blob: 705cd011eec630682476b7d9279b39f4408ab553 [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef V8_PARSING_PREPARSER_H
#define V8_PARSING_PREPARSER_H
#include "src/ast/ast.h"
#include "src/ast/scopes.h"
#include "src/parsing/parser-base.h"
#include "src/parsing/preparse-data.h"
#include "src/pending-compilation-error-handler.h"
namespace v8 {
namespace internal {
// Whereas the Parser generates AST during the recursive descent,
// the PreParser doesn't create a tree. Instead, it passes around minimal
// data objects (PreParserExpression, PreParserIdentifier etc.) which contain
// just enough data for the upper layer functions. PreParserFactory is
// responsible for creating these dummy objects. It provides a similar kind of
// interface as AstNodeFactory, so ParserBase doesn't need to care which one is
// used.
class ProducedPreParsedScopeData;
class PreParserIdentifier {
public:
PreParserIdentifier() : type_(kUnknownIdentifier) {}
static PreParserIdentifier Default() {
return PreParserIdentifier(kUnknownIdentifier);
}
static PreParserIdentifier Null() {
return PreParserIdentifier(kNullIdentifier);
}
static PreParserIdentifier Eval() {
return PreParserIdentifier(kEvalIdentifier);
}
static PreParserIdentifier Arguments() {
return PreParserIdentifier(kArgumentsIdentifier);
}
static PreParserIdentifier Constructor() {
return PreParserIdentifier(kConstructorIdentifier);
}
static PreParserIdentifier Await() {
return PreParserIdentifier(kAwaitIdentifier);
}
static PreParserIdentifier Async() {
return PreParserIdentifier(kAsyncIdentifier);
}
static PreParserIdentifier Name() {
return PreParserIdentifier(kNameIdentifier);
}
bool IsNull() const { return type_ == kNullIdentifier; }
bool IsEval() const { return type_ == kEvalIdentifier; }
bool IsArguments() const { return type_ == kArgumentsIdentifier; }
bool IsEvalOrArguments() const { return IsEval() || IsArguments(); }
bool IsConstructor() const { return type_ == kConstructorIdentifier; }
bool IsAwait() const { return type_ == kAwaitIdentifier; }
bool IsName() const { return type_ == kNameIdentifier; }
private:
enum Type {
kNullIdentifier,
kUnknownIdentifier,
kEvalIdentifier,
kArgumentsIdentifier,
kConstructorIdentifier,
kAwaitIdentifier,
kAsyncIdentifier,
kNameIdentifier
};
explicit PreParserIdentifier(Type type) : type_(type), string_(nullptr) {}
Type type_;
// Only non-nullptr when PreParser.track_unresolved_variables_ is true.
const AstRawString* string_;
friend class PreParserExpression;
friend class PreParser;
friend class PreParserFactory;
};
class PreParserExpression {
public:
PreParserExpression()
: code_(TypeField::encode(kNull)), variables_(nullptr) {}
static PreParserExpression Null() { return PreParserExpression(); }
static PreParserExpression Default(
ZoneList<VariableProxy*>* variables = nullptr) {
return PreParserExpression(TypeField::encode(kExpression), variables);
}
static PreParserExpression Spread(const PreParserExpression& expression) {
return PreParserExpression(TypeField::encode(kSpreadExpression),
expression.variables_);
}
static PreParserExpression FromIdentifier(const PreParserIdentifier& id,
VariableProxy* variable,
Zone* zone) {
PreParserExpression expression(TypeField::encode(kIdentifierExpression) |
IdentifierTypeField::encode(id.type_));
expression.AddVariable(variable, zone);
return expression;
}
static PreParserExpression BinaryOperation(const PreParserExpression& left,
Token::Value op,
const PreParserExpression& right,
Zone* zone) {
if (op == Token::COMMA) {
// Possibly an arrow function parameter list.
