blob: daa126d44319cb39223f82ec0e5a7819c9cb3e4a [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/ast/ast.h"
#include "src/messages.h"
#include "src/objects-inl.h"
#include "src/parsing/expression-scope-reparenter.h"
#include "src/parsing/parser.h"
namespace v8 {
namespace internal {
class PatternRewriter final : public AstVisitor<PatternRewriter> {
public:
// Limit the allowed number of local variables in a function. The hard limit
// is that offsets computed by FullCodeGenerator::StackOperand and similar
// functions are ints, and they should not overflow. In addition, accessing
// local variables creates user-controlled constants in the generated code,
// and we don't want too much user-controlled memory inside the code (this was
// the reason why this limit was introduced in the first place; see
// https://codereview.chromium.org/7003030/ ).
static const int kMaxNumFunctionLocals = 4194303; // 2^22-1
typedef Parser::DeclarationDescriptor DeclarationDescriptor;
static void DeclareAndInitializeVariables(
Parser* parser, Block* block,
const DeclarationDescriptor* declaration_descriptor,
const Parser::DeclarationParsingResult::Declaration* declaration,
ZoneList<const AstRawString*>* names, bool* ok);
static void RewriteDestructuringAssignment(Parser* parser,
RewritableExpression* to_rewrite,
Scope* scope);
private:
enum PatternContext { BINDING, ASSIGNMENT, ASSIGNMENT_ELEMENT };
class AssignmentElementScope {
public:
explicit AssignmentElementScope(PatternRewriter* rewriter)
: rewriter_(rewriter), context_(rewriter->context()) {
if (context_ == ASSIGNMENT) rewriter->context_ = ASSIGNMENT_ELEMENT;
}
~AssignmentElementScope() { rewriter_->context_ = context_; }
private:
PatternRewriter* const rewriter_;
const PatternContext context_;
};
PatternRewriter(Scope* scope, Parser* parser, PatternContext context)
: scope_(scope),
parser_(parser),
context_(context),
initializer_position_(kNoSourcePosition),
value_beg_position_(kNoSourcePosition),
block_(nullptr),
descriptor_(nullptr),
names_(nullptr),
current_value_(nullptr),
recursion_level_(0),
ok_(nullptr) {}
#define DECLARE_VISIT(type) void Visit##type(v8::internal::type* node);
// Visiting functions for AST nodes make this an AstVisitor.
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
PatternContext context() const { return context_; }
void RecurseIntoSubpattern(AstNode* pattern, Expression* value) {
Expression* old_value = current_value_;
current_value_ = value;
recursion_level_++;
Visit(pattern);
recursion_level_--;
current_value_ = old_value;
}
void VisitObjectLiteral(ObjectLiteral* node, Variable** temp_var);
void VisitArrayLiteral(ArrayLiteral* node, Variable** temp_var);
bool IsBindingContext() const { return context_ == BINDING; }
bool IsAssignmentContext() const {
return context_ == ASSIGNMENT || context_ == ASSIGNMENT_ELEMENT;
}
bool IsSubPattern() const { return recursion_level_ > 1; }
bool DeclaresParameterContainingSloppyEval() const;
void RewriteParameterScopes(Expression* expr);
Variable* CreateTempVar(Expression* value = nullptr);
AstNodeFactory* factory() const { return parser_->factory(); }
AstValueFactory* ast_value_factory() const {
return parser_->ast_value_factory();
}
Zone* zone() const { return parser_->zone(); }
Scope* scope() const { return scope_; }
Scope* const scope_;
Parser* const parser_;
PatternContext context_;
int initializer_position_;
int value_beg_position_;
Block* block_;
const DeclarationDescriptor* descriptor_;
ZoneList<const AstRawString*>* names_;
Expression* current_value_;
int recursion_level_;
bool* ok_;
DEFINE_AST_VISITOR_MEMBERS_WITHOUT_STACKOVERFLOW()
};
