| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |
| #define V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |
| |
| #include "src/assembler.h" |
| #include "src/globals.h" |
| #include "src/mips/assembler-mips.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // Give alias names to registers for calling conventions. |
| constexpr Register kReturnRegister0 = v0; |
| constexpr Register kReturnRegister1 = v1; |
| constexpr Register kReturnRegister2 = a0; |
| constexpr Register kJSFunctionRegister = a1; |
| constexpr Register kContextRegister = s7; |
| constexpr Register kAllocateSizeRegister = a0; |
| constexpr Register kInterpreterAccumulatorRegister = v0; |
| constexpr Register kInterpreterBytecodeOffsetRegister = t4; |
| constexpr Register kInterpreterBytecodeArrayRegister = t5; |
| constexpr Register kInterpreterDispatchTableRegister = t6; |
| constexpr Register kJavaScriptCallArgCountRegister = a0; |
| constexpr Register kJavaScriptCallNewTargetRegister = a3; |
| constexpr Register kRuntimeCallFunctionRegister = a1; |
| constexpr Register kRuntimeCallArgCountRegister = a0; |
| |
| // Forward declaration. |
| class JumpTarget; |
| |
| // Reserved Register Usage Summary. |
| // |
| // Registers t8, t9, and at are reserved for use by the MacroAssembler. |
| // |
| // The programmer should know that the MacroAssembler may clobber these three, |
| // but won't touch other registers except in special cases. |
| // |
| // Per the MIPS ABI, register t9 must be used for indirect function call |
| // via 'jalr t9' or 'jr t9' instructions. This is relied upon by gcc when |
| // trying to update gp register for position-independent-code. Whenever |
| // MIPS generated code calls C code, it must be via t9 register. |
| |
| |
| // Flags used for LeaveExitFrame function. |
| enum LeaveExitFrameMode { |
| EMIT_RETURN = true, |
| NO_EMIT_RETURN = false |
| }; |
| |
| // Flags used for AllocateHeapNumber |
| enum TaggingMode { |
| // Tag the result. |
| TAG_RESULT, |
| // Don't tag |
| DONT_TAG_RESULT |
| }; |
| |
| // Allow programmer to use Branch Delay Slot of Branches, Jumps, Calls. |
| enum BranchDelaySlot { |
| USE_DELAY_SLOT, |
| PROTECT |
| }; |
| |
| // Flags used for the li macro-assembler function. |
| enum LiFlags { |
| // If the constant value can be represented in just 16 bits, then |
| // optimize the li to use a single instruction, rather than lui/ori pair. |
| OPTIMIZE_SIZE = 0, |
| // Always use 2 instructions (lui/ori pair), even if the constant could |
| // be loaded with just one, so that this value is patchable later. |
| CONSTANT_SIZE = 1 |
| }; |
| |
| |
| enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; |
| enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; |
| enum RAStatus { kRAHasNotBeenSaved, kRAHasBeenSaved }; |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, |
| Register reg2 = no_reg, |
| Register reg3 = no_reg, |
| Register reg4 = no_reg, |
| Register reg5 = no_reg, |
| Register reg6 = no_reg); |
| |
| bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg, |
| Register reg4 = no_reg, Register reg5 = no_reg, |
| Register reg6 = no_reg, Register reg7 = no_reg, |
| Register reg8 = no_reg, Register reg9 = no_reg, |
| Register reg10 = no_reg); |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Static helper functions. |
| |
| inline MemOperand ContextMemOperand(Register context, int index) { |
| return MemOperand(context, Context::SlotOffset(index)); |
| } |
| |
| |
| inline MemOperand NativeContextMemOperand() { |
| return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); |
| } |
| |
| |
| // Generate a MemOperand for loading a field from an object. |
| inline MemOperand FieldMemOperand(Register object, int offset) { |
| return MemOperand(object, offset - kHeapObjectTag); |
| } |
| |
| |
| // Generate a MemOperand for storing arguments 5..N on the stack |
| // when calling CallCFunction(). |
| inline MemOperand CFunctionArgumentOperand(int index) { |
| DCHECK_GT(index, kCArgSlotCount); |
| // Argument 5 takes the slot just past the four Arg-slots. |
| int offset = (index - 5) * kPointerSize + kCArgsSlotsSize; |
| return MemOperand(sp, offset); |
| } |
| |
| class TurboAssembler : public Assembler { |
| public: |
| TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, |
| CodeObjectRequired create_code_object); |
| |
| void set_has_frame(bool value) { has_frame_ = value; } |
| bool has_frame() const { return has_frame_; } |
| |
| Isolate* isolate() const { return isolate_; } |
| |
| Handle<HeapObject> CodeObject() { |
| DCHECK(!code_object_.is_null()); |
| return code_object_; |
| } |
| |
| // Activation support. |
| void EnterFrame(StackFrame::Type type); |
| void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg) { |
| // Out-of-line constant pool not implemented on mips. |
| UNREACHABLE(); |
| } |
| void LeaveFrame(StackFrame::Type type); |
| |
| // Generates function and stub prologue code. |
| void StubPrologue(StackFrame::Type type); |
| void Prologue(); |
| |
| void InitializeRootRegister() { |
| ExternalReference roots_array_start = |
| ExternalReference::roots_array_start(isolate()); |
| li(kRootRegister, Operand(roots_array_start)); |
| } |
| |
| // Jump unconditionally to given label. |
| // We NEED a nop in the branch delay slot, as it used by v8, for example in |
| // CodeGenerator::ProcessDeferred(). |
| // Currently the branch delay slot is filled by the MacroAssembler. |
| // Use rather b(Label) for code generation. |
| void jmp(Label* L) { Branch(L); } |
| |