if (left.variables_ == nullptr) {
return PreParserExpression(TypeField::encode(kExpression),
right.variables_);
}
if (right.variables_ != nullptr) {
for (auto variable : *right.variables_) {
left.variables_->Add(variable, zone);
}
}
return PreParserExpression(TypeField::encode(kExpression),
left.variables_);
}
return PreParserExpression(TypeField::encode(kExpression));
}
static PreParserExpression Assignment(ZoneList<VariableProxy*>* variables) {
return PreParserExpression(TypeField::encode(kExpression) |
ExpressionTypeField::encode(kAssignment),
variables);
}
static PreParserExpression NewTargetExpression() {
return PreParserExpression::Default();
}
static PreParserExpression ObjectLiteral(
ZoneList<VariableProxy*>* variables) {
return PreParserExpression(TypeField::encode(kObjectLiteralExpression),
variables);
}
static PreParserExpression ArrayLiteral(ZoneList<VariableProxy*>* variables) {
return PreParserExpression(TypeField::encode(kArrayLiteralExpression),
variables);
}
static PreParserExpression StringLiteral() {
return PreParserExpression(TypeField::encode(kStringLiteralExpression));
}
static PreParserExpression UseStrictStringLiteral() {
return PreParserExpression(TypeField::encode(kStringLiteralExpression) |
IsUseStrictField::encode(true));
}
static PreParserExpression UseAsmStringLiteral() {
return PreParserExpression(TypeField::encode(kStringLiteralExpression) |
IsUseAsmField::encode(true));
}
static PreParserExpression This(ZoneList<VariableProxy*>* variables) {
return PreParserExpression(TypeField::encode(kExpression) |
ExpressionTypeField::encode(kThisExpression),
variables);
}
static PreParserExpression ThisProperty() {
return PreParserExpression(
TypeField::encode(kExpression) |
ExpressionTypeField::encode(kThisPropertyExpression));
}
static PreParserExpression Property() {
return PreParserExpression(
TypeField::encode(kExpression) |
ExpressionTypeField::encode(kPropertyExpression));
}
static PreParserExpression Call() {
return PreParserExpression(TypeField::encode(kExpression) |
ExpressionTypeField::encode(kCallExpression));
}
static PreParserExpression CallEval() {
return PreParserExpression(
TypeField::encode(kExpression) |
ExpressionTypeField::encode(kCallEvalExpression));
}
static PreParserExpression CallTaggedTemplate() {
return PreParserExpression(
TypeField::encode(kExpression) |
ExpressionTypeField::encode(kCallTaggedTemplateExpression));
}
bool is_tagged_template() const {
DCHECK(IsCall());
return ExpressionTypeField::decode(code_) == kCallTaggedTemplateExpression;
}
static PreParserExpression SuperCallReference() {
return PreParserExpression(
TypeField::encode(kExpression) |
ExpressionTypeField::encode(kSuperCallReference));
}
bool IsNull() const { return TypeField::decode(code_) == kNull; }
bool IsIdentifier() const {
return TypeField::decode(code_) == kIdentifierExpression;
}
PreParserIdentifier AsIdentifier() const {
DCHECK(IsIdentifier());
return PreParserIdentifier(IdentifierTypeField::decode(code_));
}
bool IsAssignment() const {
return TypeField::decode(code_) == kExpression &&
ExpressionTypeField::decode(code_) == kAssignment;
}
bool IsObjectLiteral() const {
return TypeField::decode(code_) == kObjectLiteralExpression;
}
bool IsArrayLiteral() const {
return TypeField::decode(code_) == kArrayLiteralExpression;
}
bool IsStringLiteral() const {
return TypeField::decode(code_) == kStringLiteralExpression;
}
bool IsUseStrictLiteral() const {
return TypeField::decode(code_) == kStringLiteralExpression &&
IsUseStrictField::decode(code_);
}
bool IsUseAsmLiteral() const {
return TypeField::decode(code_) == kStringLiteralExpression &&
IsUseAsmField::decode(code_);
}
bool IsThis() const {
return TypeField::decode(code_) == kExpression &&
ExpressionTypeField::decode(code_) == kThisExpression;
}
bool IsThisProperty() const {
return TypeField::decode(code_) == kExpression &&
ExpressionTypeField::decode(code_) == kThisPropertyExpression;
}
bool IsProperty() const {
return TypeField::decode(code_) == kExpression &&
(ExpressionTypeField::decode(code_) == kPropertyExpression ||
ExpressionTypeField::decode(code_) == kThisPropertyExpression);
}
bool IsCall() const {
return TypeField::decode(code_) == kExpression &&
(ExpressionTypeField::decode(code_) == kCallExpression ||
ExpressionTypeField::decode(code_) == kCallEvalExpression ||
ExpressionTypeField::decode(code_) ==
kCallTaggedTemplateExpression);
}
PreParserExpression* AsCall() {
if (IsCall()) return this;
return nullptr;
}
bool IsSuperCallReference() const {
return TypeField::decode(code_) == kExpression &&
ExpressionTypeField::decode(code_) == kSuperCallReference;
}
bool IsValidReferenceExpression() const {
return IsIdentifier() || IsProperty();
}
// At the moment PreParser doesn't track these expression types.
bool IsFunctionLiteral() const { return false; }
bool IsCallNew() const { return false; }
bool IsSpread() const {
return TypeField::decode(code_) == kSpreadExpression;
}
PreParserExpression AsFunctionLiteral() { return *this; }
// Dummy implementation for making expression->somefunc() work in both Parser
// and PreParser.
