| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "src/parsing/parser.h" |
| |
| #include <algorithm> |
| #include <memory> |
| |
| #include "src/api.h" |
| #include "src/ast/ast-function-literal-id-reindexer.h" |
| #include "src/ast/ast-traversal-visitor.h" |
| #include "src/ast/ast.h" |
| #include "src/bailout-reason.h" |
| #include "src/base/platform/platform.h" |
| #include "src/char-predicates-inl.h" |
| #include "src/compiler-dispatcher/compiler-dispatcher.h" |
| #include "src/log.h" |
| #include "src/messages.h" |
| #include "src/objects-inl.h" |
| #include "src/parsing/duplicate-finder.h" |
| #include "src/parsing/expression-scope-reparenter.h" |
| #include "src/parsing/parse-info.h" |
| #include "src/parsing/rewriter.h" |
| #include "src/runtime/runtime.h" |
| #include "src/string-stream.h" |
| #include "src/tracing/trace-event.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| ScriptData::ScriptData(const byte* data, int length) |
| : owns_data_(false), rejected_(false), data_(data), length_(length) { |
| if (!IsAligned(reinterpret_cast<intptr_t>(data), kPointerAlignment)) { |
| byte* copy = NewArray<byte>(length); |
| DCHECK(IsAligned(reinterpret_cast<intptr_t>(copy), kPointerAlignment)); |
| CopyBytes(copy, data, length); |
| data_ = copy; |
| AcquireDataOwnership(); |
| } |
| } |
| |
| FunctionEntry ParseData::GetFunctionEntry(int start) { |
| // The current pre-data entry must be a FunctionEntry with the given |
| // start position. |
| if ((function_index_ + FunctionEntry::kSize <= Length()) && |
| (static_cast<int>(Data()[function_index_]) == start)) { |
| int index = function_index_; |
| function_index_ += FunctionEntry::kSize; |
| Vector<unsigned> subvector(&(Data()[index]), FunctionEntry::kSize); |
| return FunctionEntry(subvector); |
| } |
| return FunctionEntry(); |
| } |
| |
| |
| int ParseData::FunctionCount() { |
| int functions_size = FunctionsSize(); |
| if (functions_size < 0) return 0; |
| if (functions_size % FunctionEntry::kSize != 0) return 0; |
| return functions_size / FunctionEntry::kSize; |
| } |
| |
| |
| bool ParseData::IsSane() { |
| if (!IsAligned(script_data_->length(), sizeof(unsigned))) return false; |
| // Check that the header data is valid and doesn't specify |
| // point to positions outside the store. |
| int data_length = Length(); |
| if (data_length < PreparseDataConstants::kHeaderSize) return false; |
| if (Magic() != PreparseDataConstants::kMagicNumber) return false; |
| if (Version() != PreparseDataConstants::kCurrentVersion) return false; |
| // Check that the space allocated for function entries is sane. |
| int functions_size = FunctionsSize(); |
| if (functions_size < 0) return false; |
| if (functions_size % FunctionEntry::kSize != 0) return false; |
| // Check that the total size has room for header and function entries. |
| int minimum_size = |
| PreparseDataConstants::kHeaderSize + functions_size; |
| if (data_length < minimum_size) return false; |
| return true; |
| } |
| |
| |
| void ParseData::Initialize() { |
| // Prepares state for use. |
| int data_length = Length(); |
| if (data_length >= PreparseDataConstants::kHeaderSize) { |
| function_index_ = PreparseDataConstants::kHeaderSize; |
| } |
| } |
| |
| |
| unsigned ParseData::Magic() { |
| return Data()[PreparseDataConstants::kMagicOffset]; |
| } |
| |
| |
| unsigned ParseData::Version() { |
| return Data()[PreparseDataConstants::kVersionOffset]; |
| } |
| |
| |
| int ParseData::FunctionsSize() { |
| return static_cast<int>(Data()[PreparseDataConstants::kFunctionsSizeOffset]); |
| } |
| |
| // Helper for putting parts of the parse results into a temporary zone when |
| // parsing inner function bodies. |
| class DiscardableZoneScope { |
| public: |
| DiscardableZoneScope(Parser* parser, Zone* temp_zone, bool use_temp_zone) |
| : fni_(parser->ast_value_factory_, temp_zone), |
| parser_(parser), |
| prev_fni_(parser->fni_), |
| prev_zone_(parser->zone_), |
| prev_allow_lazy_(parser->allow_lazy_), |
| prev_temp_zoned_(parser->temp_zoned_) { |
| if (use_temp_zone) { |
| DCHECK(!parser_->temp_zoned_); |
| parser_->allow_lazy_ = false; |
| parser_->temp_zoned_ = true; |
| parser_->fni_ = &fni_; |
| parser_->zone_ = temp_zone; |
| parser_->factory()->set_zone(temp_zone); |
| if (parser_->reusable_preparser_ != nullptr) { |
| parser_->reusable_preparser_->zone_ = temp_zone; |
| parser_->reusable_preparser_->factory()->set_zone(temp_zone); |
| } |
| } |
| } |
| void Reset() { |
| parser_->fni_ = prev_fni_; |
| parser_->zone_ = prev_zone_; |
| parser_->factory()->set_zone(prev_zone_); |
| parser_->allow_lazy_ = prev_allow_lazy_; |
| parser_->temp_zoned_ = prev_temp_zoned_; |
| if (parser_->reusable_preparser_ != nullptr) { |
| parser_->reusable_preparser_->zone_ = prev_zone_; |
| parser_->reusable_preparser_->factory()->set_zone(prev_zone_); |
| } |
| } |
| ~DiscardableZoneScope() { Reset(); } |
| |
| private: |
| FuncNameInferrer fni_; |
| Parser* parser_; |
| FuncNameInferrer* prev_fni_; |
| Zone* prev_zone_; |
| bool prev_allow_lazy_; |
| bool prev_temp_zoned_; |
| |
| DISALLOW_COPY_AND_ASSIGN(DiscardableZoneScope); |
| }; |
| |
| void Parser::SetCachedData(ParseInfo* info) { |
| DCHECK_NULL(cached_parse_data_); |
| if (consume_cached_parse_data()) { |
| if (allow_lazy_) { |
| cached_parse_data_ = ParseData::FromCachedData(*info->cached_data()); |
| if (cached_parse_data_ != nullptr) return; |
| } |
| compile_options_ = ScriptCompiler::kNoCompileOptions; |
| } |
| } |
| |
| FunctionLiteral* Parser::DefaultConstructor(const AstRawString* name, |
| bool call_super, int pos, |
| int end_pos) { |
| int expected_property_count = -1; |
| const int parameter_count = 0; |
| |
| FunctionKind kind = call_super ? FunctionKind::kDefaultDerivedConstructor |
| : FunctionKind::kDefaultBaseConstructor; |
| DeclarationScope* function_scope = NewFunctionScope(kind); |
| SetLanguageMode(function_scope, LanguageMode::kStrict); |
| // Set start and end position to the same value |
| function_scope->set_start_position(pos); |
| function_scope->set_end_position(pos); |
| ZoneList<Statement*>* body = nullptr; |
| |
| { |
| FunctionState function_state(&function_state_, &scope_, function_scope); |
| |
| body = new (zone()) ZoneList<Statement*>(call_super ? 2 : 1, zone()); |
| if (call_super) { |
| // Create a SuperCallReference and handle in BytecodeGenerator. |
| auto constructor_args_name = ast_value_factory()->empty_string(); |
| bool is_duplicate; |
| bool is_rest = true; |
| bool is_optional = false; |
| Variable* constructor_args = function_scope->DeclareParameter( |
| constructor_args_name, TEMPORARY, is_optional, is_rest, &is_duplicate, |
| ast_value_factory(), pos); |
| |
| ZoneList<Expression*>* args = |
| new (zone()) ZoneList<Expression*>(1, zone()); |
| Spread* spread_args = factory()->NewSpread( |
| factory()->NewVariableProxy(constructor_args), pos, pos); |
| |
| args->Add(spread_args, zone()); |
| Expression* super_call_ref = NewSuperCallReference(pos); |
| Expression* call = factory()->NewCall(super_call_ref, args, pos); |
| body->Add(factory()->NewReturnStatement(call, pos), zone()); |
| } |
| |
| expected_property_count = function_state.expected_property_count(); |
| } |
| |
| FunctionLiteral* function_literal = factory()->NewFunctionLiteral( |
| name, function_scope, body, expected_property_count, parameter_count, |
| parameter_count, FunctionLiteral::kNoDuplicateParameters, |
| FunctionLiteral::kAnonymousExpression, default_eager_compile_hint(), pos, |
| true, GetNextFunctionLiteralId()); |
| return function_literal; |
| } |
| |
| // ---------------------------------------------------------------------------- |
| // The CHECK_OK macro is a convenient macro to enforce error |
| // handling for functions that may fail (by returning !*ok). |
| // |
| // CAUTION: This macro appends extra statements after a call, |
| // thus it must never be used where only a single statement |
| // is correct (e.g. an if statement branch w/o braces)! |
| |
| #define CHECK_OK_VALUE(x) ok); \ |
| if (!*ok) return x; \ |
| ((void)0 |
| #define DUMMY ) // to make indentation work |
| #undef DUMMY |
| |
| #define CHECK_OK CHECK_OK_VALUE(nullptr) |
| #define CHECK_OK_VOID CHECK_OK_VALUE(this->Void()) |
| |
| #define CHECK_FAILED /**/); \ |
| if (failed_) return nullptr; \ |
| ((void)0 |
| #define DUMMY ) // to make indentation work |
| #undef DUMMY |
| |
| // ---------------------------------------------------------------------------- |
| // Implementation of Parser |
| |
| bool Parser::ShortcutNumericLiteralBinaryExpression(Expression** x, |
| Expression* y, |
| Token::Value op, int pos) { |
| if ((*x)->IsNumberLiteral() && y->IsNumberLiteral()) { |
| double x_val = (*x)->AsLiteral()->AsNumber(); |
| double y_val = y->AsLiteral()->AsNumber(); |
| switch (op) { |
| case Token::ADD: |
| *x = factory()->NewNumberLiteral(x_val + y_val, pos); |
| return true; |
| case Token::SUB: |
| *x = factory()->NewNumberLiteral(x_val - y_val, pos); |
| return true; |
| case Token::MUL: |
| *x = factory()->NewNumberLiteral(x_val * y_val, pos); |
| return true; |
| case Token::DIV: |
| *x = factory()->NewNumberLiteral(x_val / y_val, pos); |
| return true; |
| case Token::BIT_OR: { |
| int value = DoubleToInt32(x_val) | DoubleToInt32(y_val); |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::BIT_AND: { |
| int value = DoubleToInt32(x_val) & DoubleToInt32(y_val); |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::BIT_XOR: { |
| int value = DoubleToInt32(x_val) ^ DoubleToInt32(y_val); |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::SHL: { |
| int value = DoubleToInt32(x_val) << (DoubleToInt32(y_val) & 0x1F); |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::SHR: { |
| uint32_t shift = DoubleToInt32(y_val) & 0x1F; |
| uint32_t value = DoubleToUint32(x_val) >> shift; |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::SAR: { |
| uint32_t shift = DoubleToInt32(y_val) & 0x1F; |
| int value = ArithmeticShiftRight(DoubleToInt32(x_val), shift); |
| *x = factory()->NewNumberLiteral(value, pos); |
| return true; |
| } |
| case Token::EXP: { |
| double value = Pow(x_val, y_val); |
| int int_value = static_cast<int>(value); |
| *x = factory()->NewNumberLiteral( |
| int_value == value && value != -0.0 ? int_value : value, pos); |
| return true; |
| } |
| default: |
| break; |
| } |
| } |
| return false; |
| } |
| |
| bool Parser::CollapseNaryExpression(Expression** x, Expression* y, |
| Token::Value op, int pos, |
| const SourceRange& range) { |
| // Filter out unsupported ops. |
| if (!Token::IsBinaryOp(op) || op == Token::EXP) return false; |
| |
| // Convert *x into an nary operation with the given op, returning false if |
| // this is not possible. |
| NaryOperation* nary = nullptr; |
| if ((*x)->IsBinaryOperation()) { |
| BinaryOperation* binop = (*x)->AsBinaryOperation(); |
| if (binop->op() != op) return false; |
| |
| nary = factory()->NewNaryOperation(op, binop->left(), 2); |
| nary->AddSubsequent(binop->right(), binop->position()); |
| ConvertBinaryToNaryOperationSourceRange(binop, nary); |
| *x = nary; |
| } else if ((*x)->IsNaryOperation()) { |
| nary = (*x)->AsNaryOperation(); |
| if (nary->op() != op) return false; |
| } else { |
| return false; |
| } |
| |
| // Append our current expression to the nary operation. |
| // TODO(leszeks): Do some literal collapsing here if we're appending Smi or |
| // String literals. |
| nary->AddSubsequent(y, pos); |
| AppendNaryOperationSourceRange(nary, range); |
| |
| return true; |
| } |
| |
| Expression* Parser::BuildUnaryExpression(Expression* expression, |
| Token::Value op, int pos) { |
| DCHECK_NOT_NULL(expression); |
| const Literal* literal = expression->AsLiteral(); |
| if (literal != nullptr) { |
| if (op == Token::NOT) { |
| // Convert the literal to a boolean condition and negate it. |
| return factory()->NewBooleanLiteral(literal->ToBooleanIsFalse(), pos); |
| } else if (literal->IsNumberLiteral()) { |
| // Compute some expressions involving only number literals. |
| double value = literal->AsNumber(); |
| switch (op) { |
| case Token::ADD: |
| return expression; |
| case Token::SUB: |
| return factory()->NewNumberLiteral(-value, pos); |
| case Token::BIT_NOT: |
| return factory()->NewNumberLiteral(~DoubleToInt32(value), pos); |
| default: |
| break; |
| } |
| } |
| } |
| return factory()->NewUnaryOperation(op, expression, pos); |
| } |
| |
| Expression* Parser::NewThrowError(Runtime::FunctionId id, |
| MessageTemplate::Template message, |
| const AstRawString* arg, int pos) { |
| ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(2, zone()); |
| args->Add(factory()->NewSmiLiteral(message, pos), zone()); |
| args->Add(factory()->NewStringLiteral(arg, pos), zone()); |
| CallRuntime* call_constructor = factory()->NewCallRuntime(id, args, pos); |
| return factory()->NewThrow(call_constructor, pos); |
| } |
| |
| Expression* Parser::NewSuperPropertyReference(int pos) { |
| // this_function[home_object_symbol] |
| VariableProxy* this_function_proxy = |
| NewUnresolved(ast_value_factory()->this_function_string(), pos); |
| Expression* home_object_symbol_literal = factory()->NewSymbolLiteral( |