| // ------------------------------------------------------------------------- |
| // Debugging. |
| |
| // Calls Abort(msg) if the condition cc is not satisfied. |
| // Use --debug_code to enable. |
| void Assert(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Like Assert(), but always enabled. |
| void Check(Condition cc, AbortReason reason, Register rs, Operand rt); |
| |
| // Print a message to stdout and abort execution. |
| void Abort(AbortReason msg); |
| |
| inline bool AllowThisStubCall(CodeStub* stub); |
| |
| // Arguments macros. |
| #define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2 |
| #define COND_ARGS cond, r1, r2 |
| |
| // Cases when relocation is not needed. |
| #define DECLARE_NORELOC_PROTOTYPE(Name, target_type) \ |
| void Name(target_type target, BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, target_type target) { \ |
| Name(target, bd); \ |
| } \ |
| void Name(target_type target, \ |
| COND_TYPED_ARGS, \ |
| BranchDelaySlot bd = PROTECT); \ |
| inline void Name(BranchDelaySlot bd, \ |
| target_type target, \ |
| COND_TYPED_ARGS) { \ |
| Name(target, COND_ARGS, bd); \ |
| } |
| |
| #define DECLARE_BRANCH_PROTOTYPES(Name) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, Label*) \ |
| DECLARE_NORELOC_PROTOTYPE(Name, int32_t) |
| |
| DECLARE_BRANCH_PROTOTYPES(Branch) |
| DECLARE_BRANCH_PROTOTYPES(BranchAndLink) |
| DECLARE_BRANCH_PROTOTYPES(BranchShort) |
| |
| #undef DECLARE_BRANCH_PROTOTYPES |
| #undef COND_TYPED_ARGS |
| #undef COND_ARGS |
| |
| // Wrapper functions for the different cmp/branch types. |
| inline void BranchF32(Label* target, Label* nan, Condition cc, |
| FPURegister cmp1, FPURegister cmp2, |
| BranchDelaySlot bd = PROTECT) { |
| BranchFCommon(S, target, nan, cc, cmp1, cmp2, bd); |
| } |
| |
| inline void BranchF64(Label* target, Label* nan, Condition cc, |
| FPURegister cmp1, FPURegister cmp2, |
| BranchDelaySlot bd = PROTECT) { |
| BranchFCommon(D, target, nan, cc, cmp1, cmp2, bd); |
| } |
| |
| // Alternate (inline) version for better readability with USE_DELAY_SLOT. |
| inline void BranchF64(BranchDelaySlot bd, Label* target, Label* nan, |
| Condition cc, FPURegister cmp1, FPURegister cmp2) { |
| BranchF64(target, nan, cc, cmp1, cmp2, bd); |
| } |
| |
| inline void BranchF32(BranchDelaySlot bd, Label* target, Label* nan, |
| Condition cc, FPURegister cmp1, FPURegister cmp2) { |
| BranchF32(target, nan, cc, cmp1, cmp2, bd); |
| } |
| |
| void BranchMSA(Label* target, MSABranchDF df, MSABranchCondition cond, |
| MSARegister wt, BranchDelaySlot bd = PROTECT); |
| |
| void Branch(Label* L, Condition cond, Register rs, Heap::RootListIndex index, |
| BranchDelaySlot bdslot = PROTECT); |
| |
| // Load int32 in the rd register. |
| void li(Register rd, Operand j, LiFlags mode = OPTIMIZE_SIZE); |
| inline void li(Register rd, int32_t j, LiFlags mode = OPTIMIZE_SIZE) { |
| li(rd, Operand(j), mode); |
| } |
| void li(Register dst, Handle<HeapObject> value, LiFlags mode = OPTIMIZE_SIZE); |
| |
| // Jump, Call, and Ret pseudo instructions implementing inter-working. |
| #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ |
| const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT |
| |
| void Jump(Register target, int16_t offset = 0, COND_ARGS); |
| void Jump(Register target, Register base, int16_t offset = 0, COND_ARGS); |
| void Jump(Register target, const Operand& offset, COND_ARGS); |
| void Jump(intptr_t target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Jump(Handle<Code> code, RelocInfo::Mode rmode, COND_ARGS); |
| static int CallSize(Register target, int16_t offset = 0, COND_ARGS); |
| void Call(Register target, int16_t offset = 0, COND_ARGS); |
| void Call(Register target, Register base, int16_t offset = 0, COND_ARGS); |
| static int CallSize(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| void Call(Address target, RelocInfo::Mode rmode, COND_ARGS); |
| int CallSize(Handle<Code> code, |
| RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| COND_ARGS); |
| void Call(Handle<Code> code, |
| RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, |
| COND_ARGS); |
| void Call(Label* target); |
| |
| void CallForDeoptimization(Address target, RelocInfo::Mode rmode) { |
| Call(target, rmode); |
| } |
| |
| void Ret(COND_ARGS); |
| inline void Ret(BranchDelaySlot bd, Condition cond = al, |
| Register rs = zero_reg, const Operand& rt = Operand(zero_reg)) { |
| Ret(cond, rs, rt, bd); |
| } |
| |
| // Emit code to discard a non-negative number of pointer-sized elements |
| // from the stack, clobbering only the sp register. |
| void Drop(int count, |
| Condition cond = cc_always, |
| Register reg = no_reg, |
| const Operand& op = Operand(no_reg)); |
| |
| // Trivial case of DropAndRet that utilizes the delay slot and only emits |
| // 2 instructions. |
| void DropAndRet(int drop); |
| |
| void DropAndRet(int drop, |
| Condition cond, |
| Register reg, |
| const Operand& op); |
| |
| void push(Register src) { |
| Addu(sp, sp, Operand(-kPointerSize)); |
| sw(src, MemOperand(sp, 0)); |
| } |
| |
| void Push(Register src) { push(src); } |
| void Push(Handle<HeapObject> handle); |
| void Push(Smi* smi); |
| |
| // Push two registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2) { |
| Subu(sp, sp, Operand(2 * kPointerSize)); |
| sw(src1, MemOperand(sp, 1 * kPointerSize)); |
| sw(src2, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push three registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3) { |
| Subu(sp, sp, Operand(3 * kPointerSize)); |
