode == DONT_OVERRIDE) { |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| T stub(masm->isolate(), kind); |
| __ TailCallStub(&stub, eq, a3, Operand(kind)); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| // a2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
| // a3 - kind (if mode != DISABLE_ALLOCATION_SITES) |
| // a0 - number of arguments |
| // a1 - constructor? |
| // sp[0] - last argument |
| STATIC_ASSERT(PACKED_SMI_ELEMENTS == 0); |
| STATIC_ASSERT(HOLEY_SMI_ELEMENTS == 1); |
| STATIC_ASSERT(PACKED_ELEMENTS == 2); |
| STATIC_ASSERT(HOLEY_ELEMENTS == 3); |
| STATIC_ASSERT(PACKED_DOUBLE_ELEMENTS == 4); |
| STATIC_ASSERT(HOLEY_DOUBLE_ELEMENTS == 5); |
| |
| if (mode == DISABLE_ALLOCATION_SITES) { |
| ElementsKind initial = GetInitialFastElementsKind(); |
| ElementsKind holey_initial = GetHoleyElementsKind(initial); |
| |
| ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), |
| holey_initial, |
| DISABLE_ALLOCATION_SITES); |
| __ TailCallStub(&stub_holey); |
| } else if (mode == DONT_OVERRIDE) { |
| // is the low bit set? If so, we are holey and that is good. |
| Label normal_sequence; |
| __ And(at, a3, Operand(1)); |
| __ Branch(&normal_sequence, ne, at, Operand(zero_reg)); |
| |
| // We are going to create a holey array, but our kind is non-holey. |
| // Fix kind and retry (only if we have an allocation site in the slot). |
| __ Addu(a3, a3, Operand(1)); |
| |
| if (FLAG_debug_code) { |
| __ lw(t1, FieldMemOperand(a2, 0)); |
| __ LoadRoot(at, Heap::kAllocationSiteMapRootIndex); |
| __ Assert(eq, AbortReason::kExpectedAllocationSite, t1, Operand(at)); |
| } |
| |
| // Save the resulting elements kind in type info. We can't just store a3 |
| // in the AllocationSite::transition_info field because elements kind is |
| // restricted to a portion of the field...upper bits need to be left alone. |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ lw(t0, FieldMemOperand( |
| a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ Addu(t0, t0, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); |
| __ sw(t0, FieldMemOperand( |
| a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| |
| __ bind(&normal_sequence); |
| int last_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= last_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); |
| __ TailCallStub(&stub, eq, a3, Operand(kind)); |
| } |
| |
| // If we reached this point there is a problem. |
| __ Abort(AbortReason::kUnexpectedElementsKindInArrayConstructor); |
| } else { |
| UNREACHABLE(); |
| } |
| } |
| |
| |
| template<class T> |
| static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
| int to_index = |
| GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
| for (int i = 0; i <= to_index; ++i) { |
| ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
| T stub(isolate, kind); |
| stub.GetCode(); |
| if (AllocationSite::ShouldTrack(kind)) { |
| T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); |
| stub1.GetCode(); |
| } |
| } |
| } |
| |
| void CommonArrayConstructorStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
| ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
| isolate); |
| ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
| isolate); |
| ArrayNArgumentsConstructorStub stub(isolate); |
| stub.GetCode(); |
| ElementsKind kinds[2] = {PACKED_ELEMENTS, HOLEY_ELEMENTS}; |
| for (int i = 0; i < 2; i++) { |
| // For internal arrays we only need a few things. |
| InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); |
| stubh1.GetCode(); |
| InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); |
| stubh2.GetCode(); |
| } |
| } |
| |
| |
| void ArrayConstructorStub::GenerateDispatchToArrayStub( |
| MacroAssembler* masm, |
| AllocationSiteOverrideMode mode) { |
| Label not_zero_case, not_one_case; |
| __ And(at, a0, a0); |