| AstSymbol::kHomeObjectSymbol, kNoSourcePosition); |
| Expression* home_object = factory()->NewProperty( |
| this_function_proxy, home_object_symbol_literal, pos); |
| return factory()->NewSuperPropertyReference( |
| ThisExpression(pos)->AsVariableProxy(), home_object, pos); |
| } |
| |
| Expression* Parser::NewSuperCallReference(int pos) { |
| VariableProxy* new_target_proxy = |
| NewUnresolved(ast_value_factory()->new_target_string(), pos); |
| VariableProxy* this_function_proxy = |
| NewUnresolved(ast_value_factory()->this_function_string(), pos); |
| return factory()->NewSuperCallReference( |
| ThisExpression(pos)->AsVariableProxy(), new_target_proxy, |
| this_function_proxy, pos); |
| } |
| |
| Expression* Parser::NewTargetExpression(int pos) { |
| auto proxy = NewUnresolved(ast_value_factory()->new_target_string(), pos); |
| proxy->set_is_new_target(); |
| return proxy; |
| } |
| |
| Expression* Parser::FunctionSentExpression(int pos) { |
| // We desugar function.sent into %_GeneratorGetInputOrDebugPos(generator). |
| ZoneList<Expression*>* args = new (zone()) ZoneList<Expression*>(1, zone()); |
| VariableProxy* generator = factory()->NewVariableProxy( |
| function_state_->scope()->generator_object_var()); |
| args->Add(generator, zone()); |
| return factory()->NewCallRuntime(Runtime::kInlineGeneratorGetInputOrDebugPos, |
| args, pos); |
| } |
| |
| Expression* Parser::ImportMetaExpression(int pos) { |
| return factory()->NewCallRuntime( |
| Runtime::kInlineGetImportMetaObject, |
| new (zone()) ZoneList<Expression*>(0, zone()), pos); |
| } |
| |
| Literal* Parser::ExpressionFromLiteral(Token::Value token, int pos) { |
| switch (token) { |
| case Token::NULL_LITERAL: |
| return factory()->NewNullLiteral(pos); |
| case Token::TRUE_LITERAL: |
| return factory()->NewBooleanLiteral(true, pos); |
| case Token::FALSE_LITERAL: |
| return factory()->NewBooleanLiteral(false, pos); |
| case Token::SMI: { |
| uint32_t value = scanner()->smi_value(); |
| return factory()->NewSmiLiteral(value, pos); |
| } |
| case Token::NUMBER: { |
| double value = scanner()->DoubleValue(); |
| return factory()->NewNumberLiteral(value, pos); |
| } |
| case Token::BIGINT: |
| return factory()->NewBigIntLiteral( |
| AstBigInt(scanner()->CurrentLiteralAsCString(zone())), pos); |
| default: |
| DCHECK(false); |
| } |
| return nullptr; |
| } |
| |
| Expression* Parser::NewV8Intrinsic(const AstRawString* name, |
| ZoneList<Expression*>* args, int pos, |
| bool* ok) { |
| if (extension_ != nullptr) { |
| // The extension structures are only accessible while parsing the |
| // very first time, not when reparsing because of lazy compilation. |
| GetClosureScope()->ForceEagerCompilation(); |
| } |
| |
| DCHECK(name->is_one_byte()); |
| const Runtime::Function* function = |
| Runtime::FunctionForName(name->raw_data(), name->length()); |
| |
| if (function != nullptr) { |
| // Check for possible name clash. |
| DCHECK_EQ(Context::kNotFound, |
| Context::IntrinsicIndexForName(name->raw_data(), name->length())); |
| // Check for built-in IS_VAR macro. |
| if (function->function_id == Runtime::kIS_VAR) { |
| DCHECK_EQ(Runtime::RUNTIME, function->intrinsic_type); |
| // %IS_VAR(x) evaluates to x if x is a variable, |
| // leads to a parse error otherwise. Could be implemented as an |
| // inline function %_IS_VAR(x) to eliminate this special case. |
| if (args->length() == 1 && args->at(0)->AsVariableProxy() != nullptr) { |
| return args->at(0); |
| } else { |
| ReportMessage(MessageTemplate::kNotIsvar); |
| *ok = false; |
| return nullptr; |
| } |
| } |
| |
| // Check that the expected number of arguments are being passed. |
| if (function->nargs != -1 && function->nargs != args->length()) { |
| ReportMessage(MessageTemplate::kRuntimeWrongNumArgs); |
| *ok = false; |
| return nullptr; |
| } |
| |
| return factory()->NewCallRuntime(function, args, pos); |
| } |
| |
| int context_index = |
| Context::IntrinsicIndexForName(name->raw_data(), name->length()); |
| |
| // Check that the function is defined. |
| if (context_index == Context::kNotFound) { |
| ReportMessage(MessageTemplate::kNotDefined, name); |
| *ok = false; |
| return nullptr; |
| } |
| |
| return factory()->NewCallRuntime(context_index, args, pos); |
| } |
| |
| Parser::Parser(ParseInfo* info) |
| : ParserBase<Parser>(info->zone(), &scanner_, info->stack_limit(), |
| info->extension(), info->GetOrCreateAstValueFactory(), |
| info->pending_error_handler(), |
| info->runtime_call_stats(), info->logger(), |
| info->script().is_null() ? -1 : info->script()->id(), |
| info->is_module(), true), |
| scanner_(info->unicode_cache()), |
| reusable_preparser_(nullptr), |
| mode_(PARSE_EAGERLY), // Lazy mode must be set explicitly. |
| source_range_map_(info->source_range_map()), |
| target_stack_(nullptr), |
| compile_options_(info->compile_options()), |
| cached_parse_data_(nullptr), |
| total_preparse_skipped_(0), |
| temp_zoned_(false), |
| log_(nullptr), |
| consumed_preparsed_scope_data_(info->consumed_preparsed_scope_data()), |
| parameters_end_pos_(info->parameters_end_pos()) { |
| // Even though we were passed ParseInfo, we should not store it in |
| // Parser - this makes sure that Isolate is not accidentally accessed via |
| // ParseInfo during background parsing. |
| DCHECK_NOT_NULL(info->character_stream()); |
| // Determine if functions can be lazily compiled. This is necessary to |
| // allow some of our builtin JS files to be lazily compiled. These |
| // builtins cannot be handled lazily by the parser, since we have to know |
| // if a function uses the special natives syntax, which is something the |
| // parser records. |
| // If the debugger requests compilation for break points, we cannot be |
| // aggressive about lazy compilation, because it might trigger compilation |
| // of functions without an outer context when setting a breakpoint through |
| // Debug::FindSharedFunctionInfoInScript |
| // We also compile eagerly for kProduceExhaustiveCodeCache. |
| bool can_compile_lazily = FLAG_lazy && !info->is_eager(); |
| |
| set_default_eager_compile_hint(can_compile_lazily |
| ? FunctionLiteral::kShouldLazyCompile |
| : FunctionLiteral::kShouldEagerCompile); |
| allow_lazy_ = FLAG_lazy && info->allow_lazy_parsing() && !info->is_native() && |
| info->extension() == nullptr && can_compile_lazily; |
| set_allow_natives(FLAG_allow_natives_syntax || info->is_native()); |
| set_allow_harmony_do_expressions(FLAG_harmony_do_expressions); |
| set_allow_harmony_function_sent(FLAG_harmony_function_sent); |
| set_allow_harmony_public_fields(FLAG_harmony_public_fields); |
| set_allow_harmony_static_fields(FLAG_harmony_static_fields); |
| set_allow_harmony_dynamic_import(FLAG_harmony_dynamic_import); |
| set_allow_harmony_import_meta(FLAG_harmony_import_meta); |
| set_allow_harmony_bigint(FLAG_harmony_bigint); |
| set_allow_harmony_optional_catch_binding(FLAG_harmony_optional_catch_binding); |
| set_allow_harmony_private_fields(FLAG_harmony_private_fields); |
| for (int feature = 0; feature < v8::Isolate::kUseCounterFeatureCount; |
| ++feature) { |
| use_counts_[feature] = 0; |
| } |
| } |
| |
| void Parser::DeserializeScopeChain( |
| ParseInfo* info, MaybeHandle<ScopeInfo> maybe_outer_scope_info) { |
| // TODO(wingo): Add an outer SCRIPT_SCOPE corresponding to the native |
| // context, which will have the "this" binding for script scopes. |
| DeclarationScope* script_scope = NewScriptScope(); |
| info->set_script_scope(script_scope); |
| Scope* scope = script_scope; |
| Handle<ScopeInfo> outer_scope_info; |
| if (maybe_outer_scope_info.ToHandle(&outer_scope_info)) { |
| DCHECK(ThreadId::Current().Equals( |
| outer_scope_info->GetIsolate()->thread_id())); |
| scope = Scope::DeserializeScopeChain( |
| zone(), *outer_scope_info, script_scope, ast_value_factory(), |
| Scope::DeserializationMode::kScopesOnly); |
| } |
| original_scope_ = scope; |
| } |
| |
| namespace { |
| |
| void MaybeResetCharacterStream(ParseInfo* info, FunctionLiteral* literal) { |
| // Don't reset the character stream if there is an asm.js module since it will |
| // be used again by the asm-parser. |
| if (!FLAG_stress_validate_asm && |
| (literal == nullptr || !literal->scope()->ContainsAsmModule())) { |
| info->ResetCharacterStream(); |
| } |
| } |
| |
| } // namespace |
| |
| FunctionLiteral* Parser::ParseProgram(Isolate* isolate, ParseInfo* info) { |
| // TODO(bmeurer): We temporarily need to pass allow_nesting = true here, |
| // see comment for HistogramTimerScope class. |
| |
| // It's OK to use the Isolate & counters here, since this function is only |
| // called in the main thread. |
| DCHECK(parsing_on_main_thread_); |
| RuntimeCallTimerScope runtime_timer( |
| runtime_call_stats_, info->is_eval() |
| ? RuntimeCallCounterId::kParseEval |
| : RuntimeCallCounterId::kParseProgram); |
| TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseProgram"); |
| base::ElapsedTimer timer; |
| if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start(); |
| fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); |
| |
| // Initialize parser state. |
| ParserLogger logger; |
| |
| if (produce_cached_parse_data()) { |
| if (allow_lazy_) { |
| log_ = &logger; |
| } else { |
| compile_options_ = ScriptCompiler::kNoCompileOptions; |
| } |
| } else if (consume_cached_parse_data()) { |
| cached_parse_data_->Initialize(); |
| } |
| |
| DeserializeScopeChain(info, info->maybe_outer_scope_info()); |
| |
| scanner_.Initialize(info->character_stream(), info->is_module()); |
| FunctionLiteral* result = DoParseProgram(info); |
| MaybeResetCharacterStream(info, result); |
| |
| HandleSourceURLComments(isolate, info->script()); |
| |
| if (produce_cached_parse_data() && result != nullptr) { |
| *info->cached_data() = logger.GetScriptData(); |
| } |
| log_ = nullptr; |
| |
| if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) { |
| double ms = timer.Elapsed().InMillisecondsF(); |
| const char* event_name = "parse-eval"; |
| Script* script = *info->script(); |
| int start = -1; |
| int end = -1; |
| if (!info->is_eval()) { |
| event_name = "parse-script"; |
| start = 0; |
| end = String::cast(script->source())->length(); |
| } |
| LOG(script->GetIsolate(), |
| FunctionEvent(event_name, script, -1, ms, start, end, "", 0)); |
| } |
| return result; |
| } |
| |
| |
| FunctionLiteral* Parser::DoParseProgram(ParseInfo* info) { |
| // Note that this function can be called from the main thread or from a |
| // background thread. We should not access anything Isolate / heap dependent |
| // via ParseInfo, and also not pass it forward. |
| DCHECK_NULL(scope_); |
| DCHECK_NULL(target_stack_); |
| |
| ParsingModeScope mode(this, allow_lazy_ ? PARSE_LAZILY : PARSE_EAGERLY); |
| ResetFunctionLiteralId(); |
| DCHECK(info->function_literal_id() == FunctionLiteral::kIdTypeTopLevel || |
| info->function_literal_id() == FunctionLiteral::kIdTypeInvalid); |
| |
| FunctionLiteral* result = nullptr; |
| { |
| Scope* outer = original_scope_; |
| DCHECK_NOT_NULL(outer); |
| if (info->is_eval()) { |
| outer = NewEvalScope(outer); |
| } else if (parsing_module_) { |
| DCHECK_EQ(outer, info->script_scope()); |
| outer = NewModuleScope(info->script_scope()); |
| } |
| |
| DeclarationScope* scope = outer->AsDeclarationScope(); |
| scope->set_start_position(0); |
| |
| FunctionState function_state(&function_state_, &scope_, scope); |
| ZoneList<Statement*>* body = new(zone()) ZoneList<Statement*>(16, zone()); |
| bool ok = true; |
| int beg_pos = scanner()->location().beg_pos; |
| if (parsing_module_) { |
| DCHECK(info->is_module()); |
| // Declare the special module parameter. |
| auto name = ast_value_factory()->empty_string(); |
| bool is_duplicate = false; |
| bool is_rest = false; |
| bool is_optional = false; |
| auto var = |
| scope->DeclareParameter(name, VAR, is_optional, is_rest, |
| &is_duplicate, ast_value_factory(), beg_pos); |
| DCHECK(!is_duplicate); |
| var->AllocateTo(VariableLocation::PARAMETER, 0); |
| |
| PrepareGeneratorVariables(); |
| Expression* initial_yield = |
| BuildInitialYield(kNoSourcePosition, kGeneratorFunction); |
| body->Add( |
| factory()->NewExpressionStatement(initial_yield, kNoSourcePosition), |
| zone()); |
| |
| ParseModuleItemList(body, &ok); |
| ok = ok && module()->Validate(this->scope()->AsModuleScope(), |
| pending_error_handler(), zone()); |
| } else if (info->is_wrapped_as_function()) { |
| ParseWrapped(info, body, scope, zone(), &ok); |
| } else { |
| // Don't count the mode in the use counters--give the program a chance |
| // to enable script-wide strict mode below. |
| this->scope()->SetLanguageMode(info->language_mode()); |
| ParseStatementList(body, Token::EOS, &ok); |
| } |
| |
| // The parser will peek but not consume EOS. Our scope logically goes all |
| // the way to the EOS, though. |
| scope->set_end_position(scanner()->peek_location().beg_pos); |
| |
| if (ok && is_strict(language_mode())) { |
| CheckStrictOctalLiteral(beg_pos, scanner()->location().end_pos, &ok); |
| } |
| if (ok && is_sloppy(language_mode())) { |
| // TODO(littledan): Function bindings on the global object that modify |