void Parser::DeclareAndInitializeVariables(
Block* block, const DeclarationDescriptor* declaration_descriptor,
const DeclarationParsingResult::Declaration* declaration,
ZoneList<const AstRawString*>* names, bool* ok) {
PatternRewriter::DeclareAndInitializeVariables(
this, block, declaration_descriptor, declaration, names, ok);
}
void Parser::RewriteDestructuringAssignment(RewritableExpression* to_rewrite) {
PatternRewriter::RewriteDestructuringAssignment(this, to_rewrite, scope());
}
Expression* Parser::RewriteDestructuringAssignment(Assignment* assignment) {
DCHECK_NOT_NULL(assignment);
DCHECK_EQ(Token::ASSIGN, assignment->op());
auto to_rewrite = factory()->NewRewritableExpression(assignment, scope());
RewriteDestructuringAssignment(to_rewrite);
return to_rewrite->expression();
}
void PatternRewriter::DeclareAndInitializeVariables(
Parser* parser, Block* block,
const DeclarationDescriptor* declaration_descriptor,
const Parser::DeclarationParsingResult::Declaration* declaration,
ZoneList<const AstRawString*>* names, bool* ok) {
DCHECK(block->ignore_completion_value());
PatternRewriter rewriter(declaration_descriptor->scope, parser, BINDING);
rewriter.initializer_position_ = declaration->initializer_position;
rewriter.value_beg_position_ = declaration->value_beg_position;
rewriter.block_ = block;
rewriter.descriptor_ = declaration_descriptor;
rewriter.names_ = names;
rewriter.ok_ = ok;
rewriter.RecurseIntoSubpattern(declaration->pattern,
declaration->initializer);
}
void PatternRewriter::RewriteDestructuringAssignment(
Parser* parser, RewritableExpression* to_rewrite, Scope* scope) {
DCHECK(!scope->HasBeenRemoved());
DCHECK(!to_rewrite->is_rewritten());
PatternRewriter rewriter(scope, parser, ASSIGNMENT);
rewriter.RecurseIntoSubpattern(to_rewrite, nullptr);
}
void PatternRewriter::VisitVariableProxy(VariableProxy* pattern) {
Expression* value = current_value_;
if (IsAssignmentContext()) {
// In an assignment context, simply perform the assignment
Assignment* assignment = factory()->NewAssignment(
Token::ASSIGN, pattern, value, pattern->position());
block_->statements()->Add(
factory()->NewExpressionStatement(assignment, pattern->position()),
zone());
return;
}
DCHECK_NOT_NULL(block_);
DCHECK_NOT_NULL(descriptor_);
DCHECK_NOT_NULL(ok_);
descriptor_->scope->RemoveUnresolved(pattern);
// Declare variable.
// Note that we *always* must treat the initial value via a separate init
// assignment for variables and constants because the value must be assigned
// when the variable is encountered in the source. But the variable/constant
// is declared (and set to 'undefined') upon entering the function within
// which the variable or constant is declared. Only function variables have
// an initial value in the declaration (because they are initialized upon
// entering the function).
const AstRawString* name = pattern->raw_name();
VariableProxy* proxy =
factory()->NewVariableProxy(name, NORMAL_VARIABLE, pattern->position());
Declaration* declaration;
if (descriptor_->mode == VAR && !descriptor_->scope->is_declaration_scope()) {
DCHECK(descriptor_->scope->is_block_scope() ||
descriptor_->scope->is_with_scope());
declaration = factory()->NewNestedVariableDeclaration(
proxy, descriptor_->scope, descriptor_->declaration_pos);
} else {
declaration =
factory()->NewVariableDeclaration(proxy, descriptor_->declaration_pos);
}
// When an extra declaration scope needs to be inserted to account for
// a sloppy eval in a default parameter or function body, the parameter
// needs to be declared in the function's scope, not in the varblock
// scope which will be used for the initializer expression.