| __ Branch(¬_zero_case, ne, at, Operand(zero_reg)); |
| CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
| |
| __ bind(¬_zero_case); |
| __ Branch(¬_one_case, gt, a0, Operand(1)); |
| CreateArrayDispatchOneArgument(masm, mode); |
| |
| __ bind(¬_one_case); |
| ArrayNArgumentsConstructorStub stub(masm->isolate()); |
| __ TailCallStub(&stub); |
| } |
| |
| |
| void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc (only if argument_count() is ANY or MORE_THAN_ONE) |
| // -- a1 : constructor |
| // -- a2 : AllocationSite or undefined |
| // -- a3 : Original constructor |
| // -- sp[0] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ lw(t0, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ SmiTst(t0, at); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, at, |
| Operand(zero_reg)); |
| __ GetObjectType(t0, t0, t1); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, t1, |
| Operand(MAP_TYPE)); |
| |
| // We should either have undefined in a2 or a valid AllocationSite |
| __ AssertUndefinedOrAllocationSite(a2, t0); |
| } |
| |
| // Enter the context of the Array function. |
| __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| |
| Label subclassing; |
| __ Branch(&subclassing, ne, a1, Operand(a3)); |
| |
| Label no_info; |
| // Get the elements kind and case on that. |
| __ LoadRoot(at, Heap::kUndefinedValueRootIndex); |
| __ Branch(&no_info, eq, a2, Operand(at)); |
| |
| __ lw(a3, FieldMemOperand( |
| a2, AllocationSite::kTransitionInfoOrBoilerplateOffset)); |
| __ SmiUntag(a3); |
| STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
| __ And(a3, a3, Operand(AllocationSite::ElementsKindBits::kMask)); |
| GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
| |
| __ bind(&no_info); |
| GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
| |
| // Subclassing. |
| __ bind(&subclassing); |
| __ Lsa(at, sp, a0, kPointerSizeLog2); |
| __ sw(a1, MemOperand(at)); |
| __ li(at, Operand(3)); |
| __ addu(a0, a0, at); |
| __ Push(a3, a2); |
| __ JumpToExternalReference(ExternalReference(Runtime::kNewArray, isolate())); |
| } |
| |
| |
| void InternalArrayConstructorStub::GenerateCase( |
| MacroAssembler* masm, ElementsKind kind) { |
| |
| InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
| __ TailCallStub(&stub0, lo, a0, Operand(1)); |
| |
| ArrayNArgumentsConstructorStub stubN(isolate()); |
| __ TailCallStub(&stubN, hi, a0, Operand(1)); |
| |
| if (IsFastPackedElementsKind(kind)) { |
| // We might need to create a holey array |
| // look at the first argument. |
| __ lw(at, MemOperand(sp, 0)); |
| |
| InternalArraySingleArgumentConstructorStub |
| stub1_holey(isolate(), GetHoleyElementsKind(kind)); |
| __ TailCallStub(&stub1_holey, ne, at, Operand(zero_reg)); |
| } |
| |
| InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
| __ TailCallStub(&stub1); |
| } |
| |
| |
| void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- a0 : argc |
| // -- a1 : constructor |
| // -- sp[0] : return address |
| // -- sp[4] : last argument |
| // ----------------------------------- |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the global and natives |
| // builtin Array functions which always have maps. |
| |
| // Initial map for the builtin Array function should be a map. |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a nullptr and a Smi. |
| __ SmiTst(a3, at); |
| __ Assert(ne, AbortReason::kUnexpectedInitialMapForArrayFunction, at, |
| Operand(zero_reg)); |
| __ GetObjectType(a3, a3, t0); |
| __ Assert(eq, AbortReason::kUnexpectedInitialMapForArrayFunction, t0, |
| Operand(MAP_TYPE)); |
| } |
| |
| // Figure out the right elements kind. |
| __ lw(a3, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Load the map's "bit field 2" into a3. We only need the first byte, |
| // but the following bit field extraction takes care of that anyway. |