| // pre-existing bindings should be made writable, enumerable and |
| // nonconfigurable if possible, whereas this code will leave attributes |
| // unchanged if the property already exists. |
| InsertSloppyBlockFunctionVarBindings(scope); |
| } |
| if (ok) { |
| CheckConflictingVarDeclarations(scope, &ok); |
| } |
| |
| if (ok && info->parse_restriction() == ONLY_SINGLE_FUNCTION_LITERAL) { |
| if (body->length() != 1 || |
| !body->at(0)->IsExpressionStatement() || |
| !body->at(0)->AsExpressionStatement()-> |
| expression()->IsFunctionLiteral()) { |
| ReportMessage(MessageTemplate::kSingleFunctionLiteral); |
| ok = false; |
| } |
| } |
| |
| if (ok) { |
| RewriteDestructuringAssignments(); |
| int parameter_count = parsing_module_ ? 1 : 0; |
| result = factory()->NewScriptOrEvalFunctionLiteral( |
| scope, body, function_state.expected_property_count(), |
| parameter_count); |
| } |
| } |
| |
| info->set_max_function_literal_id(GetLastFunctionLiteralId()); |
| |
| // Make sure the target stack is empty. |
| DCHECK_NULL(target_stack_); |
| |
| return result; |
| } |
| |
| ZoneList<const AstRawString*>* Parser::PrepareWrappedArguments(ParseInfo* info, |
| Zone* zone) { |
| DCHECK(parsing_on_main_thread_); |
| Handle<FixedArray> arguments(info->script()->wrapped_arguments()); |
| int arguments_length = arguments->length(); |
| ZoneList<const AstRawString*>* arguments_for_wrapped_function = |
| new (zone) ZoneList<const AstRawString*>(arguments_length, zone); |
| for (int i = 0; i < arguments_length; i++) { |
| const AstRawString* argument_string = ast_value_factory()->GetString( |
| Handle<String>(String::cast(arguments->get(i)))); |
| arguments_for_wrapped_function->Add(argument_string, zone); |
| } |
| return arguments_for_wrapped_function; |
| } |
| |
| void Parser::ParseWrapped(ParseInfo* info, ZoneList<Statement*>* body, |
| DeclarationScope* outer_scope, Zone* zone, bool* ok) { |
| DCHECK(info->is_wrapped_as_function()); |
| ParsingModeScope parsing_mode(this, PARSE_EAGERLY); |
| |
| // Set function and block state for the outer eval scope. |
| DCHECK(outer_scope->is_eval_scope()); |
| FunctionState function_state(&function_state_, &scope_, outer_scope); |
| |
| const AstRawString* function_name = nullptr; |
| Scanner::Location location(0, 0); |
| |
| ZoneList<const AstRawString*>* arguments_for_wrapped_function = |
| PrepareWrappedArguments(info, zone); |
| |
| FunctionLiteral* function_literal = ParseFunctionLiteral( |
| function_name, location, kSkipFunctionNameCheck, kNormalFunction, |
| kNoSourcePosition, FunctionLiteral::kWrapped, LanguageMode::kSloppy, |
| arguments_for_wrapped_function, CHECK_OK_VOID); |
| |
| Statement* return_statement = factory()->NewReturnStatement( |
| function_literal, kNoSourcePosition, kNoSourcePosition); |
| body->Add(return_statement, zone); |
| } |
| |
| FunctionLiteral* Parser::ParseFunction(Isolate* isolate, ParseInfo* info, |
| Handle<SharedFunctionInfo> shared_info) { |
| // It's OK to use the Isolate & counters here, since this function is only |
| // called in the main thread. |
| DCHECK(parsing_on_main_thread_); |
| RuntimeCallTimerScope runtime_timer(runtime_call_stats_, |
| RuntimeCallCounterId::kParseFunction); |
| TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.compile"), "V8.ParseFunction"); |
| base::ElapsedTimer timer; |
| if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start(); |
| |
| DeserializeScopeChain(info, info->maybe_outer_scope_info()); |
| DCHECK_EQ(factory()->zone(), info->zone()); |
| |
| // Initialize parser state. |
| Handle<String> name(shared_info->name()); |
| info->set_function_name(ast_value_factory()->GetString(name)); |
| scanner_.Initialize(info->character_stream(), info->is_module()); |
| |
| FunctionLiteral* result = DoParseFunction(info, info->function_name()); |
| MaybeResetCharacterStream(info, result); |
| if (result != nullptr) { |
| Handle<String> inferred_name(shared_info->inferred_name()); |
| result->set_inferred_name(inferred_name); |
| } |
| |
| if (V8_UNLIKELY(FLAG_log_function_events) && result != nullptr) { |
| double ms = timer.Elapsed().InMillisecondsF(); |
| // We need to make sure that the debug-name is available. |
| ast_value_factory()->Internalize(isolate); |
| DeclarationScope* function_scope = result->scope(); |
| Script* script = *info->script(); |
| std::unique_ptr<char[]> function_name = result->GetDebugName(); |
| LOG(script->GetIsolate(), |
| FunctionEvent("parse-function", script, -1, ms, |
| function_scope->start_position(), |
| function_scope->end_position(), function_name.get(), |
| strlen(function_name.get()))); |
| } |
| return result; |
| } |
| |
| static FunctionLiteral::FunctionType ComputeFunctionType(ParseInfo* info) { |
| if (info->is_wrapped_as_function()) { |
| return FunctionLiteral::kWrapped; |
| } else if (info->is_declaration()) { |
| return FunctionLiteral::kDeclaration; |
| } else if (info->is_named_expression()) { |
| return FunctionLiteral::kNamedExpression; |
| } else if (IsConciseMethod(info->function_kind()) || |
| IsAccessorFunction(info->function_kind())) { |
| return FunctionLiteral::kAccessorOrMethod; |
| } |
| return FunctionLiteral::kAnonymousExpression; |
| } |
| |
| FunctionLiteral* Parser::DoParseFunction(ParseInfo* info, |
| const AstRawString* raw_name) { |
| DCHECK_NOT_NULL(raw_name); |
| DCHECK_NULL(scope_); |
| DCHECK_NULL(target_stack_); |
| |
| DCHECK(ast_value_factory()); |
| fni_ = new (zone()) FuncNameInferrer(ast_value_factory(), zone()); |
| fni_->PushEnclosingName(raw_name); |
| |
| ResetFunctionLiteralId(); |
| DCHECK_LT(0, info->function_literal_id()); |
| SkipFunctionLiterals(info->function_literal_id() - 1); |
| |
| ParsingModeScope parsing_mode(this, PARSE_EAGERLY); |
| |
| // Place holder for the result. |
| FunctionLiteral* result = nullptr; |
| |
| { |
| // Parse the function literal. |
| Scope* outer = original_scope_; |
| DeclarationScope* outer_function = outer->GetClosureScope(); |
| DCHECK(outer); |
| FunctionState function_state(&function_state_, &scope_, outer_function); |
| BlockState block_state(&scope_, outer); |
| DCHECK(is_sloppy(outer->language_mode()) || |
| is_strict(info->language_mode())); |
| FunctionLiteral::FunctionType function_type = ComputeFunctionType(info); |
| FunctionKind kind = info->function_kind(); |
| bool ok = true; |
| |
| if (IsArrowFunction(kind)) { |
| if (IsAsyncFunction(kind)) { |
| DCHECK(!scanner()->HasAnyLineTerminatorAfterNext()); |
| if (!Check(Token::ASYNC)) { |
| CHECK(stack_overflow()); |
| return nullptr; |
| } |
| if (!(peek_any_identifier() || peek() == Token::LPAREN)) { |
| CHECK(stack_overflow()); |
| return nullptr; |
| } |
| } |
| |
| // TODO(adamk): We should construct this scope from the ScopeInfo. |
| DeclarationScope* scope = NewFunctionScope(kind); |
| |
| // This bit only needs to be explicitly set because we're |
| // not passing the ScopeInfo to the Scope constructor. |
| SetLanguageMode(scope, info->language_mode()); |
| |
| scope->set_start_position(info->start_position()); |
| ExpressionClassifier formals_classifier(this); |
| ParserFormalParameters formals(scope); |
| int rewritable_length = |
| function_state.destructuring_assignments_to_rewrite().length(); |
| { |
| // Parsing patterns as variable reference expression creates |
| // NewUnresolved references in current scope. Enter arrow function |
| // scope for formal parameter parsing. |
| BlockState block_state(&scope_, scope); |
| if (Check(Token::LPAREN)) { |
| // '(' StrictFormalParameters ')' |
| ParseFormalParameterList(&formals, &ok); |
| if (ok) ok = Check(Token::RPAREN); |
| } else { |
| // BindingIdentifier |
| ParseFormalParameter(&formals, &ok); |
| if (ok) { |
| DeclareFormalParameters(formals.scope, formals.params, |
| formals.is_simple); |
| } |
| } |
| } |
| |
| if (ok) { |
| if (GetLastFunctionLiteralId() != info->function_literal_id() - 1) { |
| // If there were FunctionLiterals in the parameters, we need to |
| // renumber them to shift down so the next function literal id for |
| // the arrow function is the one requested. |
| AstFunctionLiteralIdReindexer reindexer( |
| stack_limit_, |
| (info->function_literal_id() - 1) - GetLastFunctionLiteralId()); |
| for (auto p : formals.params) { |
| if (p->pattern != nullptr) reindexer.Reindex(p->pattern); |
| if (p->initializer != nullptr) reindexer.Reindex(p->initializer); |
| } |
| ResetFunctionLiteralId(); |
| SkipFunctionLiterals(info->function_literal_id() - 1); |
| } |
| |
| // Pass `accept_IN=true` to ParseArrowFunctionLiteral --- This should |
| // not be observable, or else the preparser would have failed. |
| Expression* expression = |
| ParseArrowFunctionLiteral(true, formals, rewritable_length, &ok); |
| if (ok) { |
| // Scanning must end at the same position that was recorded |
| // previously. If not, parsing has been interrupted due to a stack |
| // overflow, at which point the partially parsed arrow function |
| // concise body happens to be a valid expression. This is a problem |
| // only for arrow functions with single expression bodies, since there |
| // is no end token such as "}" for normal functions. |
| if (scanner()->location().end_pos == info->end_position()) { |
| // The pre-parser saw an arrow function here, so the full parser |
| // must produce a FunctionLiteral. |
| DCHECK(expression->IsFunctionLiteral()); |
| result = expression->AsFunctionLiteral(); |
| // Rewrite destructuring assignments in the parameters. (The ones |
| // inside the function body are rewritten by |
| // ParseArrowFunctionLiteral.) |
| RewriteDestructuringAssignments(); |
| } else { |
| ok = false; |
| } |
| } |
| } |
| } else if (IsDefaultConstructor(kind)) { |
| DCHECK_EQ(scope(), outer); |
| result = DefaultConstructor(raw_name, IsDerivedConstructor(kind), |
| info->start_position(), info->end_position()); |
| } else { |
| ZoneList<const AstRawString*>* arguments_for_wrapped_function = |
| info->is_wrapped_as_function() ? PrepareWrappedArguments(info, zone()) |
| : nullptr; |
| result = ParseFunctionLiteral( |
| raw_name, Scanner::Location::invalid(), kSkipFunctionNameCheck, kind, |
| kNoSourcePosition, function_type, info->language_mode(), |
| arguments_for_wrapped_function, &ok); |
| } |
| |
| if (ok) { |
| result->set_requires_instance_fields_initializer( |
| info->requires_instance_fields_initializer()); |
| } |
| // Make sure the results agree. |
| DCHECK(ok == (result != nullptr)); |
| } |
| |
| // Make sure the target stack is empty. |
| DCHECK_NULL(target_stack_); |
| DCHECK_IMPLIES(result, |
| info->function_literal_id() == result->function_literal_id()); |
| return result; |
| } |
| |
| Statement* Parser::ParseModuleItem(bool* ok) { |
| // ecma262/#prod-ModuleItem |
| // ModuleItem : |
| // ImportDeclaration |
| // ExportDeclaration |
| // StatementListItem |
| |
| Token::Value next = peek(); |
| |
| if (next == Token::EXPORT) { |
| return ParseExportDeclaration(ok); |
| } |
| |
| if (next == Token::IMPORT) { |
| // We must be careful not to parse a dynamic import expression as an import |
| // declaration. Same for import.meta expressions. |
| Token::Value peek_ahead = PeekAhead(); |
| if ((!allow_harmony_dynamic_import() || peek_ahead != Token::LPAREN) && |
| (!allow_harmony_import_meta() || peek_ahead != Token::PERIOD)) { |
| ParseImportDeclaration(CHECK_OK); |
| return factory()->NewEmptyStatement(kNoSourcePosition); |
| } |
| } |
| |
| return ParseStatementListItem(ok); |
| } |
| |
| |
| void Parser::ParseModuleItemList(ZoneList<Statement*>* body, bool* ok) { |
| // ecma262/#prod-Module |
| // Module : |
| // ModuleBody? |
| // |
| // ecma262/#prod-ModuleItemList |
| // ModuleBody : |
| // ModuleItem* |
| |
| DCHECK(scope()->is_module_scope()); |
| while (peek() != Token::EOS) { |
| Statement* stat = ParseModuleItem(CHECK_OK_VOID); |
| if (stat && !stat->IsEmpty()) { |
| body->Add(stat, zone()); |
| } |
| } |
| } |
| |
| |
| const AstRawString* Parser::ParseModuleSpecifier(bool* ok) { |
| // ModuleSpecifier : |
| // StringLiteral |
| |
| Expect(Token::STRING, CHECK_OK); |
| return GetSymbol(); |
| } |
| |
| |
| void Parser::ParseExportClause(ZoneList<const AstRawString*>* export_names, |
| ZoneList<Scanner::Location>* export_locations, |
| ZoneList<const AstRawString*>* local_names, |
| Scanner::Location* reserved_loc, bool* ok) { |
| // ExportClause : |
| // '{' '}' |
| // '{' ExportsList '}' |
| // '{' ExportsList ',' '}' |
| // |
| // ExportsList : |
| // ExportSpecifier |
| // ExportsList ',' ExportSpecifier |
| // |
| // ExportSpecifier : |
| // IdentifierName |
| // IdentifierName 'as' IdentifierName |
| |
| Expect(Token::LBRACE, CHECK_OK_VOID); |
| |
| Token::Value name_tok; |
| while ((name_tok = peek()) != Token::RBRACE) { |
| // Keep track of the first reserved word encountered in case our |
| // caller needs to report an error. |
| if (!reserved_loc->IsValid() && |
| !Token::IsIdentifier(name_tok, LanguageMode::kStrict, false, |
| parsing_module_)) { |
| *reserved_loc = scanner()->location(); |
| } |
| const AstRawString* local_name = ParseIdentifierName(CHECK_OK_VOID); |
| const AstRawString* export_name = nullptr; |