PreParserExpression* operator->() { return this; }
// More dummy implementations of things PreParser doesn't need to track:
void SetShouldEagerCompile() {}
int position() const { return kNoSourcePosition; }
void set_function_token_position(int position) {}
void set_scope(Scope* scope) {}
private:
enum Type {
kNull,
kExpression,
kIdentifierExpression,
kStringLiteralExpression,
kSpreadExpression,
kObjectLiteralExpression,
kArrayLiteralExpression
};
enum ExpressionType {
kThisExpression,
kThisPropertyExpression,
kPropertyExpression,
kCallExpression,
kCallEvalExpression,
kCallTaggedTemplateExpression,
kSuperCallReference,
kAssignment
};
explicit PreParserExpression(uint32_t expression_code,
ZoneList<VariableProxy*>* variables = nullptr)
: code_(expression_code), variables_(variables) {}
void AddVariable(VariableProxy* variable, Zone* zone) {
if (variable == nullptr) {
return;
}
if (variables_ == nullptr) {
variables_ = new (zone) ZoneList<VariableProxy*>(1, zone);
}
variables_->Add(variable, zone);
}
// The first three bits are for the Type.
typedef BitField<Type, 0, 3> TypeField;
// The high order bit applies only to nodes which would inherit from the
// Expression ASTNode --- This is by necessity, due to the fact that
// Expression nodes may be represented as multiple Types, not exclusively
// through kExpression.
// TODO(caitp, adamk): clean up PreParserExpression bitfields.
typedef BitField<bool, 31, 1> ParenthesizedField;
// The rest of the bits are interpreted depending on the value
// of the Type field, so they can share the storage.
typedef BitField<ExpressionType, TypeField::kNext, 4> ExpressionTypeField;
typedef BitField<bool, TypeField::kNext, 1> IsUseStrictField;
typedef BitField<bool, IsUseStrictField::kNext, 1> IsUseAsmField;
typedef BitField<PreParserIdentifier::Type, TypeField::kNext, 10>
IdentifierTypeField;
typedef BitField<bool, TypeField::kNext, 1> HasCoverInitializedNameField;
uint32_t code_;
// If the PreParser is used in the variable tracking mode, PreParserExpression
// accumulates variables in that expression.
ZoneList<VariableProxy*>* variables_;
friend class PreParser;
friend class PreParserFactory;
template <typename T>
friend class PreParserList;
};
// The pre-parser doesn't need to build lists of expressions, identifiers, or
// the like. If the PreParser is used in variable tracking mode, it needs to
// build lists of variables though.
template <typename T>
class PreParserList {
public:
// These functions make list->Add(some_expression) work (and do nothing).
PreParserList() : length_(0), variables_(nullptr) {}
PreParserList* operator->() { return this; }
void Add(const T& element, Zone* zone);
int length() const { return length_; }
static PreParserList Null() { return PreParserList(-1); }
bool IsNull() const { return length_ == -1; }
void Set(int index, const T& element) {}
private:
explicit PreParserList(int n) : length_(n), variables_(nullptr) {}
int length_;
ZoneList<VariableProxy*>* variables_;
friend class PreParser;
friend class PreParserFactory;
};
template <>
inline void PreParserList<PreParserExpression>::Add(
const PreParserExpression& expression, Zone* zone) {
if (expression.variables_ != nullptr) {
DCHECK(FLAG_lazy_inner_functions);
DCHECK_NOT_NULL(zone);
if (variables_ == nullptr) {
variables_ = new (zone) ZoneList<VariableProxy*>(1, zone);
}
for (auto identifier : (*expression.variables_)) {
variables_->Add(identifier, zone);
}
}
++length_;
}
template <typename T>
void PreParserList<T>::Add(const T& element, Zone* zone) {
++length_;
}
typedef PreParserList<PreParserExpression> PreParserExpressionList;
class PreParserStatement;
typedef PreParserList<PreParserStatement> PreParserStatementList;
class PreParserStatement {
public:
static PreParserStatement Default() {
return PreParserStatement(kUnknownStatement);
}
static PreParserStatement Null() {
return PreParserStatement(kNullStatement);
}
static PreParserStatement Empty() {
return PreParserStatement(kEmptyStatement);
}
static PreParserStatement Jump() {
return PreParserStatement(kJumpStatement);
}
// Creates expression statement from expression.
// Preserves being an unparenthesized string literal, possibly
// "use strict".
static PreParserStatement ExpressionStatement(
const PreParserExpression& expression) {
if (expression.IsUseStrictLiteral()) {
return PreParserStatement(kUseStrictExpressionStatement);
}
if (expression.IsUseAsmLiteral()) {
return PreParserStatement(kUseAsmExpressionStatement);
}
if (expression.IsStringLiteral()) {
return PreParserStatement(kStringLiteralExpressionStatement);
}
return Default();
}
bool IsStringLiteral() {
return code_ == kStringLiteralExpressionStatement || IsUseStrictLiteral() ||
IsUseAsmLiteral();
}
bool IsUseStrictLiteral() {
return code_ == kUseStrictExpressionStatement;
}
bool IsUseAsmLiteral() { return code_ == kUseAsmExpressionStatement; }
bool IsJumpStatement() {
return code_ == kJumpStatement;
}
bool IsNull() { return code_ == kNullStatement; }
bool IsEmptyStatement() {
DCHECK(!IsNull());
return code_ == kEmptyStatement;
}
// Dummy implementation for making statement->somefunc() work in both Parser
// and PreParser.
PreParserStatement* operator->() { return this; }
// TODO(adamk): These should return something even lighter-weight than
// PreParserStatementList.