Scope* outer_function_scope = nullptr;
if (DeclaresParameterContainingSloppyEval()) {
outer_function_scope = descriptor_->scope->outer_scope();
}
Variable* var = parser_->Declare(
declaration, descriptor_->declaration_kind, descriptor_->mode,
Variable::DefaultInitializationFlag(descriptor_->mode), ok_,
outer_function_scope);
if (!*ok_) return;
DCHECK_NOT_NULL(var);
DCHECK(proxy->is_resolved());
DCHECK_NE(initializer_position_, kNoSourcePosition);
var->set_initializer_position(initializer_position_);
Scope* declaration_scope =
outer_function_scope != nullptr
? outer_function_scope
: (IsLexicalVariableMode(descriptor_->mode)
? descriptor_->scope
: descriptor_->scope->GetDeclarationScope());
if (declaration_scope->num_var() > kMaxNumFunctionLocals) {
parser_->ReportMessage(MessageTemplate::kTooManyVariables);
*ok_ = false;
return;
}
if (names_) {
names_->Add(name, zone());
}
// If there's no initializer, we're done.
if (value == nullptr) return;
Scope* var_init_scope = descriptor_->scope;
Parser::MarkLoopVariableAsAssigned(var_init_scope, proxy->var(),
descriptor_->declaration_kind);
// A declaration of the form:
//
// var v = x;
//
// is syntactic sugar for:
//
// var v; v = x;
//
// In particular, we need to re-lookup 'v' as it may be a different
// 'v' than the 'v' in the declaration (e.g., if we are inside a
// 'with' statement or 'catch' block). Global var declarations
// also need special treatment.
// For 'let' and 'const' declared variables the initialization always
// assigns to the declared variable.
// But for var declarations we need to do a new lookup.
if (descriptor_->mode == VAR) {
proxy = var_init_scope->NewUnresolved(factory(), name);
} else {
DCHECK_NOT_NULL(proxy);
DCHECK_NOT_NULL(proxy->var());
}
// Add break location for destructured sub-pattern.
int pos = value_beg_position_;
if (pos == kNoSourcePosition) {
pos = IsSubPattern() ? pattern->position() : value->position();
}
Assignment* assignment =
factory()->NewAssignment(Token::INIT, proxy, value, pos);
block_->statements()->Add(factory()->NewExpressionStatement(assignment, pos),
zone());
}
Variable* PatternRewriter::CreateTempVar(Expression* value) {
auto temp = scope()->NewTemporary(ast_value_factory()->empty_string());
if (value != nullptr) {
auto assignment = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(temp), value,
kNoSourcePosition);
block_->statements()->Add(
factory()->NewExpressionStatement(assignment, kNoSourcePosition),
zone());
}
return temp;
}
void PatternRewriter::VisitRewritableExpression(RewritableExpression* node) {
if (!node->expression()->IsAssignment()) {
// RewritableExpressions are also used for desugaring Spread, which is
// orthogonal to PatternRewriter; just visit the underlying expression.
DCHECK_EQ(AstNode::kArrayLiteral, node->expression()->node_type());
return Visit(node->expression());
} else if (context() != ASSIGNMENT) {
// This is not a destructuring assignment. Mark the node as rewritten to
// prevent redundant rewriting and visit the underlying expression.
DCHECK(!node->is_rewritten());
node->set_rewritten();
return Visit(node->expression());
}
DCHECK(!node->is_rewritten());
DCHECK_EQ(ASSIGNMENT, context());
Assignment* assign = node->expression()->AsAssignment();
DCHECK_NOT_NULL(assign);
DCHECK_EQ(Token::ASSIGN, assign->op());
int pos = assign->position();
Block* old_block = block_;
block_ = factory()->NewBlock(8, true);
Variable* temp = nullptr;
Expression* pattern = assign->target();
Expression* old_value = current_value_;
current_value_ = assign->value();
if (pattern->IsObjectLiteral()) {
VisitObjectLiteral(pattern->AsObjectLiteral(), &temp);
} else {
DCHECK(pattern->IsArrayLiteral());
VisitArrayLiteral(pattern->AsArrayLiteral(), &temp);
}
DCHECK_NOT_NULL(temp);
current_value_ = old_value;
Expression* expr = factory()->NewDoExpression(block_, temp, pos);
node->Rewrite(expr);
block_ = old_block;
if (block_) {
block_->statements()->Add(factory()->NewExpressionStatement(expr, pos),
zone());
}
}
bool PatternRewriter::DeclaresParameterContainingSloppyEval() const {
// Need to check for a binding context to make sure we have a descriptor.