| __ lbu(a3, FieldMemOperand(a3, Map::kBitField2Offset)); |
| // Retrieve elements_kind from bit field 2. |
| __ DecodeField<Map::ElementsKindBits>(a3); |
| |
| if (FLAG_debug_code) { |
| Label done; |
| __ Branch(&done, eq, a3, Operand(PACKED_ELEMENTS)); |
| __ Assert( |
| eq, |
| AbortReason::kInvalidElementsKindForInternalArrayOrInternalPackedArray, |
| a3, Operand(HOLEY_ELEMENTS)); |
| __ bind(&done); |
| } |
| |
| Label fast_elements_case; |
| __ Branch(&fast_elements_case, eq, a3, Operand(PACKED_ELEMENTS)); |
| GenerateCase(masm, HOLEY_ELEMENTS); |
| |
| __ bind(&fast_elements_case); |
| GenerateCase(masm, PACKED_ELEMENTS); |
| } |
| |
| static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return ref0.address() - ref1.address(); |
| } |
| |
| |
| // Calls an API function. Allocates HandleScope, extracts returned value |
| // from handle and propagates exceptions. Restores context. stack_space |
| // - space to be unwound on exit (includes the call JS arguments space and |
| // the additional space allocated for the fast call). |
| static void CallApiFunctionAndReturn(MacroAssembler* masm, |
| Register function_address, |
| ExternalReference thunk_ref, |
| int stack_space, |
| int32_t stack_space_offset, |
| MemOperand return_value_operand) { |
| Isolate* isolate = masm->isolate(); |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(isolate); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(isolate), next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(isolate), next_address); |
| |
| DCHECK(function_address == a1 || function_address == a2); |
| |
| Label profiler_disabled; |
| Label end_profiler_check; |
| __ li(t9, Operand(ExternalReference::is_profiling_address(isolate))); |
| __ lb(t9, MemOperand(t9, 0)); |
| __ Branch(&profiler_disabled, eq, t9, Operand(zero_reg)); |
| |
| // Additional parameter is the address of the actual callback. |
| __ li(t9, Operand(thunk_ref)); |
| __ jmp(&end_profiler_check); |
| |
| __ bind(&profiler_disabled); |
| __ mov(t9, function_address); |
| __ bind(&end_profiler_check); |
| |
| // Allocate HandleScope in callee-save registers. |
| __ li(s3, Operand(next_address)); |
| __ lw(s0, MemOperand(s3, kNextOffset)); |
| __ lw(s1, MemOperand(s3, kLimitOffset)); |
| __ lw(s2, MemOperand(s3, kLevelOffset)); |
| __ Addu(s2, s2, Operand(1)); |
| __ sw(s2, MemOperand(s3, kLevelOffset)); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1, a0); |
| __ li(a0, Operand(ExternalReference::isolate_address(isolate))); |
| __ CallCFunction(ExternalReference::log_enter_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| // Native call returns to the DirectCEntry stub which redirects to the |
| // return address pushed on stack (could have moved after GC). |
| // DirectCEntry stub itself is generated early and never moves. |
| DirectCEntryStub stub(isolate); |
| stub.GenerateCall(masm, t9); |
| |
| if (FLAG_log_timer_events) { |
| FrameScope frame(masm, StackFrame::MANUAL); |
| __ PushSafepointRegisters(); |
| __ PrepareCallCFunction(1, a0); |
| __ li(a0, Operand(ExternalReference::isolate_address(isolate))); |
| __ CallCFunction(ExternalReference::log_leave_external_function(isolate), |
| 1); |
| __ PopSafepointRegisters(); |
| } |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| Label return_value_loaded; |
| |
| // Load value from ReturnValue. |
| __ lw(v0, return_value_operand); |
| __ bind(&return_value_loaded); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| __ sw(s0, MemOperand(s3, kNextOffset)); |
| if (__ emit_debug_code()) { |
| __ lw(a1, MemOperand(s3, kLevelOffset)); |
| __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall, a1, |
| Operand(s2)); |
| } |
| __ Subu(s2, s2, Operand(1)); |
| __ sw(s2, MemOperand(s3, kLevelOffset)); |
| __ lw(at, MemOperand(s3, kLimitOffset)); |