PreParserStatementList statements() { return PreParserStatementList(); }
PreParserStatementList cases() { return PreParserStatementList(); }
void set_scope(Scope* scope) {}
void Initialize(const PreParserExpression& cond, PreParserStatement body,
const SourceRange& body_range = {}) {}
void Initialize(PreParserStatement init, const PreParserExpression& cond,
PreParserStatement next, PreParserStatement body,
const SourceRange& body_range = {}) {}
private:
enum Type {
kNullStatement,
kEmptyStatement,
kUnknownStatement,
kJumpStatement,
kStringLiteralExpressionStatement,
kUseStrictExpressionStatement,
kUseAsmExpressionStatement,
};
explicit PreParserStatement(Type code) : code_(code) {}
Type code_;
};
class PreParserFactory {
public:
explicit PreParserFactory(AstValueFactory* ast_value_factory, Zone* zone)
: ast_node_factory_(ast_value_factory, zone), zone_(zone) {}
void set_zone(Zone* zone) {
ast_node_factory_.set_zone(zone);
zone_ = zone;
}
AstNodeFactory* ast_node_factory() { return &ast_node_factory_; }
PreParserExpression NewStringLiteral(const PreParserIdentifier& identifier,
int pos) {
// This is needed for object literal property names. Property names are
// normalized to string literals during object literal parsing.
PreParserExpression expression = PreParserExpression::Default();
if (identifier.string_ != nullptr) {
DCHECK(FLAG_lazy_inner_functions);
VariableProxy* variable = ast_node_factory_.NewVariableProxy(
identifier.string_, NORMAL_VARIABLE);
expression.AddVariable(variable, zone_);
}
return expression;
}
PreParserExpression NewNumberLiteral(double number,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewUndefinedLiteral(int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewTheHoleLiteral() {
return PreParserExpression::Default();
}
PreParserExpression NewRegExpLiteral(const PreParserIdentifier& js_pattern,
int js_flags, int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewArrayLiteral(const PreParserExpressionList& values,
int first_spread_index, int pos) {
return PreParserExpression::ArrayLiteral(values.variables_);
}
PreParserExpression NewClassLiteralProperty(const PreParserExpression& key,
const PreParserExpression& value,
ClassLiteralProperty::Kind kind,
bool is_static,
bool is_computed_name) {
return PreParserExpression::Default();
}
PreParserExpression NewObjectLiteralProperty(const PreParserExpression& key,
const PreParserExpression& value,
ObjectLiteralProperty::Kind kind,
bool is_computed_name) {
return PreParserExpression::Default(value.variables_);
}
PreParserExpression NewObjectLiteralProperty(const PreParserExpression& key,
const PreParserExpression& value,
bool is_computed_name) {
return PreParserExpression::Default(value.variables_);
}
PreParserExpression NewObjectLiteral(
const PreParserExpressionList& properties, int boilerplate_properties,
int pos, bool has_rest_property) {
return PreParserExpression::ObjectLiteral(properties.variables_);
}
PreParserExpression NewVariableProxy(void* variable) {
return PreParserExpression::Default();
}
PreParserExpression NewProperty(const PreParserExpression& obj,
const PreParserExpression& key, int pos) {
if (obj.IsThis()) {
return PreParserExpression::ThisProperty();
}
return PreParserExpression::Property();
}
PreParserExpression NewUnaryOperation(Token::Value op,
const PreParserExpression& expression,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewBinaryOperation(Token::Value op,
const PreParserExpression& left,
const PreParserExpression& right,
int pos) {
return PreParserExpression::BinaryOperation(left, op, right, zone_);
}
PreParserExpression NewCompareOperation(Token::Value op,
const PreParserExpression& left,
const PreParserExpression& right,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewRewritableExpression(
const PreParserExpression& expression, Scope* scope) {
return expression;
}
PreParserExpression NewAssignment(Token::Value op,
const PreParserExpression& left,
const PreParserExpression& right, int pos) {
// Identifiers need to be tracked since this might be a parameter with a
// default value inside an arrow function parameter list.