if (IsBindingContext() &&
// Only relevant for parameters.
descriptor_->declaration_kind == DeclarationDescriptor::PARAMETER &&
// And only when scope is a block scope;
// without eval, it is a function scope.
scope()->is_block_scope()) {
DCHECK(scope()->is_declaration_scope());
DCHECK(scope()->AsDeclarationScope()->calls_sloppy_eval());
DCHECK(scope()->outer_scope()->is_function_scope());
return true;
}
return false;
}
// When an extra declaration scope needs to be inserted to account for
// a sloppy eval in a default parameter or function body, the expressions
// needs to be in that new inner scope which was added after initial
// parsing.
void PatternRewriter::RewriteParameterScopes(Expression* expr) {
if (DeclaresParameterContainingSloppyEval()) {
ReparentExpressionScope(parser_->stack_limit(), expr, scope());
}
}
void PatternRewriter::VisitObjectLiteral(ObjectLiteral* pattern,
Variable** temp_var) {
auto temp = *temp_var = CreateTempVar(current_value_);
ZoneList<Expression*>* rest_runtime_callargs = nullptr;
if (pattern->has_rest_property()) {
// non_rest_properties_count = pattern->properties()->length - 1;
// args_length = 1 + non_rest_properties_count because we need to
// pass temp as well to the runtime function.
int args_length = pattern->properties()->length();
rest_runtime_callargs =
new (zone()) ZoneList<Expression*>(args_length, zone());
rest_runtime_callargs->Add(factory()->NewVariableProxy(temp), zone());
}
block_->statements()->Add(parser_->BuildAssertIsCoercible(temp, pattern),
zone());
for (ObjectLiteralProperty* property : *pattern->properties()) {
Expression* value;
if (property->kind() == ObjectLiteralProperty::Kind::SPREAD) {
// var { y, [x++]: a, ...c } = temp
// becomes
// var y = temp.y;
// var temp1 = %ToName(x++);
// var a = temp[temp1];
// var c;
// c = %CopyDataPropertiesWithExcludedProperties(temp, "y", temp1);
value = factory()->NewCallRuntime(
Runtime::kCopyDataPropertiesWithExcludedProperties,
rest_runtime_callargs, kNoSourcePosition);
} else {
Expression* key = property->key();
if (!key->IsLiteral()) {
// Computed property names contain expressions which might require
// scope rewriting.
RewriteParameterScopes(key);
}
if (pattern->has_rest_property()) {
Expression* excluded_property = key;
if (property->is_computed_name()) {
DCHECK(!key->IsPropertyName() || !key->IsNumberLiteral());
auto args = new (zone()) ZoneList<Expression*>(1, zone());
args->Add(key, zone());
auto to_name_key = CreateTempVar(factory()->NewCallRuntime(
Runtime::kToName, args, kNoSourcePosition));
key = factory()->NewVariableProxy(to_name_key);
excluded_property = factory()->NewVariableProxy(to_name_key);
} else {
DCHECK(key->IsPropertyName() || key->IsNumberLiteral());
}
DCHECK_NOT_NULL(rest_runtime_callargs);
rest_runtime_callargs->Add(excluded_property, zone());
}
value = factory()->NewProperty(factory()->NewVariableProxy(temp), key,
kNoSourcePosition);
}
AssignmentElementScope element_scope(this);
RecurseIntoSubpattern(property->value(), value);
}
}
void PatternRewriter::VisitObjectLiteral(ObjectLiteral* node) {
Variable* temp_var = nullptr;
VisitObjectLiteral(node, &temp_var);
}
void PatternRewriter::VisitArrayLiteral(ArrayLiteral* node,
Variable** temp_var) {
DCHECK(block_->ignore_completion_value());
auto temp = *temp_var = CreateTempVar(current_value_);
auto iterator = CreateTempVar(factory()->NewGetIterator(
factory()->NewVariableProxy(temp), current_value_, IteratorType::kNormal,
current_value_->position()));
auto next = CreateTempVar(factory()->NewProperty(
factory()->NewVariableProxy(iterator),
factory()->NewStringLiteral(ast_value_factory()->next_string(),
kNoSourcePosition),
kNoSourcePosition));
auto done =
CreateTempVar(factory()->NewBooleanLiteral(false, kNoSourcePosition));
auto result = CreateTempVar();
auto v = CreateTempVar();
auto completion = CreateTempVar();
auto nopos = kNoSourcePosition;
// For the purpose of iterator finalization, we temporarily set block_ to a
// new block. In the main body of this function, we write to block_ (both
// explicitly and implicitly via recursion). At the end of the function, we
// wrap this new block in a try-finally statement, restore block_ to its
// original value, and add the try-finally statement to block_.