| Scanner::Location location = scanner()->location(); |
| if (CheckContextualKeyword(Token::AS)) { |
| export_name = ParseIdentifierName(CHECK_OK_VOID); |
| // Set the location to the whole "a as b" string, so that it makes sense |
| // both for errors due to "a" and for errors due to "b". |
| location.end_pos = scanner()->location().end_pos; |
| } |
| if (export_name == nullptr) { |
| export_name = local_name; |
| } |
| export_names->Add(export_name, zone()); |
| local_names->Add(local_name, zone()); |
| export_locations->Add(location, zone()); |
| if (peek() == Token::RBRACE) break; |
| Expect(Token::COMMA, CHECK_OK_VOID); |
| } |
| |
| Expect(Token::RBRACE, CHECK_OK_VOID); |
| } |
| |
| |
| ZoneList<const Parser::NamedImport*>* Parser::ParseNamedImports( |
| int pos, bool* ok) { |
| // NamedImports : |
| // '{' '}' |
| // '{' ImportsList '}' |
| // '{' ImportsList ',' '}' |
| // |
| // ImportsList : |
| // ImportSpecifier |
| // ImportsList ',' ImportSpecifier |
| // |
| // ImportSpecifier : |
| // BindingIdentifier |
| // IdentifierName 'as' BindingIdentifier |
| |
| Expect(Token::LBRACE, CHECK_OK); |
| |
| auto result = new (zone()) ZoneList<const NamedImport*>(1, zone()); |
| while (peek() != Token::RBRACE) { |
| const AstRawString* import_name = ParseIdentifierName(CHECK_OK); |
| const AstRawString* local_name = import_name; |
| Scanner::Location location = scanner()->location(); |
| // In the presence of 'as', the left-side of the 'as' can |
| // be any IdentifierName. But without 'as', it must be a valid |
| // BindingIdentifier. |
| if (CheckContextualKeyword(Token::AS)) { |
| local_name = ParseIdentifierName(CHECK_OK); |
| } |
| if (!Token::IsIdentifier(scanner()->current_token(), LanguageMode::kStrict, |
| false, parsing_module_)) { |
| *ok = false; |
| ReportMessage(MessageTemplate::kUnexpectedReserved); |
| return nullptr; |
| } else if (IsEvalOrArguments(local_name)) { |
| *ok = false; |
| ReportMessage(MessageTemplate::kStrictEvalArguments); |
| return nullptr; |
| } |
| |
| DeclareVariable(local_name, CONST, kNeedsInitialization, position(), |
| CHECK_OK); |
| |
| NamedImport* import = |
| new (zone()) NamedImport(import_name, local_name, location); |
| result->Add(import, zone()); |
| |
| if (peek() == Token::RBRACE) break; |
| Expect(Token::COMMA, CHECK_OK); |
| } |
| |
| Expect(Token::RBRACE, CHECK_OK); |
| return result; |
| } |
| |
| |
| void Parser::ParseImportDeclaration(bool* ok) { |
| // ImportDeclaration : |
| // 'import' ImportClause 'from' ModuleSpecifier ';' |
| // 'import' ModuleSpecifier ';' |
| // |
| // ImportClause : |
| // ImportedDefaultBinding |
| // NameSpaceImport |
| // NamedImports |
| // ImportedDefaultBinding ',' NameSpaceImport |
| // ImportedDefaultBinding ',' NamedImports |
| // |
| // NameSpaceImport : |
| // '*' 'as' ImportedBinding |
| |
| int pos = peek_position(); |
| Expect(Token::IMPORT, CHECK_OK_VOID); |
| |
| Token::Value tok = peek(); |
| |
| // 'import' ModuleSpecifier ';' |
| if (tok == Token::STRING) { |
| Scanner::Location specifier_loc = scanner()->peek_location(); |
| const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID); |
| ExpectSemicolon(CHECK_OK_VOID); |
| module()->AddEmptyImport(module_specifier, specifier_loc); |
| return; |
| } |
| |
| // Parse ImportedDefaultBinding if present. |
| const AstRawString* import_default_binding = nullptr; |
| Scanner::Location import_default_binding_loc; |
| if (tok != Token::MUL && tok != Token::LBRACE) { |
| import_default_binding = |
| ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID); |
| import_default_binding_loc = scanner()->location(); |
| DeclareVariable(import_default_binding, CONST, kNeedsInitialization, pos, |
| CHECK_OK_VOID); |
| } |
| |
| // Parse NameSpaceImport or NamedImports if present. |
| const AstRawString* module_namespace_binding = nullptr; |
| Scanner::Location module_namespace_binding_loc; |
| const ZoneList<const NamedImport*>* named_imports = nullptr; |
| if (import_default_binding == nullptr || Check(Token::COMMA)) { |
| switch (peek()) { |
| case Token::MUL: { |
| Consume(Token::MUL); |
| ExpectContextualKeyword(Token::AS, CHECK_OK_VOID); |
| module_namespace_binding = |
| ParseIdentifier(kDontAllowRestrictedIdentifiers, CHECK_OK_VOID); |
| module_namespace_binding_loc = scanner()->location(); |
| DeclareVariable(module_namespace_binding, CONST, kCreatedInitialized, |
| pos, CHECK_OK_VOID); |
| break; |
| } |
| |
| case Token::LBRACE: |
| named_imports = ParseNamedImports(pos, CHECK_OK_VOID); |
| break; |
| |
| default: |
| *ok = false; |
| ReportUnexpectedToken(scanner()->current_token()); |
| return; |
| } |
| } |
| |
| ExpectContextualKeyword(Token::FROM, CHECK_OK_VOID); |
| Scanner::Location specifier_loc = scanner()->peek_location(); |
| const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK_VOID); |
| ExpectSemicolon(CHECK_OK_VOID); |
| |
| // Now that we have all the information, we can make the appropriate |
| // declarations. |
| |
| // TODO(neis): Would prefer to call DeclareVariable for each case below rather |
| // than above and in ParseNamedImports, but then a possible error message |
| // would point to the wrong location. Maybe have a DeclareAt version of |
| // Declare that takes a location? |
| |
| if (module_namespace_binding != nullptr) { |
| module()->AddStarImport(module_namespace_binding, module_specifier, |
| module_namespace_binding_loc, specifier_loc, |
| zone()); |
| } |
| |
| if (import_default_binding != nullptr) { |
| module()->AddImport(ast_value_factory()->default_string(), |
| import_default_binding, module_specifier, |
| import_default_binding_loc, specifier_loc, zone()); |
| } |
| |
| if (named_imports != nullptr) { |
| if (named_imports->length() == 0) { |
| module()->AddEmptyImport(module_specifier, specifier_loc); |
| } else { |
| for (int i = 0; i < named_imports->length(); ++i) { |
| const NamedImport* import = named_imports->at(i); |
| module()->AddImport(import->import_name, import->local_name, |
| module_specifier, import->location, specifier_loc, |
| zone()); |
| } |
| } |
| } |
| } |
| |
| |
| Statement* Parser::ParseExportDefault(bool* ok) { |
| // Supports the following productions, starting after the 'default' token: |
| // 'export' 'default' HoistableDeclaration |
| // 'export' 'default' ClassDeclaration |
| // 'export' 'default' AssignmentExpression[In] ';' |
| |
| Expect(Token::DEFAULT, CHECK_OK); |
| Scanner::Location default_loc = scanner()->location(); |
| |
| ZoneList<const AstRawString*> local_names(1, zone()); |
| Statement* result = nullptr; |
| switch (peek()) { |
| case Token::FUNCTION: |
| result = ParseHoistableDeclaration(&local_names, true, CHECK_OK); |
| break; |
| |
| case Token::CLASS: |
| Consume(Token::CLASS); |
| result = ParseClassDeclaration(&local_names, true, CHECK_OK); |
| break; |
| |
| case Token::ASYNC: |
| if (PeekAhead() == Token::FUNCTION && |
| !scanner()->HasAnyLineTerminatorAfterNext()) { |
| Consume(Token::ASYNC); |
| result = ParseAsyncFunctionDeclaration(&local_names, true, CHECK_OK); |
| break; |
| } |
| /* falls through */ |
| |
| default: { |
| int pos = position(); |
| ExpressionClassifier classifier(this); |
| Expression* value = ParseAssignmentExpression(true, CHECK_OK); |
| ValidateExpression(CHECK_OK); |
| SetFunctionName(value, ast_value_factory()->default_string()); |
| |
| const AstRawString* local_name = |
| ast_value_factory()->star_default_star_string(); |
| local_names.Add(local_name, zone()); |
| |
| // It's fine to declare this as CONST because the user has no way of |
| // writing to it. |
| Declaration* decl = DeclareVariable(local_name, CONST, pos, CHECK_OK); |
| decl->proxy()->var()->set_initializer_position(position()); |
| |
| Assignment* assignment = factory()->NewAssignment( |
| Token::INIT, decl->proxy(), value, kNoSourcePosition); |
| result = IgnoreCompletion( |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition)); |
| |
| ExpectSemicolon(CHECK_OK); |
| break; |
| } |
| } |
| |
| DCHECK_EQ(local_names.length(), 1); |
| module()->AddExport(local_names.first(), |
| ast_value_factory()->default_string(), default_loc, |
| zone()); |
| |
| DCHECK_NOT_NULL(result); |
| return result; |
| } |
| |
| Statement* Parser::ParseExportDeclaration(bool* ok) { |
| // ExportDeclaration: |
| // 'export' '*' 'from' ModuleSpecifier ';' |
| // 'export' ExportClause ('from' ModuleSpecifier)? ';' |
| // 'export' VariableStatement |
| // 'export' Declaration |
| // 'export' 'default' ... (handled in ParseExportDefault) |
| |
| Expect(Token::EXPORT, CHECK_OK); |
| int pos = position(); |
| |
| Statement* result = nullptr; |
| ZoneList<const AstRawString*> names(1, zone()); |
| Scanner::Location loc = scanner()->peek_location(); |
| switch (peek()) { |
| case Token::DEFAULT: |
| return ParseExportDefault(ok); |
| |
| case Token::MUL: { |
| Consume(Token::MUL); |
| loc = scanner()->location(); |
| ExpectContextualKeyword(Token::FROM, CHECK_OK); |
| Scanner::Location specifier_loc = scanner()->peek_location(); |
| const AstRawString* module_specifier = ParseModuleSpecifier(CHECK_OK); |
| ExpectSemicolon(CHECK_OK); |
| module()->AddStarExport(module_specifier, loc, specifier_loc, zone()); |
| return factory()->NewEmptyStatement(pos); |
| } |
| |
| case Token::LBRACE: { |
| // There are two cases here: |
| // |
| // 'export' ExportClause ';' |
| // and |
| // 'export' ExportClause FromClause ';' |
| // |
| // In the first case, the exported identifiers in ExportClause must |
| // not be reserved words, while in the latter they may be. We |
| // pass in a location that gets filled with the first reserved word |
| // encountered, and then throw a SyntaxError if we are in the |
| // non-FromClause case. |
| Scanner::Location reserved_loc = Scanner::Location::invalid(); |
| ZoneList<const AstRawString*> export_names(1, zone()); |
| ZoneList<Scanner::Location> export_locations(1, zone()); |
| ZoneList<const AstRawString*> original_names(1, zone()); |
| ParseExportClause(&export_names, &export_locations, &original_names, |
| &reserved_loc, CHECK_OK); |
| const AstRawString* module_specifier = nullptr; |
| Scanner::Location specifier_loc; |
| if (CheckContextualKeyword(Token::FROM)) { |
| specifier_loc = scanner()->peek_location(); |
| module_specifier = ParseModuleSpecifier(CHECK_OK); |
| } else if (reserved_loc.IsValid()) { |
| // No FromClause, so reserved words are invalid in ExportClause. |
| *ok = false; |
| ReportMessageAt(reserved_loc, MessageTemplate::kUnexpectedReserved); |
| return nullptr; |
| } |
| ExpectSemicolon(CHECK_OK); |
| const int length = export_names.length(); |
| DCHECK_EQ(length, original_names.length()); |
| DCHECK_EQ(length, export_locations.length()); |
| if (module_specifier == nullptr) { |
| for (int i = 0; i < length; ++i) { |
| module()->AddExport(original_names[i], export_names[i], |
| export_locations[i], zone()); |
| } |
| } else if (length == 0) { |
| module()->AddEmptyImport(module_specifier, specifier_loc); |
| } else { |
| for (int i = 0; i < length; ++i) { |
| module()->AddExport(original_names[i], export_names[i], |
| module_specifier, export_locations[i], |
| specifier_loc, zone()); |
| } |
| } |
| return factory()->NewEmptyStatement(pos); |
| } |
| |
| case Token::FUNCTION: |
| result = ParseHoistableDeclaration(&names, false, CHECK_OK); |
| break; |
| |
| case Token::CLASS: |
| Consume(Token::CLASS); |
| result = ParseClassDeclaration(&names, false, CHECK_OK); |
| break; |
| |
| case Token::VAR: |
| case Token::LET: |
| case Token::CONST: |
| result = ParseVariableStatement(kStatementListItem, &names, CHECK_OK); |
| break; |
| |
| case Token::ASYNC: |
| // TODO(neis): Why don't we have the same check here as in |
| // ParseStatementListItem? |
| Consume(Token::ASYNC); |
| result = ParseAsyncFunctionDeclaration(&names, false, CHECK_OK); |
| break; |
| |
| default: |
| *ok = false; |
| ReportUnexpectedToken(scanner()->current_token()); |
| return nullptr; |
| } |
| loc.end_pos = scanner()->location().end_pos; |
| |
| ModuleDescriptor* descriptor = module(); |
| for (int i = 0; i < names.length(); ++i) { |
| descriptor->AddExport(names[i], names[i], loc, zone()); |
| } |
| |
| DCHECK_NOT_NULL(result); |
| return result; |
| } |
| |
| VariableProxy* Parser::NewUnresolved(const AstRawString* name, int begin_pos, |
| VariableKind kind) { |
| return scope()->NewUnresolved(factory(), name, begin_pos, kind); |
| } |
| |
| VariableProxy* Parser::NewUnresolved(const AstRawString* name) { |
| return scope()->NewUnresolved(factory(), name, scanner()->location().beg_pos); |
| } |
| |
| Declaration* Parser::DeclareVariable(const AstRawString* name, |
| VariableMode mode, int pos, bool* ok) { |
| return DeclareVariable(name, mode, Variable::DefaultInitializationFlag(mode), |
| pos, ok); |
| } |
| |
| Declaration* Parser::DeclareVariable(const AstRawString* name, |
| VariableMode mode, InitializationFlag init, |
| int pos, bool* ok) { |
| DCHECK_NOT_NULL(name); |
| VariableProxy* proxy = factory()->NewVariableProxy( |
| name, NORMAL_VARIABLE, scanner()->location().beg_pos); |
| Declaration* declaration; |
| if (mode == VAR && !scope()->is_declaration_scope()) { |