return PreParserExpression::Assignment(left.variables_);
}
PreParserExpression NewYield(const PreParserExpression& expression, int pos,
Suspend::OnAbruptResume on_abrupt_resume) {
return PreParserExpression::Default();
}
PreParserExpression NewAwait(const PreParserExpression& expression, int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewYieldStar(const PreParserExpression& iterable,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewConditional(const PreParserExpression& condition,
const PreParserExpression& then_expression,
const PreParserExpression& else_expression,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewCountOperation(Token::Value op, bool is_prefix,
const PreParserExpression& expression,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewCall(
PreParserExpression expression, const PreParserExpressionList& arguments,
int pos, Call::PossiblyEval possibly_eval = Call::NOT_EVAL) {
if (possibly_eval == Call::IS_POSSIBLY_EVAL) {
DCHECK(expression.IsIdentifier() && expression.AsIdentifier().IsEval());
return PreParserExpression::CallEval();
}
return PreParserExpression::Call();
}
PreParserExpression NewTaggedTemplate(
PreParserExpression expression, const PreParserExpressionList& arguments,
int pos) {
return PreParserExpression::CallTaggedTemplate();
}
PreParserExpression NewCallNew(const PreParserExpression& expression,
const PreParserExpressionList& arguments,
int pos) {
return PreParserExpression::Default();
}
PreParserStatement NewReturnStatement(
const PreParserExpression& expression, int pos,
int continuation_pos = kNoSourcePosition) {
return PreParserStatement::Jump();
}
PreParserStatement NewAsyncReturnStatement(
const PreParserExpression& expression, int pos,
int continuation_pos = kNoSourcePosition) {
return PreParserStatement::Jump();
}
PreParserExpression NewFunctionLiteral(
const PreParserIdentifier& name, Scope* scope,
PreParserStatementList body, int expected_property_count,
int parameter_count, int function_length,
FunctionLiteral::ParameterFlag has_duplicate_parameters,
FunctionLiteral::FunctionType function_type,
FunctionLiteral::EagerCompileHint eager_compile_hint, int position,
bool has_braces, int function_literal_id,
ProducedPreParsedScopeData* produced_preparsed_scope_data = nullptr) {
DCHECK_NULL(produced_preparsed_scope_data);
return PreParserExpression::Default();
}
PreParserExpression NewSpread(const PreParserExpression& expression, int pos,
int expr_pos) {
return PreParserExpression::Spread(expression);
}
PreParserExpression NewEmptyParentheses(int pos) {
return PreParserExpression::Default();
}
PreParserStatement NewEmptyStatement(int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewBlock(int capacity, bool ignore_completion_value,
ZoneList<const AstRawString*>* labels = nullptr) {
return PreParserStatement::Default();
}
PreParserStatement NewDebuggerStatement(int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewExpressionStatement(const PreParserExpression& expr,
int pos) {
return PreParserStatement::ExpressionStatement(expr);
}
PreParserStatement NewIfStatement(const PreParserExpression& condition,
PreParserStatement then_statement,
PreParserStatement else_statement, int pos,
SourceRange then_range = {},
SourceRange else_range = {}) {
// This must return a jump statement iff both clauses are jump statements.
return else_statement.IsJumpStatement() ? then_statement : else_statement;
}
PreParserStatement NewBreakStatement(
PreParserStatement target, int pos,
int continuation_pos = kNoSourcePosition) {
return PreParserStatement::Jump();
}
PreParserStatement NewContinueStatement(
PreParserStatement target, int pos,
int continuation_pos = kNoSourcePosition) {
return PreParserStatement::Jump();
}
PreParserStatement NewWithStatement(Scope* scope,
const PreParserExpression& expression,
PreParserStatement statement, int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewDoWhileStatement(ZoneList<const AstRawString*>* labels,
int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewWhileStatement(ZoneList<const AstRawString*>* labels,
int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewSwitchStatement(ZoneList<const AstRawString*>* labels,
const PreParserExpression& tag,
int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewCaseClause(const PreParserExpression& label,
PreParserStatementList statements) {
return PreParserStatement::Default();
}
PreParserStatement NewForStatement(ZoneList<const AstRawString*>* labels,
int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewForEachStatement(ForEachStatement::VisitMode visit_mode,
ZoneList<const AstRawString*>* labels,
int pos) {
return PreParserStatement::Default();
}
PreParserStatement NewForOfStatement(ZoneList<const AstRawString*>* labels,
int pos) {
return PreParserStatement::Default();
}
PreParserExpression NewCallRuntime(Runtime::FunctionId id,
ZoneList<PreParserExpression>* arguments,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression NewImportCallExpression(const PreParserExpression& args,
int pos) {
return PreParserExpression::Default();
}
private:
// For creating VariableProxy objects (if
// PreParser::track_unresolved_variables_ is used).
AstNodeFactory ast_node_factory_;
Zone* zone_;
};
struct PreParserFormalParameters : FormalParametersBase {
struct Parameter : public ZoneObject {
Parameter(ZoneList<VariableProxy*>* variables, bool is_rest)
: variables_(variables), is_rest(is_rest) {}
Parameter** next() { return &next_parameter; }
Parameter* const* next() const { return &next_parameter; }
ZoneList<VariableProxy*>* variables_;
Parameter* next_parameter = nullptr;
bool is_rest : 1;
};
explicit PreParserFormalParameters(DeclarationScope* scope)
: FormalParametersBase(scope) {}
ThreadedList<Parameter> params;
};
class PreParser;
class PreParserTarget {
public:
PreParserTarget(ParserBase<PreParser>* preparser,
PreParserStatement statement) {}
};
class PreParserTargetScope {
public:
explicit PreParserTargetScope(ParserBase<PreParser>* preparser) {}
};
template <>
struct ParserTypes<PreParser> {
typedef ParserBase<PreParser> Base;
typedef PreParser Impl;
// Return types for traversing functions.