auto target = block_;
block_ = factory()->NewBlock(8, true);
Spread* spread = nullptr;
for (Expression* value : *node->values()) {
if (value->IsSpread()) {
spread = value->AsSpread();
break;
}
// if (!done) {
// done = true; // If .next, .done or .value throws, don't close.
// result = IteratorNext(iterator);
// if (result.done) {
// v = undefined;
// } else {
// v = result.value;
// done = false;
// }
// }
Statement* if_not_done;
{
auto result_done = factory()->NewProperty(
factory()->NewVariableProxy(result),
factory()->NewStringLiteral(ast_value_factory()->done_string(),
kNoSourcePosition),
kNoSourcePosition);
auto assign_undefined = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(v),
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
auto assign_value = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(v),
factory()->NewProperty(
factory()->NewVariableProxy(result),
factory()->NewStringLiteral(ast_value_factory()->value_string(),
kNoSourcePosition),
kNoSourcePosition),
kNoSourcePosition);
auto unset_done = factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(done),
factory()->NewBooleanLiteral(false, kNoSourcePosition),
kNoSourcePosition);
auto inner_else = factory()->NewBlock(2, true);
inner_else->statements()->Add(
factory()->NewExpressionStatement(assign_value, nopos), zone());
inner_else->statements()->Add(
factory()->NewExpressionStatement(unset_done, nopos), zone());
auto inner_if = factory()->NewIfStatement(
result_done,
factory()->NewExpressionStatement(assign_undefined, nopos),
inner_else, nopos);
auto next_block = factory()->NewBlock(3, true);
next_block->statements()->Add(
factory()->NewExpressionStatement(
factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(done),
factory()->NewBooleanLiteral(true, nopos), nopos),
nopos),
zone());
next_block->statements()->Add(
factory()->NewExpressionStatement(
parser_->BuildIteratorNextResult(
factory()->NewVariableProxy(iterator),
factory()->NewVariableProxy(next), result,
IteratorType::kNormal, kNoSourcePosition),
kNoSourcePosition),
zone());
next_block->statements()->Add(inner_if, zone());
if_not_done = factory()->NewIfStatement(
factory()->NewUnaryOperation(
Token::NOT, factory()->NewVariableProxy(done), kNoSourcePosition),
next_block, factory()->NewEmptyStatement(kNoSourcePosition),
kNoSourcePosition);
}
block_->statements()->Add(if_not_done, zone());
if (!value->IsTheHoleLiteral()) {
{
// completion = kAbruptCompletion;
Expression* proxy = factory()->NewVariableProxy(completion);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, proxy,
factory()->NewSmiLiteral(Parser::kAbruptCompletion, nopos), nopos);
block_->statements()->Add(
factory()->NewExpressionStatement(assignment, nopos), zone());
}
{
AssignmentElementScope element_scope(this);
RecurseIntoSubpattern(value, factory()->NewVariableProxy(v));
}
{
// completion = kNormalCompletion;
Expression* proxy = factory()->NewVariableProxy(completion);
Expression* assignment = factory()->NewAssignment(
Token::ASSIGN, proxy,
factory()->NewSmiLiteral(Parser::kNormalCompletion, nopos), nopos);
block_->statements()->Add(
factory()->NewExpressionStatement(assignment, nopos), zone());
}
}
}
if (spread != nullptr) {
// A spread can only occur as the last component. It is not handled by
// RecurseIntoSubpattern above.