| DCHECK(scope()->is_block_scope() || scope()->is_with_scope()); |
| declaration = factory()->NewNestedVariableDeclaration(proxy, scope(), pos); |
| } else { |
| declaration = factory()->NewVariableDeclaration(proxy, pos); |
| } |
| Declare(declaration, DeclarationDescriptor::NORMAL, mode, init, ok, nullptr, |
| scanner()->location().end_pos); |
| if (!*ok) return nullptr; |
| return declaration; |
| } |
| |
| Variable* Parser::Declare(Declaration* declaration, |
| DeclarationDescriptor::Kind declaration_kind, |
| VariableMode mode, InitializationFlag init, bool* ok, |
| Scope* scope, int var_end_pos) { |
| if (scope == nullptr) { |
| scope = this->scope(); |
| } |
| bool sloppy_mode_block_scope_function_redefinition = false; |
| Variable* variable = scope->DeclareVariable( |
| declaration, mode, init, &sloppy_mode_block_scope_function_redefinition, |
| ok); |
| if (!*ok) { |
| // If we only have the start position of a proxy, we can't highlight the |
| // whole variable name. Pretend its length is 1 so that we highlight at |
| // least the first character. |
| Scanner::Location loc(declaration->proxy()->position(), |
| var_end_pos != kNoSourcePosition |
| ? var_end_pos |
| : declaration->proxy()->position() + 1); |
| if (declaration_kind == DeclarationDescriptor::PARAMETER) { |
| ReportMessageAt(loc, MessageTemplate::kParamDupe); |
| } else { |
| ReportMessageAt(loc, MessageTemplate::kVarRedeclaration, |
| declaration->proxy()->raw_name()); |
| } |
| return nullptr; |
| } |
| if (sloppy_mode_block_scope_function_redefinition) { |
| ++use_counts_[v8::Isolate::kSloppyModeBlockScopedFunctionRedefinition]; |
| } |
| return variable; |
| } |
| |
| Block* Parser::BuildInitializationBlock( |
| DeclarationParsingResult* parsing_result, |
| ZoneList<const AstRawString*>* names, bool* ok) { |
| Block* result = factory()->NewBlock(1, true); |
| for (auto declaration : parsing_result->declarations) { |
| DeclareAndInitializeVariables(result, &(parsing_result->descriptor), |
| &declaration, names, CHECK_OK); |
| } |
| return result; |
| } |
| |
| Statement* Parser::DeclareFunction(const AstRawString* variable_name, |
| FunctionLiteral* function, VariableMode mode, |
| int pos, bool is_sloppy_block_function, |
| ZoneList<const AstRawString*>* names, |
| bool* ok) { |
| VariableProxy* proxy = |
| factory()->NewVariableProxy(variable_name, NORMAL_VARIABLE); |
| |
| Declaration* declaration = |
| factory()->NewFunctionDeclaration(proxy, function, pos); |
| Declare(declaration, DeclarationDescriptor::NORMAL, mode, kCreatedInitialized, |
| CHECK_OK); |
| if (names) names->Add(variable_name, zone()); |
| if (is_sloppy_block_function) { |
| SloppyBlockFunctionStatement* statement = |
| factory()->NewSloppyBlockFunctionStatement(); |
| GetDeclarationScope()->DeclareSloppyBlockFunction(variable_name, scope(), |
| statement); |
| return statement; |
| } |
| return factory()->NewEmptyStatement(kNoSourcePosition); |
| } |
| |
| Statement* Parser::DeclareClass(const AstRawString* variable_name, |
| Expression* value, |
| ZoneList<const AstRawString*>* names, |
| int class_token_pos, int end_pos, bool* ok) { |
| Declaration* decl = |
| DeclareVariable(variable_name, LET, class_token_pos, CHECK_OK); |
| decl->proxy()->var()->set_initializer_position(end_pos); |
| if (names) names->Add(variable_name, zone()); |
| |
| Assignment* assignment = factory()->NewAssignment(Token::INIT, decl->proxy(), |
| value, class_token_pos); |
| return IgnoreCompletion( |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition)); |
| } |
| |
| Statement* Parser::DeclareNative(const AstRawString* name, int pos, bool* ok) { |
| // Make sure that the function containing the native declaration |
| // isn't lazily compiled. The extension structures are only |
| // accessible while parsing the first time not when reparsing |
| // because of lazy compilation. |
| GetClosureScope()->ForceEagerCompilation(); |
| |
| // TODO(1240846): It's weird that native function declarations are |
| // introduced dynamically when we meet their declarations, whereas |
| // other functions are set up when entering the surrounding scope. |
| Declaration* decl = DeclareVariable(name, VAR, pos, CHECK_OK); |
| NativeFunctionLiteral* lit = |
| factory()->NewNativeFunctionLiteral(name, extension_, kNoSourcePosition); |
| return factory()->NewExpressionStatement( |
| factory()->NewAssignment(Token::INIT, decl->proxy(), lit, |
| kNoSourcePosition), |
| pos); |
| } |
| |
| ZoneList<const AstRawString*>* Parser::DeclareLabel( |
| ZoneList<const AstRawString*>* labels, VariableProxy* var, bool* ok) { |
| DCHECK(IsIdentifier(var)); |
| const AstRawString* label = var->raw_name(); |
| // TODO(1240780): We don't check for redeclaration of labels |
| // during preparsing since keeping track of the set of active |
| // labels requires nontrivial changes to the way scopes are |
| // structured. However, these are probably changes we want to |
| // make later anyway so we should go back and fix this then. |
| if (ContainsLabel(labels, label) || TargetStackContainsLabel(label)) { |
| ReportMessage(MessageTemplate::kLabelRedeclaration, label); |
| *ok = false; |
| return nullptr; |
| } |
| if (labels == nullptr) { |
| labels = new (zone()) ZoneList<const AstRawString*>(1, zone()); |
| } |
| labels->Add(label, zone()); |
| // Remove the "ghost" variable that turned out to be a label |
| // from the top scope. This way, we don't try to resolve it |
| // during the scope processing. |
| scope()->RemoveUnresolved(var); |
| return labels; |
| } |
| |
| bool Parser::ContainsLabel(ZoneList<const AstRawString*>* labels, |
| const AstRawString* label) { |
| DCHECK_NOT_NULL(label); |
| if (labels != nullptr) { |
| for (int i = labels->length(); i-- > 0;) { |
| if (labels->at(i) == label) return true; |
| } |
| } |
| return false; |
| } |
| |
| Block* Parser::IgnoreCompletion(Statement* statement) { |
| Block* block = factory()->NewBlock(1, true); |
| block->statements()->Add(statement, zone()); |
| return block; |
| } |
| |
| Expression* Parser::RewriteReturn(Expression* return_value, int pos) { |
| if (IsDerivedConstructor(function_state_->kind())) { |
| // For subclass constructors we need to return this in case of undefined; |
| // other primitive values trigger an exception in the ConstructStub. |
| // |
| // return expr; |
| // |
| // Is rewritten as: |
| // |
| // return (temp = expr) === undefined ? this : temp; |
| |
| // temp = expr |
| Variable* temp = NewTemporary(ast_value_factory()->empty_string()); |
| Assignment* assign = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(temp), return_value, pos); |
| |
| // temp === undefined |
| Expression* is_undefined = factory()->NewCompareOperation( |
| Token::EQ_STRICT, assign, |
| factory()->NewUndefinedLiteral(kNoSourcePosition), pos); |
| |
| // is_undefined ? this : temp |
| return_value = |
| factory()->NewConditional(is_undefined, ThisExpression(pos), |
| factory()->NewVariableProxy(temp), pos); |
| } |
| return return_value; |
| } |
| |
| Expression* Parser::RewriteDoExpression(Block* body, int pos, bool* ok) { |
| Variable* result = NewTemporary(ast_value_factory()->dot_result_string()); |
| DoExpression* expr = factory()->NewDoExpression(body, result, pos); |
| if (!Rewriter::Rewrite(this, GetClosureScope(), expr, ast_value_factory())) { |
| *ok = false; |
| return nullptr; |
| } |
| return expr; |
| } |
| |
| Statement* Parser::RewriteSwitchStatement(SwitchStatement* switch_statement, |
| Scope* scope) { |
| // In order to get the CaseClauses to execute in their own lexical scope, |
| // but without requiring downstream code to have special scope handling |
| // code for switch statements, desugar into blocks as follows: |
| // { // To group the statements--harmless to evaluate Expression in scope |
| // .tag_variable = Expression; |
| // { // To give CaseClauses a scope |
| // switch (.tag_variable) { CaseClause* } |
| // } |
| // } |
| DCHECK_NOT_NULL(scope); |
| DCHECK(scope->is_block_scope()); |
| DCHECK_GE(switch_statement->position(), scope->start_position()); |
| DCHECK_LT(switch_statement->position(), scope->end_position()); |
| |
| Block* switch_block = factory()->NewBlock(2, false); |
| |
| Expression* tag = switch_statement->tag(); |
| Variable* tag_variable = |
| NewTemporary(ast_value_factory()->dot_switch_tag_string()); |
| Assignment* tag_assign = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(tag_variable), tag, |
| tag->position()); |
| // Wrap with IgnoreCompletion so the tag isn't returned as the completion |
| // value, in case the switch statements don't have a value. |
| Statement* tag_statement = IgnoreCompletion( |
| factory()->NewExpressionStatement(tag_assign, kNoSourcePosition)); |
| switch_block->statements()->Add(tag_statement, zone()); |
| |
| switch_statement->set_tag(factory()->NewVariableProxy(tag_variable)); |
| Block* cases_block = factory()->NewBlock(1, false); |
| cases_block->statements()->Add(switch_statement, zone()); |
| cases_block->set_scope(scope); |
| switch_block->statements()->Add(cases_block, zone()); |
| return switch_block; |
| } |
| |
| void Parser::RewriteCatchPattern(CatchInfo* catch_info, bool* ok) { |
| if (catch_info->name == nullptr) { |
| DCHECK_NOT_NULL(catch_info->pattern); |
| catch_info->name = ast_value_factory()->dot_catch_string(); |
| } |
| Variable* catch_variable = |
| catch_info->scope->DeclareLocal(catch_info->name, VAR); |
| if (catch_info->pattern != nullptr) { |
| DeclarationDescriptor descriptor; |
| descriptor.declaration_kind = DeclarationDescriptor::NORMAL; |
| descriptor.scope = scope(); |
| descriptor.mode = LET; |
| descriptor.declaration_pos = catch_info->pattern->position(); |
| descriptor.initialization_pos = catch_info->pattern->position(); |
| |
| // Initializer position for variables declared by the pattern. |
| const int initializer_position = position(); |
| |
| DeclarationParsingResult::Declaration decl( |
| catch_info->pattern, initializer_position, |
| factory()->NewVariableProxy(catch_variable)); |
| |
| catch_info->init_block = factory()->NewBlock(8, true); |
| DeclareAndInitializeVariables(catch_info->init_block, &descriptor, &decl, |
| &catch_info->bound_names, ok); |
| } else { |
| catch_info->bound_names.Add(catch_info->name, zone()); |
| } |
| } |
| |
| void Parser::ValidateCatchBlock(const CatchInfo& catch_info, bool* ok) { |
| // Check for `catch(e) { let e; }` and similar errors. |
| Scope* inner_block_scope = catch_info.inner_block->scope(); |
| if (inner_block_scope != nullptr) { |
| Declaration* decl = inner_block_scope->CheckLexDeclarationsConflictingWith( |
| catch_info.bound_names); |
| if (decl != nullptr) { |
| const AstRawString* name = decl->proxy()->raw_name(); |
| int position = decl->proxy()->position(); |
| Scanner::Location location = |
| position == kNoSourcePosition |
| ? Scanner::Location::invalid() |
| : Scanner::Location(position, position + 1); |
| ReportMessageAt(location, MessageTemplate::kVarRedeclaration, name); |
| *ok = false; |
| } |
| } |
| } |
| |
| Statement* Parser::RewriteTryStatement(Block* try_block, Block* catch_block, |
| const SourceRange& catch_range, |
| Block* finally_block, |
| const SourceRange& finally_range, |
| const CatchInfo& catch_info, int pos) { |
| // Simplify the AST nodes by converting: |
| // 'try B0 catch B1 finally B2' |
| // to: |
| // 'try { try B0 catch B1 } finally B2' |
| |
| if (catch_block != nullptr && finally_block != nullptr) { |
| // If we have both, create an inner try/catch. |
| TryCatchStatement* statement; |
| statement = factory()->NewTryCatchStatement(try_block, catch_info.scope, |
| catch_block, kNoSourcePosition); |
| RecordTryCatchStatementSourceRange(statement, catch_range); |
| |
| try_block = factory()->NewBlock(1, false); |
| try_block->statements()->Add(statement, zone()); |
| catch_block = nullptr; // Clear to indicate it's been handled. |
| } |
| |
| if (catch_block != nullptr) { |
| DCHECK_NULL(finally_block); |
| TryCatchStatement* stmt = factory()->NewTryCatchStatement( |
| try_block, catch_info.scope, catch_block, pos); |
| RecordTryCatchStatementSourceRange(stmt, catch_range); |
| return stmt; |
| } else { |
| DCHECK_NOT_NULL(finally_block); |
| TryFinallyStatement* stmt = |
| factory()->NewTryFinallyStatement(try_block, finally_block, pos); |
| RecordTryFinallyStatementSourceRange(stmt, finally_range); |
| return stmt; |
| } |
| } |
| |
| void Parser::ParseAndRewriteGeneratorFunctionBody(int pos, FunctionKind kind, |
| ZoneList<Statement*>* body, |
| bool* ok) { |
| // For ES6 Generators, we just prepend the initial yield. |
| Expression* initial_yield = BuildInitialYield(pos, kind); |
| body->Add(factory()->NewExpressionStatement(initial_yield, kNoSourcePosition), |
| zone()); |
| ParseStatementList(body, Token::RBRACE, ok); |
| } |
| |
| void Parser::ParseAndRewriteAsyncGeneratorFunctionBody( |
| int pos, FunctionKind kind, ZoneList<Statement*>* body, bool* ok) { |
| // For ES2017 Async Generators, we produce: |
| // |
| // try { |
| // InitialYield; |
| // ...body...; |
| // return undefined; // See comment below |
| // } catch (.catch) { |
| // %AsyncGeneratorReject(generator, .catch); |