typedef PreParserIdentifier Identifier;
typedef PreParserExpression Expression;
typedef PreParserExpression FunctionLiteral;
typedef PreParserExpression ObjectLiteralProperty;
typedef PreParserExpression ClassLiteralProperty;
typedef PreParserExpression Suspend;
typedef PreParserExpression RewritableExpression;
typedef PreParserExpressionList ExpressionList;
typedef PreParserExpressionList ObjectPropertyList;
typedef PreParserExpressionList ClassPropertyList;
typedef PreParserFormalParameters FormalParameters;
typedef PreParserStatement Statement;
typedef PreParserStatementList StatementList;
typedef PreParserStatement Block;
typedef PreParserStatement BreakableStatement;
typedef PreParserStatement IterationStatement;
typedef PreParserStatement ForStatement;
// For constructing objects returned by the traversing functions.
typedef PreParserFactory Factory;
typedef PreParserTarget Target;
typedef PreParserTargetScope TargetScope;
};
// Preparsing checks a JavaScript program and emits preparse-data that helps
// a later parsing to be faster.
// See preparse-data-format.h for the data format.
// The PreParser checks that the syntax follows the grammar for JavaScript,
// and collects some information about the program along the way.
// The grammar check is only performed in order to understand the program
// sufficiently to deduce some information about it, that can be used
// to speed up later parsing. Finding errors is not the goal of pre-parsing,
// rather it is to speed up properly written and correct programs.
// That means that contextual checks (like a label being declared where
// it is used) are generally omitted.
class PreParser : public ParserBase<PreParser> {
friend class ParserBase<PreParser>;
friend class v8::internal::ExpressionClassifier<ParserTypes<PreParser>>;
public:
typedef PreParserIdentifier Identifier;
typedef PreParserExpression Expression;
typedef PreParserStatement Statement;
enum PreParseResult {
kPreParseStackOverflow,
kPreParseAbort,
kPreParseSuccess
};
PreParser(Zone* zone, Scanner* scanner, uintptr_t stack_limit,
AstValueFactory* ast_value_factory,
PendingCompilationErrorHandler* pending_error_handler,
RuntimeCallStats* runtime_call_stats, Logger* logger,
int script_id = -1, bool parsing_module = false,
bool parsing_on_main_thread = true)
: ParserBase<PreParser>(zone, scanner, stack_limit, nullptr,
ast_value_factory, pending_error_handler,
runtime_call_stats, logger, script_id,
parsing_module, parsing_on_main_thread),
use_counts_(nullptr),
track_unresolved_variables_(false),
produced_preparsed_scope_data_(nullptr) {}
static bool IsPreParser() { return true; }
PreParserLogger* logger() { return &log_; }
// Pre-parse the program from the character stream; returns true on
// success (even if parsing failed, the pre-parse data successfully
// captured the syntax error), and false if a stack-overflow happened
// during parsing.
PreParseResult PreParseProgram();
// Parses a single function literal, from the opening parentheses before
// parameters to the closing brace after the body.
// Returns a FunctionEntry describing the body of the function in enough
// detail that it can be lazily compiled.
// The scanner is expected to have matched the "function" or "function*"
// keyword and parameters, and have consumed the initial '{'.
// At return, unless an error occurred, the scanner is positioned before the
// the final '}'.
PreParseResult PreParseFunction(
const AstRawString* function_name, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, bool track_unresolved_variables,
bool may_abort, int* use_counts,
ProducedPreParsedScopeData** produced_preparser_scope_data,
int script_id);
ProducedPreParsedScopeData* produced_preparsed_scope_data() const {
return produced_preparsed_scope_data_;
}
void set_produced_preparsed_scope_data(
ProducedPreParsedScopeData* produced_preparsed_scope_data) {
produced_preparsed_scope_data_ = produced_preparsed_scope_data;
}
private:
// These types form an algebra over syntactic categories that is just
// rich enough to let us recognize and propagate the constructs that
// are either being counted in the preparser data, or is important
// to throw the correct syntax error exceptions.
// All ParseXXX functions take as the last argument an *ok parameter
// which is set to false if parsing failed; it is unchanged otherwise.
// By making the 'exception handling' explicit, we are forced to check
// for failure at the call sites.
// Indicates that we won't switch from the preparser to the preparser; we'll
// just stay where we are.