| sw(src1, MemOperand(sp, 2 * kPointerSize)); |
| sw(src2, MemOperand(sp, 1 * kPointerSize)); |
| sw(src3, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push four registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4) { |
| Subu(sp, sp, Operand(4 * kPointerSize)); |
| sw(src1, MemOperand(sp, 3 * kPointerSize)); |
| sw(src2, MemOperand(sp, 2 * kPointerSize)); |
| sw(src3, MemOperand(sp, 1 * kPointerSize)); |
| sw(src4, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| // Push five registers. Pushes leftmost register first (to highest address). |
| void Push(Register src1, Register src2, Register src3, Register src4, |
| Register src5) { |
| Subu(sp, sp, Operand(5 * kPointerSize)); |
| sw(src1, MemOperand(sp, 4 * kPointerSize)); |
| sw(src2, MemOperand(sp, 3 * kPointerSize)); |
| sw(src3, MemOperand(sp, 2 * kPointerSize)); |
| sw(src4, MemOperand(sp, 1 * kPointerSize)); |
| sw(src5, MemOperand(sp, 0 * kPointerSize)); |
| } |
| |
| void Push(Register src, Condition cond, Register tst1, Register tst2) { |
| // Since we don't have conditional execution we use a Branch. |
| Branch(3, cond, tst1, Operand(tst2)); |
| Subu(sp, sp, Operand(kPointerSize)); |
| sw(src, MemOperand(sp, 0)); |
| } |
| |
| void SaveRegisters(RegList registers); |
| void RestoreRegisters(RegList registers); |
| |
| void CallRecordWriteStub(Register object, Register address, |
| RememberedSetAction remembered_set_action, |
| SaveFPRegsMode fp_mode); |
| |
| // Push multiple registers on the stack. |
| // Registers are saved in numerical order, with higher numbered registers |
| // saved in higher memory addresses. |
| void MultiPush(RegList regs); |
| void MultiPushFPU(RegList regs); |
| |
| // Calculate how much stack space (in bytes) are required to store caller |
| // registers excluding those specified in the arguments. |
| int RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg) const; |
| |
| // Push caller saved registers on the stack, and return the number of bytes |
| // stack pointer is adjusted. |
| int PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| // Restore caller saved registers from the stack, and return the number of |
| // bytes stack pointer is adjusted. |
| int PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg, |
| Register exclusion2 = no_reg, |
| Register exclusion3 = no_reg); |
| |
| void pop(Register dst) { |
| lw(dst, MemOperand(sp, 0)); |
| Addu(sp, sp, Operand(kPointerSize)); |
| } |
| |
| void Pop(Register dst) { pop(dst); } |
| |
| // Pop two registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2) { |
| DCHECK(src1 != src2); |
| lw(src2, MemOperand(sp, 0 * kPointerSize)); |
| lw(src1, MemOperand(sp, 1 * kPointerSize)); |
| Addu(sp, sp, 2 * kPointerSize); |
| } |
| |
| // Pop three registers. Pops rightmost register first (from lower address). |
| void Pop(Register src1, Register src2, Register src3) { |
| lw(src3, MemOperand(sp, 0 * kPointerSize)); |
| lw(src2, MemOperand(sp, 1 * kPointerSize)); |
| lw(src1, MemOperand(sp, 2 * kPointerSize)); |
| Addu(sp, sp, 3 * kPointerSize); |
| } |
| |
| void Pop(uint32_t count = 1) { Addu(sp, sp, Operand(count * kPointerSize)); } |
| |
| // Pops multiple values from the stack and load them in the |
| // registers specified in regs. Pop order is the opposite as in MultiPush. |
| void MultiPop(RegList regs); |
| void MultiPopFPU(RegList regs); |
| |
| // Load Scaled Address instructions. Parameter sa (shift argument) must be |
| // between [1, 31] (inclusive). On pre-r6 architectures the scratch register |
| // may be clobbered. |
| void Lsa(Register rd, Register rs, Register rt, uint8_t sa, |
| Register scratch = at); |
| |
| #define DEFINE_INSTRUCTION(instr) \ |
| void instr(Register rd, Register rs, const Operand& rt); \ |
| void instr(Register rd, Register rs, Register rt) { \ |
| instr(rd, rs, Operand(rt)); \ |
| } \ |
| void instr(Register rs, Register rt, int32_t j) { instr(rs, rt, Operand(j)); } |
| |
| #define DEFINE_INSTRUCTION2(instr) \ |
| void instr(Register rs, const Operand& rt); \ |
| void instr(Register rs, Register rt) { instr(rs, Operand(rt)); } \ |
| void instr(Register rs, int32_t j) { instr(rs, Operand(j)); } |
| |
| #define DEFINE_INSTRUCTION3(instr) \ |
| void instr(Register rd_hi, Register rd_lo, Register rs, const Operand& rt); \ |
| void instr(Register rd_hi, Register rd_lo, Register rs, Register rt) { \ |
| instr(rd_hi, rd_lo, rs, Operand(rt)); \ |
| } \ |
| void instr(Register rd_hi, Register rd_lo, Register rs, int32_t j) { \ |
| instr(rd_hi, rd_lo, rs, Operand(j)); \ |
| } |
| |
| DEFINE_INSTRUCTION(Addu); |
| DEFINE_INSTRUCTION(Subu); |
| DEFINE_INSTRUCTION(Mul); |
| DEFINE_INSTRUCTION(Div); |
| DEFINE_INSTRUCTION(Divu); |
| DEFINE_INSTRUCTION(Mod); |
| DEFINE_INSTRUCTION(Modu); |
| DEFINE_INSTRUCTION(Mulh); |
| DEFINE_INSTRUCTION2(Mult); |
| DEFINE_INSTRUCTION(Mulhu); |
| DEFINE_INSTRUCTION2(Multu); |
| DEFINE_INSTRUCTION2(Div); |
| DEFINE_INSTRUCTION2(Divu); |
| |
| DEFINE_INSTRUCTION3(Div); |
| DEFINE_INSTRUCTION3(Mul); |
| DEFINE_INSTRUCTION3(Mulu); |
| |
| DEFINE_INSTRUCTION(And); |
| DEFINE_INSTRUCTION(Or); |
| DEFINE_INSTRUCTION(Xor); |
| DEFINE_INSTRUCTION(Nor); |
| DEFINE_INSTRUCTION2(Neg); |
| |
| DEFINE_INSTRUCTION(Slt); |
| DEFINE_INSTRUCTION(Sltu); |
| |
| // MIPS32 R2 instruction macro. |
| DEFINE_INSTRUCTION(Ror); |
| |
| #undef DEFINE_INSTRUCTION |
| #undef DEFINE_INSTRUCTION2 |
| #undef DEFINE_INSTRUCTION3 |
| |
| void SmiUntag(Register reg) { sra(reg, reg, kSmiTagSize); } |
| |
| void SmiUntag(Register dst, Register src) { sra(dst, src, kSmiTagSize); } |