| __ Branch(&delete_allocated_handles, ne, s1, Operand(at)); |
| |
| // Leave the API exit frame. |
| __ bind(&leave_exit_frame); |
| |
| if (stack_space_offset != kInvalidStackOffset) { |
| // ExitFrame contains four MIPS argument slots after DirectCEntryStub call |
| // so this must be accounted for. |
| __ lw(s0, MemOperand(sp, stack_space_offset + kCArgsSlotsSize)); |
| } else { |
| __ li(s0, Operand(stack_space)); |
| } |
| __ LeaveExitFrame(false, s0, NO_EMIT_RETURN, |
| stack_space_offset != kInvalidStackOffset); |
| |
| // Check if the function scheduled an exception. |
| __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| __ li(at, Operand(ExternalReference::scheduled_exception_address(isolate))); |
| __ lw(t1, MemOperand(at)); |
| __ Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); |
| |
| __ Ret(); |
| |
| // Re-throw by promoting a scheduled exception. |
| __ bind(&promote_scheduled_exception); |
| __ TailCallRuntime(Runtime::kPromoteScheduledException); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| __ bind(&delete_allocated_handles); |
| __ sw(s1, MemOperand(s3, kLimitOffset)); |
| __ mov(s0, v0); |
| __ mov(a0, v0); |
| __ PrepareCallCFunction(1, s1); |
| __ li(a0, Operand(ExternalReference::isolate_address(isolate))); |
| __ CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate), |
| 1); |
| __ mov(v0, s0); |
| __ jmp(&leave_exit_frame); |
| } |
| |
| void CallApiCallbackStub::Generate(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- t0 : call_data |
| // -- a2 : holder |
| // -- a1 : api_function_address |
| // -- cp : context |
| // -- |
| // -- sp[0] : last argument |
| // -- ... |
| // -- sp[(argc - 1)* 4] : first argument |
| // -- sp[argc * 4] : receiver |
| // ----------------------------------- |
| |
| Register call_data = t0; |
| Register holder = a2; |
| Register api_function_address = a1; |
| |
| typedef FunctionCallbackArguments FCA; |
| |
| STATIC_ASSERT(FCA::kArgsLength == 6); |
| STATIC_ASSERT(FCA::kNewTargetIndex == 5); |
| STATIC_ASSERT(FCA::kDataIndex == 4); |
| STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
| STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
| STATIC_ASSERT(FCA::kIsolateIndex == 1); |
| STATIC_ASSERT(FCA::kHolderIndex == 0); |
| |
| // new target |
| __ PushRoot(Heap::kUndefinedValueRootIndex); |
| |
| // call data. |
| __ Push(call_data); |
| |
| Register scratch = call_data; |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| // Push return value and default return value. |
| __ Push(scratch, scratch); |
| __ li(scratch, Operand(ExternalReference::isolate_address(masm->isolate()))); |
| // Push isolate and holder. |
| __ Push(scratch, holder); |
| |
| // Prepare arguments. |
| __ mov(scratch, sp); |
| |
| // Allocate the v8::Arguments structure in the arguments' space since |
| // it's not controlled by GC. |
| const int kApiStackSpace = 3; |
| |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, kApiStackSpace); |
| |
| DCHECK(api_function_address != a0 && scratch != a0); |
| // a0 = FunctionCallbackInfo& |
| // Arguments is after the return address. |
| __ Addu(a0, sp, Operand(1 * kPointerSize)); |
| // FunctionCallbackInfo::implicit_args_ |
| __ sw(scratch, MemOperand(a0, 0 * kPointerSize)); |
| // FunctionCallbackInfo::values_ |
| __ Addu(at, scratch, Operand((FCA::kArgsLength - 1 + argc()) * kPointerSize)); |
| __ sw(at, MemOperand(a0, 1 * kPointerSize)); |
| // FunctionCallbackInfo::length_ = argc |
| __ li(at, Operand(argc())); |
| __ sw(at, MemOperand(a0, 2 * kPointerSize)); |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_function_callback(masm->isolate()); |
| |
| AllowExternalCallThatCantCauseGC scope(masm); |
| // Stores return the first js argument. |
| int return_value_offset = 2 + FCA::kReturnValueOffset; |