bool AllowsLazyParsingWithoutUnresolvedVariables() const { return false; }
bool parse_lazily() const { return false; }
PendingCompilationErrorHandler* pending_error_handler() {
return pending_error_handler_;
}
V8_INLINE LazyParsingResult
SkipFunction(const AstRawString* name, FunctionKind kind,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope, int* num_parameters,
ProducedPreParsedScopeData** produced_preparsed_scope_data,
bool is_inner_function, bool may_abort, bool* ok) {
UNREACHABLE();
}
Expression ParseFunctionLiteral(
Identifier name, Scanner::Location function_name_location,
FunctionNameValidity function_name_validity, FunctionKind kind,
int function_token_pos, FunctionLiteral::FunctionType function_type,
LanguageMode language_mode,
ZoneList<const AstRawString*>* arguments_for_wrapped_function, bool* ok);
PreParserExpression InitializeObjectLiteral(PreParserExpression literal) {
return literal;
}
LazyParsingResult ParseStatementListAndLogFunction(
PreParserFormalParameters* formals, bool maybe_abort, bool* ok);
struct TemplateLiteralState {};
V8_INLINE TemplateLiteralState OpenTemplateLiteral(int pos) {
return TemplateLiteralState();
}
V8_INLINE void AddTemplateExpression(TemplateLiteralState* state,
const PreParserExpression& expression) {}
V8_INLINE void AddTemplateSpan(TemplateLiteralState* state, bool should_cook,
bool tail) {}
V8_INLINE PreParserExpression CloseTemplateLiteral(
TemplateLiteralState* state, int start, const PreParserExpression& tag) {
return PreParserExpression::Default();
}
V8_INLINE void CheckConflictingVarDeclarations(Scope* scope, bool* ok) {}
V8_INLINE void SetLanguageMode(Scope* scope, LanguageMode mode) {
scope->SetLanguageMode(mode);
}
V8_INLINE void SetAsmModule() {}
V8_INLINE PreParserExpression SpreadCall(const PreParserExpression& function,
const PreParserExpressionList& args,
int pos,
Call::PossiblyEval possibly_eval);
V8_INLINE PreParserExpression
SpreadCallNew(const PreParserExpression& function,
const PreParserExpressionList& args, int pos);
V8_INLINE void RewriteDestructuringAssignments() {}
V8_INLINE void PrepareGeneratorVariables() {}
V8_INLINE void RewriteAsyncFunctionBody(
PreParserStatementList body, PreParserStatement block,
const PreParserExpression& return_value, bool* ok) {}
void DeclareAndInitializeVariables(
PreParserStatement block,
const DeclarationDescriptor* declaration_descriptor,
const DeclarationParsingResult::Declaration* declaration,
ZoneList<const AstRawString*>* names, bool* ok);
V8_INLINE ZoneList<const AstRawString*>* DeclareLabel(
ZoneList<const AstRawString*>* labels, const PreParserExpression& expr,
bool* ok) {
DCHECK(!parsing_module_ || !expr.AsIdentifier().IsAwait());
DCHECK(IsIdentifier(expr));
return labels;
}
// TODO(nikolaos): The preparser currently does not keep track of labels.
V8_INLINE bool ContainsLabel(ZoneList<const AstRawString*>* labels,
const PreParserIdentifier& label) {
return false;
}
V8_INLINE PreParserExpression
RewriteReturn(const PreParserExpression& return_value, int pos) {
return return_value;
}
V8_INLINE PreParserStatement
RewriteSwitchStatement(PreParserStatement switch_statement, Scope* scope) {
return PreParserStatement::Default();
}
V8_INLINE void RewriteCatchPattern(CatchInfo* catch_info, bool* ok) {
if (track_unresolved_variables_) {
const AstRawString* catch_name = catch_info->name.string_;
if (catch_name == nullptr) {
catch_name = ast_value_factory()->dot_catch_string();
}
catch_info->scope->DeclareCatchVariableName(catch_name);
if (catch_info->pattern.variables_ != nullptr) {
for (auto variable : *catch_info->pattern.variables_) {
scope()->DeclareVariableName(variable->raw_name(), LET);
}
}
}
}
V8_INLINE void ValidateCatchBlock(const CatchInfo& catch_info, bool* ok) {}
V8_INLINE PreParserStatement RewriteTryStatement(
PreParserStatement try_block, PreParserStatement catch_block,
const SourceRange& catch_range, PreParserStatement finally_block,
const SourceRange& finally_range, const CatchInfo& catch_info, int pos) {
return PreParserStatement::Default();
}
V8_INLINE void ParseAndRewriteGeneratorFunctionBody(
int pos, FunctionKind kind, PreParserStatementList body, bool* ok) {
ParseStatementList(body, Token::RBRACE, ok);
}
V8_INLINE void ParseAndRewriteAsyncGeneratorFunctionBody(
int pos, FunctionKind kind, PreParserStatementList body, bool* ok) {
ParseStatementList(body, Token::RBRACE, ok);
}
V8_INLINE void DeclareFunctionNameVar(
const AstRawString* function_name,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope) {
if (track_unresolved_variables_ &&
function_type == FunctionLiteral::kNamedExpression &&
function_scope->LookupLocal(function_name) == nullptr) {
DCHECK_EQ(function_scope, scope());
function_scope->DeclareFunctionVar(function_name);
}
}
V8_INLINE void DeclareFunctionNameVar(
const PreParserIdentifier& function_name,
FunctionLiteral::FunctionType function_type,
DeclarationScope* function_scope) {
DeclareFunctionNameVar(function_name.string_, function_type,
function_scope);
}
V8_INLINE PreParserExpression RewriteDoExpression(PreParserStatement body,
int pos, bool* ok) {
return PreParserExpression::Default();
}
// TODO(nikolaos): The preparser currently does not keep track of labels
// and targets.