| // } finally { |
| // %_GeneratorClose(generator); |
| // } |
| // |
| // - InitialYield yields the actual generator object. |
| // - Any return statement inside the body will have its argument wrapped |
| // in an iterator result object with a "done" property set to `true`. |
| // - If the generator terminates for whatever reason, we must close it. |
| // Hence the finally clause. |
| // - BytecodeGenerator performs special handling for ReturnStatements in |
| // async generator functions, resolving the appropriate Promise with an |
| // "done" iterator result object containing a Promise-unwrapped value. |
| DCHECK(IsAsyncGeneratorFunction(kind)); |
| |
| Block* try_block = factory()->NewBlock(3, false); |
| Expression* initial_yield = BuildInitialYield(pos, kind); |
| try_block->statements()->Add( |
| factory()->NewExpressionStatement(initial_yield, kNoSourcePosition), |
| zone()); |
| ParseStatementList(try_block->statements(), Token::RBRACE, ok); |
| if (!*ok) return; |
| |
| // Don't create iterator result for async generators, as the resume methods |
| // will create it. |
| Statement* final_return = BuildReturnStatement( |
| factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition); |
| try_block->statements()->Add(final_return, zone()); |
| |
| // For AsyncGenerators, a top-level catch block will reject the Promise. |
| Scope* catch_scope = NewHiddenCatchScope(); |
| |
| ZoneList<Expression*>* reject_args = |
| new (zone()) ZoneList<Expression*>(2, zone()); |
| reject_args->Add(factory()->NewVariableProxy( |
| function_state_->scope()->generator_object_var()), |
| zone()); |
| reject_args->Add(factory()->NewVariableProxy(catch_scope->catch_variable()), |
| zone()); |
| |
| Expression* reject_call = factory()->NewCallRuntime( |
| Runtime::kInlineAsyncGeneratorReject, reject_args, kNoSourcePosition); |
| Block* catch_block = IgnoreCompletion( |
| factory()->NewReturnStatement(reject_call, kNoSourcePosition)); |
| |
| TryStatement* try_catch = factory()->NewTryCatchStatementForAsyncAwait( |
| try_block, catch_scope, catch_block, kNoSourcePosition); |
| |
| try_block = factory()->NewBlock(1, false); |
| try_block->statements()->Add(try_catch, zone()); |
| |
| Block* finally_block = factory()->NewBlock(1, false); |
| ZoneList<Expression*>* close_args = |
| new (zone()) ZoneList<Expression*>(1, zone()); |
| VariableProxy* call_proxy = factory()->NewVariableProxy( |
| function_state_->scope()->generator_object_var()); |
| close_args->Add(call_proxy, zone()); |
| Expression* close_call = factory()->NewCallRuntime( |
| Runtime::kInlineGeneratorClose, close_args, kNoSourcePosition); |
| finally_block->statements()->Add( |
| factory()->NewExpressionStatement(close_call, kNoSourcePosition), zone()); |
| |
| body->Add(factory()->NewTryFinallyStatement(try_block, finally_block, |
| kNoSourcePosition), |
| zone()); |
| } |
| |
| void Parser::DeclareFunctionNameVar(const AstRawString* function_name, |
| FunctionLiteral::FunctionType function_type, |
| DeclarationScope* function_scope) { |
| if (function_type == FunctionLiteral::kNamedExpression && |
| function_scope->LookupLocal(function_name) == nullptr) { |
| DCHECK_EQ(function_scope, scope()); |
| function_scope->DeclareFunctionVar(function_name); |
| } |
| } |
| |
| // [if (IteratorType == kNormal)] |
| // !%_IsJSReceiver(result = iterator.next()) && |
| // %ThrowIteratorResultNotAnObject(result) |
| // [else if (IteratorType == kAsync)] |
| // !%_IsJSReceiver(result = Await(iterator.next())) && |
| // %ThrowIteratorResultNotAnObject(result) |
| // [endif] |
| Expression* Parser::BuildIteratorNextResult(VariableProxy* iterator, |
| VariableProxy* next, |
| Variable* result, IteratorType type, |
| int pos) { |
| Expression* next_property = factory()->NewResolvedProperty(iterator, next); |
| ZoneList<Expression*>* next_arguments = |
| new (zone()) ZoneList<Expression*>(0, zone()); |
| Expression* next_call = |
| factory()->NewCall(next_property, next_arguments, kNoSourcePosition); |
| if (type == IteratorType::kAsync) { |
| next_call = factory()->NewAwait(next_call, pos); |
| } |
| Expression* result_proxy = factory()->NewVariableProxy(result); |
| Expression* left = |
| factory()->NewAssignment(Token::ASSIGN, result_proxy, next_call, pos); |
| |
| // %_IsJSReceiver(...) |
| ZoneList<Expression*>* is_spec_object_args = |
| new (zone()) ZoneList<Expression*>(1, zone()); |
| is_spec_object_args->Add(left, zone()); |
| Expression* is_spec_object_call = factory()->NewCallRuntime( |
| Runtime::kInlineIsJSReceiver, is_spec_object_args, pos); |
| |
| // %ThrowIteratorResultNotAnObject(result) |
| Expression* result_proxy_again = factory()->NewVariableProxy(result); |
| ZoneList<Expression*>* throw_arguments = |
| new (zone()) ZoneList<Expression*>(1, zone()); |
| throw_arguments->Add(result_proxy_again, zone()); |
| Expression* throw_call = factory()->NewCallRuntime( |
| Runtime::kThrowIteratorResultNotAnObject, throw_arguments, pos); |
| |
| return factory()->NewBinaryOperation( |
| Token::AND, |
| factory()->NewUnaryOperation(Token::NOT, is_spec_object_call, pos), |
| throw_call, pos); |
| } |
| |
| Statement* Parser::InitializeForEachStatement(ForEachStatement* stmt, |
| Expression* each, |
| Expression* subject, |
| Statement* body) { |
| ForOfStatement* for_of = stmt->AsForOfStatement(); |
| if (for_of != nullptr) { |
| const bool finalize = true; |
| return InitializeForOfStatement(for_of, each, subject, body, finalize, |
| IteratorType::kNormal, each->position()); |
| } else { |
| if (each->IsArrayLiteral() || each->IsObjectLiteral()) { |
| Variable* temp = NewTemporary(ast_value_factory()->empty_string()); |
| VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); |
| Expression* assign_each = |
| RewriteDestructuringAssignment(factory()->NewAssignment( |
| Token::ASSIGN, each, temp_proxy, kNoSourcePosition)); |
| auto block = factory()->NewBlock(2, false); |
| block->statements()->Add( |
| factory()->NewExpressionStatement(assign_each, kNoSourcePosition), |
| zone()); |
| block->statements()->Add(body, zone()); |
| body = block; |
| each = factory()->NewVariableProxy(temp); |
| } |
| MarkExpressionAsAssigned(each); |
| stmt->AsForInStatement()->Initialize(each, subject, body); |
| } |
| return stmt; |
| } |
| |
| // Special case for legacy for |
| // |
| // for (var x = initializer in enumerable) body |
| // |
| // An initialization block of the form |
| // |
| // { |
| // x = initializer; |
| // } |
| // |
| // is returned in this case. It has reserved space for two statements, |
| // so that (later on during parsing), the equivalent of |
| // |
| // for (x in enumerable) body |
| // |
| // is added as a second statement to it. |
| Block* Parser::RewriteForVarInLegacy(const ForInfo& for_info) { |
| const DeclarationParsingResult::Declaration& decl = |
| for_info.parsing_result.declarations[0]; |
| if (!IsLexicalVariableMode(for_info.parsing_result.descriptor.mode) && |
| decl.pattern->IsVariableProxy() && decl.initializer != nullptr) { |
| ++use_counts_[v8::Isolate::kForInInitializer]; |
| const AstRawString* name = decl.pattern->AsVariableProxy()->raw_name(); |
| VariableProxy* single_var = NewUnresolved(name); |
| Block* init_block = factory()->NewBlock(2, true); |
| init_block->statements()->Add( |
| factory()->NewExpressionStatement( |
| factory()->NewAssignment(Token::ASSIGN, single_var, |
| decl.initializer, kNoSourcePosition), |
| kNoSourcePosition), |
| zone()); |
| return init_block; |
| } |
| return nullptr; |
| } |
| |
| // Rewrite a for-in/of statement of the form |
| // |
| // for (let/const/var x in/of e) b |
| // |
| // into |
| // |
| // { |
| // var temp; |
| // for (temp in/of e) { |
| // let/const/var x = temp; |
| // b; |
| // } |
| // let x; // for TDZ |
| // } |
| void Parser::DesugarBindingInForEachStatement(ForInfo* for_info, |
| Block** body_block, |
| Expression** each_variable, |
| bool* ok) { |
| DCHECK_EQ(1, for_info->parsing_result.declarations.size()); |
| DeclarationParsingResult::Declaration& decl = |
| for_info->parsing_result.declarations[0]; |
| Variable* temp = NewTemporary(ast_value_factory()->dot_for_string()); |
| auto each_initialization_block = factory()->NewBlock(1, true); |
| { |
| auto descriptor = for_info->parsing_result.descriptor; |
| descriptor.declaration_pos = kNoSourcePosition; |
| descriptor.initialization_pos = kNoSourcePosition; |
| descriptor.scope = scope(); |
| decl.initializer = factory()->NewVariableProxy(temp); |
| |
| bool is_for_var_of = |
| for_info->mode == ForEachStatement::ITERATE && |
| for_info->parsing_result.descriptor.mode == VariableMode::VAR; |
| bool collect_names = |
| IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) || |
| is_for_var_of; |
| |
| DeclareAndInitializeVariables( |
| each_initialization_block, &descriptor, &decl, |
| collect_names ? &for_info->bound_names : nullptr, CHECK_OK_VOID); |
| |
| // Annex B.3.5 prohibits the form |
| // `try {} catch(e) { for (var e of {}); }` |
| // So if we are parsing a statement like `for (var ... of ...)` |
| // we need to walk up the scope chain and look for catch scopes |
| // which have a simple binding, then compare their binding against |
| // all of the names declared in the init of the for-of we're |
| // parsing. |
| if (is_for_var_of) { |
| Scope* catch_scope = scope(); |
| while (catch_scope != nullptr && !catch_scope->is_declaration_scope()) { |
| if (catch_scope->is_catch_scope()) { |
| auto name = catch_scope->catch_variable()->raw_name(); |
| // If it's a simple binding and the name is declared in the for loop. |
| if (name != ast_value_factory()->dot_catch_string() && |
| for_info->bound_names.Contains(name)) { |
| ReportMessageAt(for_info->parsing_result.bindings_loc, |
| MessageTemplate::kVarRedeclaration, name); |
| *ok = false; |
| return; |
| } |
| } |
| catch_scope = catch_scope->outer_scope(); |
| } |
| } |
| } |
| |
| *body_block = factory()->NewBlock(3, false); |
| (*body_block)->statements()->Add(each_initialization_block, zone()); |
| *each_variable = factory()->NewVariableProxy(temp, for_info->position); |
| } |
| |
| // Create a TDZ for any lexically-bound names in for in/of statements. |
| Block* Parser::CreateForEachStatementTDZ(Block* init_block, |
| const ForInfo& for_info, bool* ok) { |
| if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) { |
| DCHECK_NULL(init_block); |
| |
| init_block = factory()->NewBlock(1, false); |
| |
| for (int i = 0; i < for_info.bound_names.length(); ++i) { |
| // TODO(adamk): This needs to be some sort of special |
| // INTERNAL variable that's invisible to the debugger |
| // but visible to everything else. |
| Declaration* tdz_decl = DeclareVariable(for_info.bound_names[i], LET, |
| kNoSourcePosition, CHECK_OK); |
| tdz_decl->proxy()->var()->set_initializer_position(position()); |
| } |
| } |
| return init_block; |
| } |
| |
| Statement* Parser::InitializeForOfStatement( |
| ForOfStatement* for_of, Expression* each, Expression* iterable, |
| Statement* body, bool finalize, IteratorType type, int next_result_pos) { |
| // Create the auxiliary expressions needed for iterating over the iterable, |
| // and initialize the given ForOfStatement with them. |
| // If finalize is true, also instrument the loop with code that performs the |
| // proper ES6 iterator finalization. In that case, the result is not |
| // immediately a ForOfStatement. |
| const int nopos = kNoSourcePosition; |
| auto avfactory = ast_value_factory(); |
| |
| Variable* iterator = NewTemporary(avfactory->dot_iterator_string()); |
| Variable* next = NewTemporary(avfactory->empty_string()); |
| Variable* result = NewTemporary(avfactory->dot_result_string()); |
| Variable* completion = NewTemporary(avfactory->empty_string()); |
| |
| // iterator = GetIterator(iterable, type) |
| Expression* assign_iterator; |
| { |
| assign_iterator = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(iterator), |
| factory()->NewGetIterator(iterable, type, iterable->position()), |
| iterable->position()); |
| } |
| |
| Expression* assign_next; |
| { |
| assign_next = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(next), |
| factory()->NewProperty(factory()->NewVariableProxy(iterator), |
| factory()->NewStringLiteral( |
| avfactory->next_string(), kNoSourcePosition), |
| kNoSourcePosition), |
| kNoSourcePosition); |
| } |
| |
| // [if (IteratorType == kNormal)] |
| // !%_IsJSReceiver(result = iterator.next()) && |
| // %ThrowIteratorResultNotAnObject(result) |
| // [else if (IteratorType == kAsync)] |
| // !%_IsJSReceiver(result = Await(iterator.next())) && |
| // %ThrowIteratorResultNotAnObject(result) |
| // [endif] |
| Expression* next_result; |
| { |
| VariableProxy* iterator_proxy = factory()->NewVariableProxy(iterator); |
| VariableProxy* next_proxy = factory()->NewVariableProxy(next); |
| next_result = BuildIteratorNextResult(iterator_proxy, next_proxy, result, |
| type, next_result_pos); |
| } |
| |
| // result.done |
| Expression* result_done; |
| { |
| Expression* done_literal = factory()->NewStringLiteral( |
| ast_value_factory()->done_string(), kNoSourcePosition); |