| |
| // Removes current frame and its arguments from the stack preserving |
| // the arguments and a return address pushed to the stack for the next call. |
| // Both |callee_args_count| and |caller_args_count_reg| do not include |
| // receiver. |callee_args_count| is not modified, |caller_args_count_reg| |
| // is trashed. |
| void PrepareForTailCall(const ParameterCount& callee_args_count, |
| Register caller_args_count_reg, Register scratch0, |
| Register scratch1); |
| |
| int CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments); |
| |
| // Before calling a C-function from generated code, align arguments on stack |
| // and add space for the four mips argument slots. |
| // After aligning the frame, non-register arguments must be stored on the |
| // stack, after the argument-slots using helper: CFunctionArgumentOperand(). |
| // The argument count assumes all arguments are word sized. |
| // Some compilers/platforms require the stack to be aligned when calling |
| // C++ code. |
| // Needs a scratch register to do some arithmetic. This register will be |
| // trashed. |
| void PrepareCallCFunction(int num_reg_arguments, int num_double_registers, |
| Register scratch); |
| void PrepareCallCFunction(int num_reg_arguments, Register scratch); |
| |
| // Arguments 1-4 are placed in registers a0 through a3 respectively. |
| // Arguments 5..n are stored to stack using following: |
| // sw(t0, CFunctionArgumentOperand(5)); |
| |
| // Calls a C function and cleans up the space for arguments allocated |
| // by PrepareCallCFunction. The called function is not allowed to trigger a |
| // garbage collection, since that might move the code and invalidate the |
| // return address (unless this is somehow accounted for by the called |
| // function). |
| void CallCFunction(ExternalReference function, int num_arguments); |
| void CallCFunction(Register function, int num_arguments); |
| void CallCFunction(ExternalReference function, int num_reg_arguments, |
| int num_double_arguments); |
| void CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments); |
| void MovFromFloatResult(DoubleRegister dst); |
| void MovFromFloatParameter(DoubleRegister dst); |
| |
| // There are two ways of passing double arguments on MIPS, depending on |
| // whether soft or hard floating point ABI is used. These functions |
| // abstract parameter passing for the three different ways we call |
| // C functions from generated code. |
| void MovToFloatParameter(DoubleRegister src); |
| void MovToFloatParameters(DoubleRegister src1, DoubleRegister src2); |
| void MovToFloatResult(DoubleRegister src); |
| |
| // See comments at the beginning of CEntryStub::Generate. |
| inline void PrepareCEntryArgs(int num_args) { li(a0, num_args); } |
| inline void PrepareCEntryFunction(const ExternalReference& ref) { |
| li(a1, Operand(ref)); |
| } |
| |
| void CheckPageFlag(Register object, Register scratch, int mask, Condition cc, |
| Label* condition_met); |
| |
| void CallStubDelayed(CodeStub* stub, COND_ARGS); |
| #undef COND_ARGS |
| |
| void CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles = kDontSaveFPRegs, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it |
| // succeeds, otherwise falls through if result is saturated. On return |
| // 'result' either holds answer, or is clobbered on fall through. |
| // |
| // Only public for the test code in test-code-stubs-arm.cc. |
| void TryInlineTruncateDoubleToI(Register result, DoubleRegister input, |
| Label* done); |
| |
| // Performs a truncating conversion of a floating point number as used by |
| // the JS bitwise operations. See ECMA-262 9.5: ToInt32. |
| // Exits with 'result' holding the answer. |
| void TruncateDoubleToIDelayed(Zone* zone, Register result, |
| DoubleRegister double_input); |
| |
| // Conditional move. |
| void Movz(Register rd, Register rs, Register rt); |
| void Movn(Register rd, Register rs, Register rt); |
| void Movt(Register rd, Register rs, uint16_t cc = 0); |
| void Movf(Register rd, Register rs, uint16_t cc = 0); |
| |
| void Clz(Register rd, Register rs); |
| |
| // Int64Lowering instructions |
| void AddPair(Register dst_low, Register dst_high, Register left_low, |
| Register left_high, Register right_low, Register right_high); |
| |
| void SubPair(Register dst_low, Register dst_high, Register left_low, |
| Register left_high, Register right_low, Register right_high); |
| |
| void ShlPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, Register shift); |
| |
| void ShlPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, uint32_t shift); |
| |
| void ShrPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, Register shift); |
| |
| void ShrPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, uint32_t shift); |
| |
| void SarPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, Register shift); |
| |
| void SarPair(Register dst_low, Register dst_high, Register src_low, |
| Register src_high, uint32_t shift); |
| |
| // MIPS32 R2 instruction macro. |
| void Ins(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void Ext(Register rt, Register rs, uint16_t pos, uint16_t size); |
| void ExtractBits(Register dest, Register source, Register pos, int size, |
| bool sign_extend = false); |
| void InsertBits(Register dest, Register source, Register pos, int size); |
| |
| void Seb(Register rd, Register rt); |
| void Seh(Register rd, Register rt); |
| void Neg_s(FPURegister fd, FPURegister fs); |
| void Neg_d(FPURegister fd, FPURegister fs); |
| |
| // MIPS32 R6 instruction macros. |