// let array = [];
// while (!done) {
// done = true; // If .next, .done or .value throws, don't close.
// result = IteratorNext(iterator);
// if (!result.done) {
// %AppendElement(array, result.value);
// done = false;
// }
// }
// let array = [];
Variable* array;
{
auto empty_exprs = new (zone()) ZoneList<Expression*>(0, zone());
array = CreateTempVar(
factory()->NewArrayLiteral(empty_exprs, kNoSourcePosition));
}
// done = true;
Statement* set_done = factory()->NewExpressionStatement(
factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(done),
factory()->NewBooleanLiteral(true, nopos), nopos),
nopos);
// result = IteratorNext(iterator);
Statement* get_next = factory()->NewExpressionStatement(
parser_->BuildIteratorNextResult(factory()->NewVariableProxy(iterator),
factory()->NewVariableProxy(next),
result, IteratorType::kNormal, nopos),
nopos);
// %AppendElement(array, result.value);
Statement* append_element;
{
auto args = new (zone()) ZoneList<Expression*>(2, zone());
args->Add(factory()->NewVariableProxy(array), zone());
args->Add(factory()->NewProperty(
factory()->NewVariableProxy(result),
factory()->NewStringLiteral(
ast_value_factory()->value_string(), nopos),
nopos),
zone());
append_element = factory()->NewExpressionStatement(
factory()->NewCallRuntime(Runtime::kAppendElement, args, nopos),
nopos);
}
// done = false;
Statement* unset_done = factory()->NewExpressionStatement(
factory()->NewAssignment(
Token::ASSIGN, factory()->NewVariableProxy(done),
factory()->NewBooleanLiteral(false, nopos), nopos),
nopos);
// if (!result.done) { #append_element; #unset_done }
Statement* maybe_append_and_unset_done;
{
Expression* result_done =
factory()->NewProperty(factory()->NewVariableProxy(result),
factory()->NewStringLiteral(
ast_value_factory()->done_string(), nopos),
nopos);
Block* then = factory()->NewBlock(2, true);
then->statements()->Add(append_element, zone());
then->statements()->Add(unset_done, zone());
maybe_append_and_unset_done = factory()->NewIfStatement(
factory()->NewUnaryOperation(Token::NOT, result_done, nopos), then,
factory()->NewEmptyStatement(nopos), nopos);
}
// while (!done) {
// #set_done;
// #get_next;
// #maybe_append_and_unset_done;
// }
WhileStatement* loop = factory()->NewWhileStatement(nullptr, nopos);
{
Expression* condition = factory()->NewUnaryOperation(
Token::NOT, factory()->NewVariableProxy(done), nopos);
Block* body = factory()->NewBlock(3, true);
body->statements()->Add(set_done, zone());
body->statements()->Add(get_next, zone());
body->statements()->Add(maybe_append_and_unset_done, zone());
loop->Initialize(condition, body);
}
block_->statements()->Add(loop, zone());
RecurseIntoSubpattern(spread->expression(),
factory()->NewVariableProxy(array));
}
Expression* closing_condition = factory()->NewUnaryOperation(
Token::NOT, factory()->NewVariableProxy(done), nopos);
parser_->FinalizeIteratorUse(completion, closing_condition, iterator, block_,
target, IteratorType::kNormal);
block_ = target;
}
void PatternRewriter::VisitArrayLiteral(ArrayLiteral* node) {
Variable* temp_var = nullptr;
VisitArrayLiteral(node, &temp_var);
}
void PatternRewriter::VisitAssignment(Assignment* node) {
// let {<pattern> = <init>} = <value>
// becomes
// temp = <value>;
// <pattern> = temp === undefined ? <init> : temp;
DCHECK_EQ(Token::ASSIGN, node->op());
// Rewriting of Assignment nodes for destructuring assignment
// is handled in VisitRewritableExpression().