| Expression* result_proxy = factory()->NewVariableProxy(result); |
| result_done = |
| factory()->NewProperty(result_proxy, done_literal, kNoSourcePosition); |
| } |
| |
| // result.value |
| Expression* result_value; |
| { |
| Expression* value_literal = |
| factory()->NewStringLiteral(avfactory->value_string(), nopos); |
| Expression* result_proxy = factory()->NewVariableProxy(result); |
| result_value = factory()->NewProperty(result_proxy, value_literal, nopos); |
| } |
| |
| // {{tmp = #result_value, completion = kAbruptCompletion, tmp}} |
| // Expression* result_value (gets overwritten) |
| if (finalize) { |
| Variable* tmp = NewTemporary(avfactory->empty_string()); |
| Expression* save_result = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(tmp), result_value, nopos); |
| |
| Expression* set_completion_abrupt = factory()->NewAssignment( |
| Token::ASSIGN, factory()->NewVariableProxy(completion), |
| factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos); |
| |
| result_value = factory()->NewBinaryOperation(Token::COMMA, save_result, |
| set_completion_abrupt, nopos); |
| result_value = factory()->NewBinaryOperation( |
| Token::COMMA, result_value, factory()->NewVariableProxy(tmp), nopos); |
| } |
| |
| // each = #result_value; |
| Expression* assign_each; |
| { |
| assign_each = |
| factory()->NewAssignment(Token::ASSIGN, each, result_value, nopos); |
| if (each->IsArrayLiteral() || each->IsObjectLiteral()) { |
| assign_each = RewriteDestructuringAssignment(assign_each->AsAssignment()); |
| } |
| } |
| |
| // {{completion = kNormalCompletion;}} |
| Statement* set_completion_normal; |
| if (finalize) { |
| Expression* proxy = factory()->NewVariableProxy(completion); |
| Expression* assignment = factory()->NewAssignment( |
| Token::ASSIGN, proxy, |
| factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos); |
| |
| set_completion_normal = |
| IgnoreCompletion(factory()->NewExpressionStatement(assignment, nopos)); |
| } |
| |
| // { #loop-body; #set_completion_normal } |
| // Statement* body (gets overwritten) |
| if (finalize) { |
| Block* block = factory()->NewBlock(2, false); |
| block->statements()->Add(body, zone()); |
| block->statements()->Add(set_completion_normal, zone()); |
| body = block; |
| } |
| |
| for_of->Initialize(body, iterator, assign_iterator, assign_next, next_result, |
| result_done, assign_each); |
| return finalize ? FinalizeForOfStatement(for_of, completion, type, nopos) |
| : for_of; |
| } |
| |
| Statement* Parser::DesugarLexicalBindingsInForStatement( |
| ForStatement* loop, Statement* init, Expression* cond, Statement* next, |
| Statement* body, Scope* inner_scope, const ForInfo& for_info, bool* ok) { |
| // ES6 13.7.4.8 specifies that on each loop iteration the let variables are |
| // copied into a new environment. Moreover, the "next" statement must be |
| // evaluated not in the environment of the just completed iteration but in |
| // that of the upcoming one. We achieve this with the following desugaring. |
| // Extra care is needed to preserve the completion value of the original loop. |
| // |
| // We are given a for statement of the form |
| // |
| // labels: for (let/const x = i; cond; next) body |
| // |
| // and rewrite it as follows. Here we write {{ ... }} for init-blocks, ie., |
| // blocks whose ignore_completion_value_ flag is set. |
| // |
| // { |
| // let/const x = i; |
| // temp_x = x; |
| // first = 1; |
| // undefined; |
| // outer: for (;;) { |
| // let/const x = temp_x; |
| // {{ if (first == 1) { |
| // first = 0; |
| // } else { |
| // next; |
| // } |
| // flag = 1; |
| // if (!cond) break; |
| // }} |
| // labels: for (; flag == 1; flag = 0, temp_x = x) { |
| // body |
| // } |
| // {{ if (flag == 1) // Body used break. |
| // break; |
| // }} |
| // } |
| // } |
| |
| DCHECK_GT(for_info.bound_names.length(), 0); |
| ZoneList<Variable*> temps(for_info.bound_names.length(), zone()); |
| |
| Block* outer_block = |
| factory()->NewBlock(for_info.bound_names.length() + 4, false); |
| |
| // Add statement: let/const x = i. |
| outer_block->statements()->Add(init, zone()); |
| |
| const AstRawString* temp_name = ast_value_factory()->dot_for_string(); |
| |
| // For each lexical variable x: |
| // make statement: temp_x = x. |
| for (int i = 0; i < for_info.bound_names.length(); i++) { |
| VariableProxy* proxy = NewUnresolved(for_info.bound_names[i]); |
| Variable* temp = NewTemporary(temp_name); |
| VariableProxy* temp_proxy = factory()->NewVariableProxy(temp); |
| Assignment* assignment = factory()->NewAssignment(Token::ASSIGN, temp_proxy, |
| proxy, kNoSourcePosition); |
| Statement* assignment_statement = |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition); |
| outer_block->statements()->Add(assignment_statement, zone()); |
| temps.Add(temp, zone()); |
| } |
| |
| Variable* first = nullptr; |
| // Make statement: first = 1. |
| if (next) { |
| first = NewTemporary(temp_name); |
| VariableProxy* first_proxy = factory()->NewVariableProxy(first); |
| Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition); |
| Assignment* assignment = factory()->NewAssignment( |
| Token::ASSIGN, first_proxy, const1, kNoSourcePosition); |
| Statement* assignment_statement = |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition); |
| outer_block->statements()->Add(assignment_statement, zone()); |
| } |
| |
| // make statement: undefined; |
| outer_block->statements()->Add( |
| factory()->NewExpressionStatement( |
| factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition), |
| zone()); |
| |
| // Make statement: outer: for (;;) |
| // Note that we don't actually create the label, or set this loop up as an |
| // explicit break target, instead handing it directly to those nodes that |
| // need to know about it. This should be safe because we don't run any code |
| // in this function that looks up break targets. |
| ForStatement* outer_loop = |
| factory()->NewForStatement(nullptr, kNoSourcePosition); |
| outer_block->statements()->Add(outer_loop, zone()); |
| outer_block->set_scope(scope()); |
| |
| Block* inner_block = factory()->NewBlock(3, false); |
| { |
| BlockState block_state(&scope_, inner_scope); |
| |
| Block* ignore_completion_block = |
| factory()->NewBlock(for_info.bound_names.length() + 3, true); |
| ZoneList<Variable*> inner_vars(for_info.bound_names.length(), zone()); |
| // For each let variable x: |
| // make statement: let/const x = temp_x. |
| for (int i = 0; i < for_info.bound_names.length(); i++) { |
| Declaration* decl = DeclareVariable( |
| for_info.bound_names[i], for_info.parsing_result.descriptor.mode, |
| kNoSourcePosition, CHECK_OK); |
| inner_vars.Add(decl->proxy()->var(), zone()); |
| VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); |
| Assignment* assignment = factory()->NewAssignment( |
| Token::INIT, decl->proxy(), temp_proxy, kNoSourcePosition); |
| Statement* assignment_statement = |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition); |
| int declaration_pos = for_info.parsing_result.descriptor.declaration_pos; |
| DCHECK_NE(declaration_pos, kNoSourcePosition); |
| decl->proxy()->var()->set_initializer_position(declaration_pos); |
| ignore_completion_block->statements()->Add(assignment_statement, zone()); |
| } |
| |
| // Make statement: if (first == 1) { first = 0; } else { next; } |
| if (next) { |
| DCHECK(first); |
| Expression* compare = nullptr; |
| // Make compare expression: first == 1. |
| { |
| Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition); |
| VariableProxy* first_proxy = factory()->NewVariableProxy(first); |
| compare = factory()->NewCompareOperation(Token::EQ, first_proxy, const1, |
| kNoSourcePosition); |
| } |
| Statement* clear_first = nullptr; |
| // Make statement: first = 0. |
| { |
| VariableProxy* first_proxy = factory()->NewVariableProxy(first); |
| Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition); |
| Assignment* assignment = factory()->NewAssignment( |
| Token::ASSIGN, first_proxy, const0, kNoSourcePosition); |
| clear_first = |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition); |
| } |
| Statement* clear_first_or_next = factory()->NewIfStatement( |
| compare, clear_first, next, kNoSourcePosition); |
| ignore_completion_block->statements()->Add(clear_first_or_next, zone()); |
| } |
| |
| Variable* flag = NewTemporary(temp_name); |
| // Make statement: flag = 1. |
| { |
| VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); |
| Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition); |
| Assignment* assignment = factory()->NewAssignment( |
| Token::ASSIGN, flag_proxy, const1, kNoSourcePosition); |
| Statement* assignment_statement = |
| factory()->NewExpressionStatement(assignment, kNoSourcePosition); |
| ignore_completion_block->statements()->Add(assignment_statement, zone()); |
| } |
| |
| // Make statement: if (!cond) break. |
| if (cond) { |
| Statement* stop = |
| factory()->NewBreakStatement(outer_loop, kNoSourcePosition); |
| Statement* noop = factory()->NewEmptyStatement(kNoSourcePosition); |
| ignore_completion_block->statements()->Add( |
| factory()->NewIfStatement(cond, noop, stop, cond->position()), |
| zone()); |
| } |
| |
| inner_block->statements()->Add(ignore_completion_block, zone()); |
| // Make cond expression for main loop: flag == 1. |
| Expression* flag_cond = nullptr; |
| { |
| Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition); |
| VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); |
| flag_cond = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, |
| kNoSourcePosition); |
| } |
| |
| // Create chain of expressions "flag = 0, temp_x = x, ..." |
| Statement* compound_next_statement = nullptr; |
| { |
| Expression* compound_next = nullptr; |
| // Make expression: flag = 0. |
| { |
| VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); |
| Expression* const0 = factory()->NewSmiLiteral(0, kNoSourcePosition); |
| compound_next = factory()->NewAssignment(Token::ASSIGN, flag_proxy, |
| const0, kNoSourcePosition); |
| } |
| |
| // Make the comma-separated list of temp_x = x assignments. |
| int inner_var_proxy_pos = scanner()->location().beg_pos; |
| for (int i = 0; i < for_info.bound_names.length(); i++) { |
| VariableProxy* temp_proxy = factory()->NewVariableProxy(temps.at(i)); |
| VariableProxy* proxy = |
| factory()->NewVariableProxy(inner_vars.at(i), inner_var_proxy_pos); |
| Assignment* assignment = factory()->NewAssignment( |
| Token::ASSIGN, temp_proxy, proxy, kNoSourcePosition); |
| compound_next = factory()->NewBinaryOperation( |
| Token::COMMA, compound_next, assignment, kNoSourcePosition); |
| } |
| |
| compound_next_statement = |
| factory()->NewExpressionStatement(compound_next, kNoSourcePosition); |
| } |
| |
| // Make statement: labels: for (; flag == 1; flag = 0, temp_x = x) |
| // Note that we re-use the original loop node, which retains its labels |
| // and ensures that any break or continue statements in body point to |
| // the right place. |
| loop->Initialize(nullptr, flag_cond, compound_next_statement, body); |
| inner_block->statements()->Add(loop, zone()); |
| |
| // Make statement: {{if (flag == 1) break;}} |
| { |
| Expression* compare = nullptr; |
| // Make compare expresion: flag == 1. |
| { |
| Expression* const1 = factory()->NewSmiLiteral(1, kNoSourcePosition); |
| VariableProxy* flag_proxy = factory()->NewVariableProxy(flag); |
| compare = factory()->NewCompareOperation(Token::EQ, flag_proxy, const1, |
| kNoSourcePosition); |
| } |
| Statement* stop = |
| factory()->NewBreakStatement(outer_loop, kNoSourcePosition); |
| Statement* empty = factory()->NewEmptyStatement(kNoSourcePosition); |
| Statement* if_flag_break = |
| factory()->NewIfStatement(compare, stop, empty, kNoSourcePosition); |
| inner_block->statements()->Add(IgnoreCompletion(if_flag_break), zone()); |
| } |
| |
| inner_block->set_scope(inner_scope); |
| } |
| |
| outer_loop->Initialize(nullptr, nullptr, nullptr, inner_block); |
| |
| return outer_block; |
| } |
| |
| void Parser::AddArrowFunctionFormalParameters( |
| ParserFormalParameters* parameters, Expression* expr, int end_pos, |
| bool* ok) { |
| // ArrowFunctionFormals :: |
| // Nary(Token::COMMA, VariableProxy*, Tail) |
| // Binary(Token::COMMA, NonTailArrowFunctionFormals, Tail) |
| // Tail |
| // NonTailArrowFunctionFormals :: |
| // Binary(Token::COMMA, NonTailArrowFunctionFormals, VariableProxy) |
| // VariableProxy |
| // Tail :: |
| // VariableProxy |
| // Spread(VariableProxy) |
| // |
| // We need to visit the parameters in left-to-right order |
| // |
| |
| // For the Nary case, we simply visit the parameters in a loop. |
| if (expr->IsNaryOperation()) { |
| NaryOperation* nary = expr->AsNaryOperation(); |
| // The classifier has already run, so we know that the expression is a valid |
| // arrow function formals production. |
| DCHECK_EQ(nary->op(), Token::COMMA); |
| // Each op position is the end position of the *previous* expr, with the |
| // second (i.e. first "subsequent") op position being the end position of |
| // the first child expression. |
| Expression* next = nary->first(); |
| for (size_t i = 0; i < nary->subsequent_length(); ++i) { |