| void Bovc(Register rt, Register rs, Label* L); |
| void Bnvc(Register rt, Register rs, Label* L); |
| |
| // Convert single to unsigned word. |
| void Trunc_uw_s(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Trunc_uw_s(FPURegister fd, Register rs, FPURegister scratch); |
| |
| void Trunc_w_d(FPURegister fd, FPURegister fs); |
| void Round_w_d(FPURegister fd, FPURegister fs); |
| void Floor_w_d(FPURegister fd, FPURegister fs); |
| void Ceil_w_d(FPURegister fd, FPURegister fs); |
| |
| // FP32 mode: Move the general purpose register into |
| // the high part of the double-register pair. |
| // FP64 mode: Move the general-purpose register into |
| // the higher 32 bits of the 64-bit coprocessor register, |
| // while leaving the low bits unchanged. |
| void Mthc1(Register rt, FPURegister fs); |
| |
| // FP32 mode: move the high part of the double-register pair into |
| // general purpose register. |
| // FP64 mode: Move the higher 32 bits of the 64-bit coprocessor register into |
| // general-purpose register. |
| void Mfhc1(Register rt, FPURegister fs); |
| |
| void Madd_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Msub_s(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| void Msub_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft, |
| FPURegister scratch); |
| |
| // Change endianness |
| void ByteSwapSigned(Register dest, Register src, int operand_size); |
| void ByteSwapUnsigned(Register dest, Register src, int operand_size); |
| |
| void Ulh(Register rd, const MemOperand& rs); |
| void Ulhu(Register rd, const MemOperand& rs); |
| void Ush(Register rd, const MemOperand& rs, Register scratch); |
| |
| void Ulw(Register rd, const MemOperand& rs); |
| void Usw(Register rd, const MemOperand& rs); |
| |
| void Ulwc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| void Uswc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void Uldc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| void Usdc1(FPURegister fd, const MemOperand& rs, Register scratch); |
| |
| void Ldc1(FPURegister fd, const MemOperand& src); |
| void Sdc1(FPURegister fs, const MemOperand& dst); |
| |
| void Ll(Register rd, const MemOperand& rs); |
| void Sc(Register rd, const MemOperand& rs); |
| |
| // Perform a floating-point min or max operation with the |
| // (IEEE-754-compatible) semantics of MIPS32's Release 6 MIN.fmt/MAX.fmt. |
| // Some cases, typically NaNs or +/-0.0, are expected to be rare and are |
| // handled in out-of-line code. The specific behaviour depends on supported |
| // instructions. |
| // |
| // These functions assume (and assert) that src1!=src2. It is permitted |
| // for the result to alias either input register. |
| void Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| void Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, |
| Label* out_of_line); |
| void Float64Max(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2, |
| Label* out_of_line); |
| void Float64Min(DoubleRegister dst, DoubleRegister src1, DoubleRegister src2, |
| Label* out_of_line); |
| |
| // Generate out-of-line cases for the macros above. |
| void Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2); |
| void Float64MaxOutOfLine(DoubleRegister dst, DoubleRegister src1, |
| DoubleRegister src2); |
| void Float64MinOutOfLine(DoubleRegister dst, DoubleRegister src1, |
| DoubleRegister src2); |
| |
| bool IsDoubleZeroRegSet() { return has_double_zero_reg_set_; } |
| |
| void mov(Register rd, Register rt) { or_(rd, rt, zero_reg); } |
| |
| inline void Move(Register dst, Handle<HeapObject> handle) { li(dst, handle); } |
| inline void Move(Register dst, Smi* smi) { li(dst, Operand(smi)); } |
| |
| inline void Move(Register dst, Register src) { |
| if (dst != src) { |
| mov(dst, src); |
| } |
| } |
| |
| inline void Move_d(FPURegister dst, FPURegister src) { |
| if (dst != src) { |
| mov_d(dst, src); |
| } |
| } |
| |
| inline void Move_s(FPURegister dst, FPURegister src) { |
| if (dst != src) { |
| mov_s(dst, src); |
| } |
| } |
| |
| inline void Move(FPURegister dst, FPURegister src) { Move_d(dst, src); } |
| |
| inline void Move(Register dst_low, Register dst_high, FPURegister src) { |
| mfc1(dst_low, src); |
| Mfhc1(dst_high, src); |
| } |
| |
| inline void FmoveHigh(Register dst_high, FPURegister src) { |
| Mfhc1(dst_high, src); |
| } |
| |
| inline void FmoveHigh(FPURegister dst, Register src_high) { |
| Mthc1(src_high, dst); |
| } |
| |
| inline void FmoveLow(Register dst_low, FPURegister src) { |
| mfc1(dst_low, src); |
| } |
| |
| void FmoveLow(FPURegister dst, Register src_low); |
| |
| inline void Move(FPURegister dst, Register src_low, Register src_high) { |
| mtc1(src_low, dst); |
| Mthc1(src_high, dst); |
| } |
| |
| void Move(FPURegister dst, float imm); |
| void Move(FPURegister dst, double imm); |
| |
| // ------------------------------------------------------------------------- |
| // Overflow handling functions. |
| // Usage: first call the appropriate arithmetic function, then call one of the |
| // jump functions with the overflow_dst register as the second parameter. |
| |
| inline void AddBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Register scratch = at) { |
| AddBranchOvf(dst, left, right, overflow_label, nullptr, scratch); |
| } |
| |
| inline void AddBranchNoOvf(Register dst, Register left, const Operand& right, |
| Label* no_overflow_label, Register scratch = at) { |
| AddBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); |
| } |
| |