DCHECK_NE(ASSIGNMENT, context());
auto initializer = node->value();
auto value = initializer;
auto temp = CreateTempVar(current_value_);
Expression* is_undefined = factory()->NewCompareOperation(
Token::EQ_STRICT, factory()->NewVariableProxy(temp),
factory()->NewUndefinedLiteral(kNoSourcePosition), kNoSourcePosition);
value = factory()->NewConditional(is_undefined, initializer,
factory()->NewVariableProxy(temp),
kNoSourcePosition);
// Initializer may have been parsed in the wrong scope.
RewriteParameterScopes(initializer);
RecurseIntoSubpattern(node->target(), value);
}
// =============== AssignmentPattern only ==================
void PatternRewriter::VisitProperty(v8::internal::Property* node) {
DCHECK(IsAssignmentContext());
auto value = current_value_;
Assignment* assignment =
factory()->NewAssignment(Token::ASSIGN, node, value, node->position());
block_->statements()->Add(
factory()->NewExpressionStatement(assignment, kNoSourcePosition), zone());
}
// =============== UNREACHABLE =============================
#define NOT_A_PATTERN(Node) \
void PatternRewriter::Visit##Node(v8::internal::Node*) { UNREACHABLE(); }
NOT_A_PATTERN(BinaryOperation)
NOT_A_PATTERN(NaryOperation)
NOT_A_PATTERN(Block)
NOT_A_PATTERN(BreakStatement)
NOT_A_PATTERN(Call)
NOT_A_PATTERN(CallNew)
NOT_A_PATTERN(CallRuntime)
NOT_A_PATTERN(ClassLiteral)
NOT_A_PATTERN(CompareOperation)
NOT_A_PATTERN(CompoundAssignment)
NOT_A_PATTERN(Conditional)
NOT_A_PATTERN(ContinueStatement)
NOT_A_PATTERN(CountOperation)
NOT_A_PATTERN(DebuggerStatement)
NOT_A_PATTERN(DoExpression)
NOT_A_PATTERN(DoWhileStatement)
NOT_A_PATTERN(EmptyStatement)
NOT_A_PATTERN(EmptyParentheses)
NOT_A_PATTERN(ExpressionStatement)
NOT_A_PATTERN(ForInStatement)
NOT_A_PATTERN(ForOfStatement)
NOT_A_PATTERN(ForStatement)
NOT_A_PATTERN(FunctionDeclaration)
NOT_A_PATTERN(FunctionLiteral)
NOT_A_PATTERN(GetIterator)
NOT_A_PATTERN(GetTemplateObject)
NOT_A_PATTERN(IfStatement)
NOT_A_PATTERN(ImportCallExpression)
NOT_A_PATTERN(Literal)
NOT_A_PATTERN(NativeFunctionLiteral)
NOT_A_PATTERN(RegExpLiteral)
NOT_A_PATTERN(ResolvedProperty)
NOT_A_PATTERN(ReturnStatement)
NOT_A_PATTERN(SloppyBlockFunctionStatement)
NOT_A_PATTERN(Spread)
NOT_A_PATTERN(SuperPropertyReference)
NOT_A_PATTERN(SuperCallReference)
NOT_A_PATTERN(SwitchStatement)
NOT_A_PATTERN(ThisFunction)
NOT_A_PATTERN(Throw)
NOT_A_PATTERN(TryCatchStatement)
NOT_A_PATTERN(TryFinallyStatement)
NOT_A_PATTERN(UnaryOperation)
NOT_A_PATTERN(VariableDeclaration)
NOT_A_PATTERN(WhileStatement)
NOT_A_PATTERN(WithStatement)
NOT_A_PATTERN(Yield)
NOT_A_PATTERN(YieldStar)
NOT_A_PATTERN(Await)
NOT_A_PATTERN(InitializeClassFieldsStatement)
#undef NOT_A_PATTERN
} // namespace internal
} // namespace v8