| MemOperand return_value_operand(fp, return_value_offset * kPointerSize); |
| const int stack_space = argc() + FCA::kArgsLength + 1; |
| // TODO(adamk): Why are we clobbering this immediately? |
| const int32_t stack_space_offset = kInvalidStackOffset; |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, stack_space, |
| stack_space_offset, return_value_operand); |
| } |
| |
| |
| void CallApiGetterStub::Generate(MacroAssembler* masm) { |
| // Build v8::PropertyCallbackInfo::args_ array on the stack and push property |
| // name below the exit frame to make GC aware of them. |
| STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0); |
| STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1); |
| STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3); |
| STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4); |
| STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5); |
| STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6); |
| STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7); |
| |
| Register receiver = ApiGetterDescriptor::ReceiverRegister(); |
| Register holder = ApiGetterDescriptor::HolderRegister(); |
| Register callback = ApiGetterDescriptor::CallbackRegister(); |
| Register scratch = t0; |
| DCHECK(!AreAliased(receiver, holder, callback, scratch)); |
| |
| Register api_function_address = a2; |
| |
| // Here and below +1 is for name() pushed after the args_ array. |
| typedef PropertyCallbackArguments PCA; |
| __ Subu(sp, sp, (PCA::kArgsLength + 1) * kPointerSize); |
| __ sw(receiver, MemOperand(sp, (PCA::kThisIndex + 1) * kPointerSize)); |
| __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset)); |
| __ sw(scratch, MemOperand(sp, (PCA::kDataIndex + 1) * kPointerSize)); |
| __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
| __ sw(scratch, MemOperand(sp, (PCA::kReturnValueOffset + 1) * kPointerSize)); |
| __ sw(scratch, MemOperand(sp, (PCA::kReturnValueDefaultValueIndex + 1) * |
| kPointerSize)); |
| __ li(scratch, Operand(ExternalReference::isolate_address(isolate()))); |
| __ sw(scratch, MemOperand(sp, (PCA::kIsolateIndex + 1) * kPointerSize)); |
| __ sw(holder, MemOperand(sp, (PCA::kHolderIndex + 1) * kPointerSize)); |
| // should_throw_on_error -> false |
| DCHECK_NULL(Smi::kZero); |
| __ sw(zero_reg, |
| MemOperand(sp, (PCA::kShouldThrowOnErrorIndex + 1) * kPointerSize)); |
| __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset)); |
| __ sw(scratch, MemOperand(sp, 0 * kPointerSize)); |
| |
| // v8::PropertyCallbackInfo::args_ array and name handle. |
| const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
| |
| // Load address of v8::PropertyAccessorInfo::args_ array and name handle. |
| __ mov(a0, sp); // a0 = Handle<Name> |
| __ Addu(a1, a0, Operand(1 * kPointerSize)); // a1 = v8::PCI::args_ |
| |
| const int kApiStackSpace = 1; |
| FrameScope frame_scope(masm, StackFrame::MANUAL); |
| __ EnterExitFrame(false, kApiStackSpace); |
| |
| // Create v8::PropertyCallbackInfo object on the stack and initialize |
| // it's args_ field. |
| __ sw(a1, MemOperand(sp, 1 * kPointerSize)); |
| __ Addu(a1, sp, Operand(1 * kPointerSize)); // a1 = v8::PropertyCallbackInfo& |
| |
| ExternalReference thunk_ref = |
| ExternalReference::invoke_accessor_getter_callback(isolate()); |
| |
| __ lw(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset)); |
| __ lw(api_function_address, |
| FieldMemOperand(scratch, Foreign::kForeignAddressOffset)); |
| |
| // +3 is to skip prolog, return address and name handle. |
| MemOperand return_value_operand( |
| fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize); |
| CallApiFunctionAndReturn(masm, api_function_address, thunk_ref, |
| kStackUnwindSpace, kInvalidStackOffset, |
| return_value_operand); |
| } |
| |
| #undef __ |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_TARGET_ARCH_MIPS |