| void AddBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| void AddBranchOvf(Register dst, Register left, Register right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| inline void SubBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Register scratch = at) { |
| SubBranchOvf(dst, left, right, overflow_label, nullptr, scratch); |
| } |
| |
| inline void SubBranchNoOvf(Register dst, Register left, const Operand& right, |
| Label* no_overflow_label, Register scratch = at) { |
| SubBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); |
| } |
| |
| void SubBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| void SubBranchOvf(Register dst, Register left, Register right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| inline void MulBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Register scratch = at) { |
| MulBranchOvf(dst, left, right, overflow_label, nullptr, scratch); |
| } |
| |
| inline void MulBranchNoOvf(Register dst, Register left, const Operand& right, |
| Label* no_overflow_label, Register scratch = at) { |
| MulBranchOvf(dst, left, right, nullptr, no_overflow_label, scratch); |
| } |
| |
| void MulBranchOvf(Register dst, Register left, const Operand& right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| void MulBranchOvf(Register dst, Register left, Register right, |
| Label* overflow_label, Label* no_overflow_label, |
| Register scratch = at); |
| |
| // Number of instructions needed for calculation of switch table entry address |
| #ifdef _MIPS_ARCH_MIPS32R6 |
| static constexpr int kSwitchTablePrologueSize = 5; |
| #else |
| static constexpr int kSwitchTablePrologueSize = 10; |
| #endif |
| // GetLabelFunction must be lambda '[](size_t index) -> Label*' or a |
| // functor/function with 'Label *func(size_t index)' declaration. |
| template <typename Func> |
| void GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction); |
| |
| // Load an object from the root table. |
| void LoadRoot(Register destination, Heap::RootListIndex index); |
| void LoadRoot(Register destination, Heap::RootListIndex index, Condition cond, |
| Register src1, const Operand& src2); |
| |
| // If the value is a NaN, canonicalize the value else, do nothing. |
| void FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src); |
| |
| // --------------------------------------------------------------------------- |
| // FPU macros. These do not handle special cases like NaN or +- inf. |
| |
| // Convert unsigned word to double. |
| void Cvt_d_uw(FPURegister fd, Register rs, FPURegister scratch); |
| |
| // Convert double to unsigned word. |
| void Trunc_uw_d(FPURegister fd, FPURegister fs, FPURegister scratch); |
| void Trunc_uw_d(FPURegister fd, Register rs, FPURegister scratch); |
| |
| // Jump the register contains a smi. |
| void JumpIfSmi(Register value, Label* smi_label, Register scratch = at, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Push a standard frame, consisting of ra, fp, context and JS function. |
| void PushStandardFrame(Register function_reg); |
| |
| // Get the actual activation frame alignment for target environment. |
| static int ActivationFrameAlignment(); |
| |
| // Alias functions for backward compatibility. |
| inline void BranchF(Label* target, Label* nan, Condition cc, FPURegister cmp1, |
| FPURegister cmp2, BranchDelaySlot bd = PROTECT) { |
| BranchF64(target, nan, cc, cmp1, cmp2, bd); |
| } |
| |
| inline void BranchF(BranchDelaySlot bd, Label* target, Label* nan, |
| Condition cc, FPURegister cmp1, FPURegister cmp2) { |
| BranchF64(bd, target, nan, cc, cmp1, cmp2); |
| } |
| |
| protected: |
| void BranchLong(Label* L, BranchDelaySlot bdslot); |
| |
| inline Register GetRtAsRegisterHelper(const Operand& rt, Register scratch); |
| |
| inline int32_t GetOffset(int32_t offset, Label* L, OffsetSize bits); |
| |
| private: |
| bool has_frame_ = false; |
| Isolate* const isolate_; |
| // This handle will be patched with the code object on installation. |
| Handle<HeapObject> code_object_; |
| bool has_double_zero_reg_set_; |
| |
| void CallCFunctionHelper(Register function_base, int16_t function_offset, |
| int num_reg_arguments, int num_double_arguments); |
| |
| // Common implementation of BranchF functions for the different formats. |
| void BranchFCommon(SecondaryField sizeField, Label* target, Label* nan, |
| Condition cc, FPURegister cmp1, FPURegister cmp2, |
| BranchDelaySlot bd = PROTECT); |
| |
| void BranchShortF(SecondaryField sizeField, Label* target, Condition cc, |
| FPURegister cmp1, FPURegister cmp2, |
| BranchDelaySlot bd = PROTECT); |
| |
| void BranchShortMSA(MSABranchDF df, Label* target, MSABranchCondition cond, |
| MSARegister wt, BranchDelaySlot bd = PROTECT); |
| |
| bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits); |
| bool CalculateOffset(Label* L, int32_t& offset, OffsetSize bits, |
| Register& scratch, const Operand& rt); |
| |
| void BranchShortHelperR6(int32_t offset, Label* L); |
| void BranchShortHelper(int16_t offset, Label* L, BranchDelaySlot bdslot); |
| bool BranchShortHelperR6(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| bool BranchShortHelper(int16_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt, BranchDelaySlot bdslot); |
| bool BranchShortCheck(int32_t offset, Label* L, Condition cond, Register rs, |
| const Operand& rt, BranchDelaySlot bdslot); |
| |
| void BranchAndLinkShortHelperR6(int32_t offset, Label* L); |
| void BranchAndLinkShortHelper(int16_t offset, Label* L, |
| BranchDelaySlot bdslot); |
| void BranchAndLinkShort(int32_t offset, BranchDelaySlot bdslot = PROTECT); |