| AddArrowFunctionFormalParameters( |
| parameters, next, nary->subsequent_op_position(i), CHECK_OK_VOID); |
| next = nary->subsequent(i); |
| } |
| AddArrowFunctionFormalParameters(parameters, next, end_pos, CHECK_OK_VOID); |
| return; |
| } |
| |
| // For the binary case, we recurse on the left-hand side of binary comma |
| // expressions. |
| if (expr->IsBinaryOperation()) { |
| BinaryOperation* binop = expr->AsBinaryOperation(); |
| // The classifier has already run, so we know that the expression is a valid |
| // arrow function formals production. |
| DCHECK_EQ(binop->op(), Token::COMMA); |
| Expression* left = binop->left(); |
| Expression* right = binop->right(); |
| int comma_pos = binop->position(); |
| AddArrowFunctionFormalParameters(parameters, left, comma_pos, |
| CHECK_OK_VOID); |
| // LHS of comma expression should be unparenthesized. |
| expr = right; |
| } |
| |
| // Only the right-most expression may be a rest parameter. |
| DCHECK(!parameters->has_rest); |
| |
| bool is_rest = expr->IsSpread(); |
| if (is_rest) { |
| expr = expr->AsSpread()->expression(); |
| parameters->has_rest = true; |
| } |
| DCHECK_IMPLIES(parameters->is_simple, !is_rest); |
| DCHECK_IMPLIES(parameters->is_simple, expr->IsVariableProxy()); |
| |
| Expression* initializer = nullptr; |
| if (expr->IsAssignment()) { |
| if (expr->IsRewritableExpression()) { |
| // This expression was parsed as a possible destructuring assignment. |
| // Mark it as already-rewritten to avoid an unnecessary visit later. |
| expr->AsRewritableExpression()->set_rewritten(); |
| } |
| Assignment* assignment = expr->AsAssignment(); |
| DCHECK(!assignment->IsCompoundAssignment()); |
| initializer = assignment->value(); |
| expr = assignment->target(); |
| } |
| |
| AddFormalParameter(parameters, expr, initializer, |
| end_pos, is_rest); |
| } |
| |
| void Parser::DeclareArrowFunctionFormalParameters( |
| ParserFormalParameters* parameters, Expression* expr, |
| const Scanner::Location& params_loc, Scanner::Location* duplicate_loc, |
| bool* ok) { |
| if (expr->IsEmptyParentheses()) return; |
| |
| AddArrowFunctionFormalParameters(parameters, expr, params_loc.end_pos, |
| CHECK_OK_VOID); |
| |
| if (parameters->arity > Code::kMaxArguments) { |
| ReportMessageAt(params_loc, MessageTemplate::kMalformedArrowFunParamList); |
| *ok = false; |
| return; |
| } |
| |
| bool has_duplicate = false; |
| DeclareFormalParameters(parameters->scope, parameters->params, |
| parameters->is_simple, &has_duplicate); |
| if (has_duplicate) { |
| *duplicate_loc = scanner()->location(); |
| } |
| DCHECK_EQ(parameters->is_simple, parameters->scope->has_simple_parameters()); |
| } |
| |
| void Parser::PrepareGeneratorVariables() { |
| // The code produced for generators relies on forced context allocation of |
| // parameters (it does not restore the frame's parameters upon resume). |
| function_state_->scope()->ForceContextAllocationForParameters(); |
| |
| // Calling a generator returns a generator object. That object is stored |
| // in a temporary variable, a definition that is used by "yield" |
| // expressions. |
| function_state_->scope()->DeclareGeneratorObjectVar( |
| ast_value_factory()->dot_generator_object_string()); |
| } |
| |
| FunctionLiteral* Parser::ParseFunctionLiteral( |
| const AstRawString* function_name, Scanner::Location function_name_location, |
| FunctionNameValidity function_name_validity, FunctionKind kind, |
| int function_token_pos, FunctionLiteral::FunctionType function_type, |
| LanguageMode language_mode, |
| ZoneList<const AstRawString*>* arguments_for_wrapped_function, bool* ok) { |
| // Function :: |
| // '(' FormalParameterList? ')' '{' FunctionBody '}' |
| // |
| // Getter :: |
| // '(' ')' '{' FunctionBody '}' |
| // |
| // Setter :: |
| // '(' PropertySetParameterList ')' '{' FunctionBody '}' |
| |
| bool is_wrapped = function_type == FunctionLiteral::kWrapped; |
| DCHECK_EQ(is_wrapped, arguments_for_wrapped_function != nullptr); |
| |
| int pos = function_token_pos == kNoSourcePosition ? peek_position() |
| : function_token_pos; |
| DCHECK_NE(kNoSourcePosition, pos); |
| |
| // Anonymous functions were passed either the empty symbol or a null |
| // handle as the function name. Remember if we were passed a non-empty |
| // handle to decide whether to invoke function name inference. |
| bool should_infer_name = function_name == nullptr; |
| |
| // We want a non-null handle as the function name by default. We will handle |
| // the "function does not have a shared name" case later. |
| if (should_infer_name) { |
| function_name = ast_value_factory()->empty_string(); |
| } |
| |
| FunctionLiteral::EagerCompileHint eager_compile_hint = |
| function_state_->next_function_is_likely_called() || is_wrapped |
| ? FunctionLiteral::kShouldEagerCompile |
| : default_eager_compile_hint(); |
| |
| // Determine if the function can be parsed lazily. Lazy parsing is |
| // different from lazy compilation; we need to parse more eagerly than we |
| // compile. |
| |
| // We can only parse lazily if we also compile lazily. The heuristics for lazy |
| // compilation are: |
| // - It must not have been prohibited by the caller to Parse (some callers |
| // need a full AST). |
| // - The outer scope must allow lazy compilation of inner functions. |
| // - The function mustn't be a function expression with an open parenthesis |
| // before; we consider that a hint that the function will be called |
| // immediately, and it would be a waste of time to make it lazily |
| // compiled. |
| // These are all things we can know at this point, without looking at the |
| // function itself. |
| |
| // We separate between lazy parsing top level functions and lazy parsing inner |
| // functions, because the latter needs to do more work. In particular, we need |
| // to track unresolved variables to distinguish between these cases: |
| // (function foo() { |
| // bar = function() { return 1; } |
| // })(); |
| // and |
| // (function foo() { |
| // var a = 1; |
| // bar = function() { return a; } |
| // })(); |
| |
| // Now foo will be parsed eagerly and compiled eagerly (optimization: assume |
| // parenthesis before the function means that it will be called |
| // immediately). bar can be parsed lazily, but we need to parse it in a mode |
| // that tracks unresolved variables. |
| DCHECK_IMPLIES(parse_lazily(), FLAG_lazy); |
| DCHECK_IMPLIES(parse_lazily(), allow_lazy_); |
| DCHECK_IMPLIES(parse_lazily(), extension_ == nullptr); |
| |
| const bool is_lazy = |
| eager_compile_hint == FunctionLiteral::kShouldLazyCompile; |
| const bool is_top_level = AllowsLazyParsingWithoutUnresolvedVariables(); |
| const bool is_lazy_top_level_function = is_lazy && is_top_level; |
| const bool is_lazy_inner_function = is_lazy && !is_top_level; |
| const bool is_expression = |
| function_type == FunctionLiteral::kAnonymousExpression || |
| function_type == FunctionLiteral::kNamedExpression; |
| |
| RuntimeCallTimerScope runtime_timer( |
| runtime_call_stats_, |
| parsing_on_main_thread_ |
| ? RuntimeCallCounterId::kParseFunctionLiteral |
| : RuntimeCallCounterId::kParseBackgroundFunctionLiteral); |
| base::ElapsedTimer timer; |
| if (V8_UNLIKELY(FLAG_log_function_events)) timer.Start(); |
| |
| // Determine whether we can still lazy parse the inner function. |
| // The preconditions are: |
| // - Lazy compilation has to be enabled. |
| // - Neither V8 natives nor native function declarations can be allowed, |
| // since parsing one would retroactively force the function to be |
| // eagerly compiled. |
| // - The invoker of this parser can't depend on the AST being eagerly |
| // built (either because the function is about to be compiled, or |
| // because the AST is going to be inspected for some reason). |
| // - Because of the above, we can't be attempting to parse a |
| // FunctionExpression; even without enclosing parentheses it might be |
| // immediately invoked. |
| // - The function literal shouldn't be hinted to eagerly compile. |
| |
| // Inner functions will be parsed using a temporary Zone. After parsing, we |
| // will migrate unresolved variable into a Scope in the main Zone. |
| |
| const bool should_preparse_inner = |
| parse_lazily() && FLAG_lazy_inner_functions && is_lazy_inner_function && |
| (!is_expression || FLAG_aggressive_lazy_inner_functions); |
| |
| // This may be modified later to reflect preparsing decision taken |
| bool should_preparse = |
| (parse_lazily() && is_lazy_top_level_function) || should_preparse_inner; |
| |
| ZoneList<Statement*>* body = nullptr; |
| int expected_property_count = -1; |
| int num_parameters = -1; |
| int function_length = -1; |
| bool has_duplicate_parameters = false; |
| int function_literal_id = GetNextFunctionLiteralId(); |
| ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr; |
| |
| Zone* outer_zone = zone(); |
| DeclarationScope* scope; |
| |
| { |
| // Temporary zones can nest. When we migrate free variables (see below), we |
| // need to recreate them in the previous Zone. |
| AstNodeFactory previous_zone_ast_node_factory(ast_value_factory(), zone()); |
| |
| // Open a new zone scope, which sets our AstNodeFactory to allocate in the |
| // new temporary zone if the preconditions are satisfied, and ensures that |
| // the previous zone is always restored after parsing the body. To be able |
| // to do scope analysis correctly after full parsing, we migrate needed |
| // information when the function is parsed. |
| Zone temp_zone(zone()->allocator(), ZONE_NAME); |
| DiscardableZoneScope zone_scope(this, &temp_zone, should_preparse); |
| |
| // This Scope lives in the main zone. We'll migrate data into that zone |
| // later. |
| scope = NewFunctionScope(kind, outer_zone); |
| SetLanguageMode(scope, language_mode); |
| #ifdef DEBUG |
| scope->SetScopeName(function_name); |
| if (should_preparse) scope->set_needs_migration(); |
| #endif |
| |
| if (!is_wrapped) Expect(Token::LPAREN, CHECK_OK); |
| scope->set_start_position(scanner()->location().beg_pos); |
| |
| // Eager or lazy parse? If is_lazy_top_level_function, we'll parse |
| // lazily. We'll call SkipFunction, which may decide to |
| // abort lazy parsing if it suspects that wasn't a good idea. If so (in |
| // which case the parser is expected to have backtracked), or if we didn't |
| // try to lazy parse in the first place, we'll have to parse eagerly. |
| if (should_preparse) { |
| DCHECK(parse_lazily()); |
| DCHECK(is_lazy_top_level_function || is_lazy_inner_function); |
| DCHECK(!is_wrapped); |
| Scanner::BookmarkScope bookmark(scanner()); |
| bookmark.Set(); |
| LazyParsingResult result = SkipFunction( |
| function_name, kind, function_type, scope, &num_parameters, |
| &produced_preparsed_scope_data, is_lazy_inner_function, |
| is_lazy_top_level_function, CHECK_OK); |
| |
| if (result == kLazyParsingAborted) { |
| DCHECK(is_lazy_top_level_function); |
| bookmark.Apply(); |
| // This is probably an initialization function. Inform the compiler it |
| // should also eager-compile this function. |
| eager_compile_hint = FunctionLiteral::kShouldEagerCompile; |
| scope->ResetAfterPreparsing(ast_value_factory(), true); |
| zone_scope.Reset(); |
| // Trigger eager (re-)parsing, just below this block. |
| should_preparse = false; |
| } |
| } |
| |
| if (should_preparse) { |
| scope->AnalyzePartially(&previous_zone_ast_node_factory); |
| } else { |
| body = ParseFunction(function_name, pos, kind, function_type, scope, |
| &num_parameters, &function_length, |
| &has_duplicate_parameters, &expected_property_count, |
| arguments_for_wrapped_function, CHECK_OK); |
| } |
| |
| DCHECK_EQ(should_preparse, temp_zoned_); |
| if (V8_UNLIKELY(FLAG_log_function_events)) { |
| double ms = timer.Elapsed().InMillisecondsF(); |
| const char* event_name = should_preparse |
| ? (is_top_level ? "preparse-no-resolution" |
| : "preparse-resolution") |
| : "full-parse"; |
| logger_->FunctionEvent( |
| event_name, nullptr, script_id(), ms, scope->start_position(), |
| scope->end_position(), |
| reinterpret_cast<const char*>(function_name->raw_data()), |
| function_name->byte_length()); |
| } |
| if (V8_UNLIKELY(FLAG_runtime_stats)) { |
| if (should_preparse) { |
| RuntimeCallCounterId counter_id = |
| parsing_on_main_thread_ |
| ? RuntimeCallCounterId::kPreParseWithVariableResolution |
| : RuntimeCallCounterId:: |
| kPreParseBackgroundWithVariableResolution; |
| if (is_top_level) { |
| counter_id = parsing_on_main_thread_ |
| ? RuntimeCallCounterId::kPreParseNoVariableResolution |
| : RuntimeCallCounterId:: |
| kPreParseBackgroundNoVariableResolution; |
| } |
| if (runtime_call_stats_) { |
| runtime_call_stats_->CorrectCurrentCounterId(counter_id); |
| } |
| } |
| } |
| |
| // Validate function name. We can do this only after parsing the function, |
| // since the function can declare itself strict. |
| language_mode = scope->language_mode(); |
| CheckFunctionName(language_mode, function_name, function_name_validity, |
| function_name_location, CHECK_OK); |
| |
| if (is_strict(language_mode)) { |
| CheckStrictOctalLiteral(scope->start_position(), scope->end_position(), |
| CHECK_OK); |
| } |
|