| void BranchAndLinkShort(Label* L, BranchDelaySlot bdslot = PROTECT); |
| bool BranchAndLinkShortHelperR6(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt); |
| bool BranchAndLinkShortHelper(int16_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt, |
| BranchDelaySlot bdslot); |
| bool BranchAndLinkShortCheck(int32_t offset, Label* L, Condition cond, |
| Register rs, const Operand& rt, |
| BranchDelaySlot bdslot); |
| void BranchAndLinkLong(Label* L, BranchDelaySlot bdslot); |
| |
| // Push a fixed frame, consisting of ra, fp. |
| void PushCommonFrame(Register marker_reg = no_reg); |
| }; |
| |
| // MacroAssembler implements a collection of frequently used macros. |
| class MacroAssembler : public TurboAssembler { |
| public: |
| MacroAssembler(Isolate* isolate, void* buffer, int size, |
| CodeObjectRequired create_code_object); |
| |
| // Swap two registers. If the scratch register is omitted then a slightly |
| // less efficient form using xor instead of mov is emitted. |
| void Swap(Register reg1, Register reg2, Register scratch = no_reg); |
| |
| void PushRoot(Heap::RootListIndex index) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Push(scratch); |
| } |
| |
| // Compare the object in a register to a value and jump if they are equal. |
| void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_equal, eq, with, Operand(scratch)); |
| } |
| |
| // Compare the object in a register to a value and jump if they are not equal. |
| void JumpIfNotRoot(Register with, Heap::RootListIndex index, |
| Label* if_not_equal) { |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| LoadRoot(scratch, index); |
| Branch(if_not_equal, ne, with, Operand(scratch)); |
| } |
| |
| // --------------------------------------------------------------------------- |
| // GC Support |
| |
| // Notify the garbage collector that we wrote a pointer into an object. |
| // |object| is the object being stored into, |value| is the object being |
| // stored. value and scratch registers are clobbered by the operation. |
| // The offset is the offset from the start of the object, not the offset from |
| // the tagged HeapObject pointer. For use with FieldOperand(reg, off). |
| void RecordWriteField( |
| Register object, int offset, Register value, Register scratch, |
| RAStatus ra_status, SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| // For a given |object| notify the garbage collector that the slot |address| |
| // has been written. |value| is the object being stored. The value and |
| // address registers are clobbered by the operation. |
| void RecordWrite( |
| Register object, Register address, Register value, RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, |
| SmiCheck smi_check = INLINE_SMI_CHECK); |
| |
| void Pref(int32_t hint, const MemOperand& rs); |
| |
| // Push and pop the registers that can hold pointers, as defined by the |
| // RegList constant kSafepointSavedRegisters. |
| void PushSafepointRegisters(); |
| void PopSafepointRegisters(); |
| |
| // Truncates a double using a specific rounding mode, and writes the value |
| // to the result register. |
| // The except_flag will contain any exceptions caused by the instruction. |
| // If check_inexact is kDontCheckForInexactConversion, then the inexact |
| // exception is masked. |
| void EmitFPUTruncate( |
| FPURoundingMode rounding_mode, Register result, |
| DoubleRegister double_input, Register scratch, |
| DoubleRegister double_scratch, Register except_flag, |
| CheckForInexactConversion check_inexact = kDontCheckForInexactConversion); |
| |
| // Enter exit frame. |
| // argc - argument count to be dropped by LeaveExitFrame. |
| // save_doubles - saves FPU registers on stack, currently disabled. |
| // stack_space - extra stack space. |
| void EnterExitFrame(bool save_doubles, int stack_space = 0, |
| StackFrame::Type frame_type = StackFrame::EXIT); |
| |
| // Leave the current exit frame. |
| void LeaveExitFrame(bool save_doubles, Register arg_count, |
| bool do_return = NO_EMIT_RETURN, |
| bool argument_count_is_length = false); |
| |
| // Make sure the stack is aligned. Only emits code in debug mode. |
| void AssertStackIsAligned(); |
| |
| // Load the global proxy from the current context. |
| void LoadGlobalProxy(Register dst) { |
| LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); |
| } |
| |
| void LoadNativeContextSlot(int index, Register dst); |
| |
| // ------------------------------------------------------------------------- |
| // JavaScript invokes. |
| |
| // Invoke the JavaScript function code by either calling or jumping. |
| void InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, InvokeFlag flag); |
| |
| // On function call, call into the debugger if necessary. |
| void CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual); |
| |
| // Invoke the JavaScript function in the given register. Changes the |
| // current context to the context in the function before invoking. |
| void InvokeFunction(Register function, Register new_target, |
| const ParameterCount& actual, InvokeFlag flag); |
| |
| void InvokeFunction(Register function, const ParameterCount& expected, |
| const ParameterCount& actual, InvokeFlag flag); |
| |
| void InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, InvokeFlag flag); |
| |
| // Frame restart support. |
| void MaybeDropFrames(); |
| |
| // Exception handling. |
| |
| // Push a new stack handler and link into stack handler chain. |
| void PushStackHandler(); |
| |
| // Unlink the stack handler on top of the stack from the stack handler chain. |
| // Must preserve the result register. |
| void PopStackHandler(); |
| |
| // ------------------------------------------------------------------------- |
| // Support functions. |
| |
| void GetObjectType(Register function, |
| Register map, |
| Register type_reg); |
| |
| // ------------------------------------------------------------------------- |
| // Runtime calls. |
| |
| #define COND_ARGS Condition cond = al, Register rs = zero_reg, \ |
| const Operand& rt = Operand(zero_reg), BranchDelaySlot bd = PROTECT |
| |
| // Call a code stub. |
| void CallStub(CodeStub* stub, |
| COND_ARGS); |
| |
| // Tail call a code stub (jump). |
| void TailCallStub(CodeStub* stub, COND_ARGS); |
| |
| #undef COND_ARGS |
| |
| // Call a runtime routine. |
| void CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles = kDontSaveFPRegs, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles = kDontSaveFPRegs, |
| BranchDelaySlot bd = PROTECT) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| CallRuntime(function, function->nargs, save_doubles, bd); |
| } |
| |
| // Convenience function: Same as above, but takes the fid instead. |
| void CallRuntime(Runtime::FunctionId id, int num_arguments, |
| SaveFPRegsMode save_doubles = kDontSaveFPRegs, |
| BranchDelaySlot bd = PROTECT) { |
| CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles, bd); |
| } |
| |
| // Convenience function: tail call a runtime routine (jump). |
| void TailCallRuntime(Runtime::FunctionId fid); |
| |
| // Jump to the builtin routine. |
| void JumpToExternalReference(const ExternalReference& builtin, |
| BranchDelaySlot bd = PROTECT, |
| bool builtin_exit_frame = false); |
| |
| // ------------------------------------------------------------------------- |
| // StatsCounter support. |
| |
| void IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| void DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2); |
| |
| // ------------------------------------------------------------------------- |
| // Smi utilities. |
| |
| void SmiTag(Register reg) { |
| Addu(reg, reg, reg); |
| } |
| |
| void SmiTag(Register dst, Register src) { Addu(dst, src, src); } |
| |
| // Test if the register contains a smi. |
| inline void SmiTst(Register value, Register scratch) { |
| And(scratch, value, Operand(kSmiTagMask)); |
| } |
| |
| // Untag the source value into destination and jump if source is a smi. |
| // Souce and destination can be the same register. |
| void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case); |
| |
| // Jump if the register contains a non-smi. |
| void JumpIfNotSmi(Register value, |
| Label* not_smi_label, |
| Register scratch = at, |
| BranchDelaySlot bd = PROTECT); |
| |
| // Jump if either of the registers contain a smi. |
| void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi); |
| |
| // Abort execution if argument is a smi, enabled via --debug-code. |
| void AssertNotSmi(Register object); |
| void AssertSmi(Register object); |
| |
| // Abort execution if argument is not a FixedArray, enabled via --debug-code. |
| void AssertFixedArray(Register object); |
| |
| // Abort execution if argument is not a JSFunction, enabled via --debug-code. |
| void AssertFunction(Register object); |
| |
| // Abort execution if argument is not a JSBoundFunction, |
| // enabled via --debug-code. |
| void AssertBoundFunction(Register object); |
| |
| // Abort execution if argument is not a JSGeneratorObject (or subclass), |
| // enabled via --debug-code. |
| void AssertGeneratorObject(Register object); |
| |
| // Abort execution if argument is not undefined or an AllocationSite, enabled |
| // via --debug-code. |
| void AssertUndefinedOrAllocationSite(Register object, Register scratch); |
| |
| template<typename Field> |
| void DecodeField(Register dst, Register src) { |
| Ext(dst, src, Field::kShift, Field::kSize); |
| } |
| |
| template<typename Field> |
| void DecodeField(Register reg) { |
| DecodeField<Field>(reg, reg); |
| } |
| |
| void EnterBuiltinFrame(Register context, Register target, Register argc); |
| void LeaveBuiltinFrame(Register context, Register target, Register argc); |
| |
| |
| private: |
| // Helper functions for generating invokes. |
| void InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, InvokeFlag flag); |
| |
| // Compute memory operands for safepoint stack slots. |
| static int SafepointRegisterStackIndex(int reg_code); |
| |
| // Needs access to SafepointRegisterStackIndex for compiled frame |
| // traversal. |
| friend class StandardFrame; |
| }; |
| |
| template <typename Func> |
| void TurboAssembler::GenerateSwitchTable(Register index, size_t case_count, |
| Func GetLabelFunction) { |
| Label here; |
| BlockTrampolinePoolFor(case_count + kSwitchTablePrologueSize); |
| UseScratchRegisterScope temps(this); |
| Register scratch = temps.Acquire(); |
| if (kArchVariant >= kMips32r6) { |
| addiupc(scratch, 5); |
| Lsa(scratch, scratch, index, kPointerSizeLog2); |
| lw(scratch, MemOperand(scratch)); |
| } else { |
| push(ra); |
| bal(&here); |
| sll(scratch, index, kPointerSizeLog2); // Branch delay slot. |
| bind(&here); |
| addu(scratch, scratch, ra); |
| pop(ra); |
| lw(scratch, MemOperand(scratch, 6 * v8::internal::Assembler::kInstrSize)); |
| } |
| jr(scratch); |
| nop(); // Branch delay slot nop. |
| for (size_t index = 0; index < case_count; ++index) { |
| dd(GetLabelFunction(index)); |
| } |
| } |
| |
| #define ACCESS_MASM(masm) masm-> |
| |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_MIPS_MACRO_ASSEMBLER_MIPS_H_ |