V8_INLINE PreParserStatement
LookupBreakTarget(const PreParserIdentifier& label, bool* ok) {
return PreParserStatement::Default();
}
V8_INLINE PreParserStatement
LookupContinueTarget(const PreParserIdentifier& label, bool* ok) {
return PreParserStatement::Default();
}
V8_INLINE PreParserStatement
DeclareFunction(const PreParserIdentifier& variable_name,
const PreParserExpression& function, VariableMode mode,
int pos, bool is_sloppy_block_function,
ZoneList<const AstRawString*>* names, bool* ok) {
DCHECK_NULL(names);
if (variable_name.string_ != nullptr) {
DCHECK(track_unresolved_variables_);
scope()->DeclareVariableName(variable_name.string_, mode);
if (is_sloppy_block_function) {
GetDeclarationScope()->DeclareSloppyBlockFunction(variable_name.string_,
scope());
}
}
return Statement::Default();
}
V8_INLINE PreParserStatement DeclareClass(
const PreParserIdentifier& variable_name,
const PreParserExpression& value, ZoneList<const AstRawString*>* names,
int class_token_pos, int end_pos, bool* ok) {
// Preparser shouldn't be used in contexts where we need to track the names.
DCHECK_NULL(names);
if (variable_name.string_ != nullptr) {
DCHECK(track_unresolved_variables_);
scope()->DeclareVariableName(variable_name.string_, LET);
}
return PreParserStatement::Default();
}
V8_INLINE void DeclareClassVariable(const PreParserIdentifier& name,
ClassInfo* class_info,
int class_token_pos, bool* ok) {
if (name.string_ != nullptr) {
DCHECK(track_unresolved_variables_);
scope()->DeclareVariableName(name.string_, CONST);
}
}
V8_INLINE void DeclareClassProperty(const PreParserIdentifier& class_name,
const PreParserExpression& property,
ClassLiteralProperty::Kind kind,
bool is_static, bool is_constructor,
bool is_computed_name,
ClassInfo* class_info, bool* ok) {
if (kind == ClassLiteralProperty::FIELD && is_computed_name) {
scope()->DeclareVariableName(
ClassFieldVariableName(ast_value_factory(),
class_info->computed_field_count),
CONST);
}
}
V8_INLINE PreParserExpression
RewriteClassLiteral(Scope* scope, const PreParserIdentifier& name,
ClassInfo* class_info, int pos, int end_pos, bool* ok) {
bool has_default_constructor = !class_info->has_seen_constructor;
// Account for the default constructor.
if (has_default_constructor) {
// Creating and disposing of a FunctionState makes tracking of
// next_function_is_likely_called match what Parser does. TODO(marja):
// Make the lazy function + next_function_is_likely_called + default ctor
// logic less surprising. Default ctors shouldn't affect the laziness of
// functions.
bool has_extends = class_info->extends.IsNull();
FunctionKind kind = has_extends ? FunctionKind::kDefaultDerivedConstructor
: FunctionKind::kDefaultBaseConstructor;
DeclarationScope* function_scope = NewFunctionScope(kind);
SetLanguageMode(function_scope, LanguageMode::kStrict);
function_scope->set_start_position(pos);
function_scope->set_end_position(pos);
FunctionState function_state(&function_state_, &scope_, function_scope);
GetNextFunctionLiteralId();
}
if (class_info->has_static_class_fields) {
GetNextFunctionLiteralId();
}
if (class_info->has_instance_class_fields) {
GetNextFunctionLiteralId();
}
return PreParserExpression::Default();
}
V8_INLINE PreParserStatement DeclareNative(const PreParserIdentifier& name,
int pos, bool* ok) {
return PreParserStatement::Default();
}
V8_INLINE void QueueDestructuringAssignmentForRewriting(
PreParserExpression assignment) {}
// Helper functions for recursive descent.
V8_INLINE bool IsEval(const PreParserIdentifier& identifier) const {
return identifier.IsEval();
}
V8_INLINE bool IsArguments(const PreParserIdentifier& identifier) const {
return identifier.IsArguments();
}
V8_INLINE bool IsEvalOrArguments(
const PreParserIdentifier& identifier) const {
return identifier.IsEvalOrArguments();
}
V8_INLINE bool IsAwait(const PreParserIdentifier& identifier) const {
return identifier.IsAwait();
}
// Returns true if the expression is of type "this.foo".
V8_INLINE static bool IsThisProperty(const PreParserExpression& expression) {
return expression.IsThisProperty();
}
V8_INLINE static bool IsIdentifier(const PreParserExpression& expression) {
return expression.IsIdentifier();
}
V8_INLINE static PreParserIdentifier AsIdentifier(
const PreParserExpression& expression) {
return expression.AsIdentifier();
}
V8_INLINE static PreParserExpression AsIdentifierExpression(
const PreParserExpression& expression) {
return expression;
}
V8_INLINE bool IsConstructor(const PreParserIdentifier& identifier) const {
return identifier.IsConstructor();
}
V8_INLINE bool IsName(const PreParserIdentifier& identifier) const {
return identifier.IsName();
}
V8_INLINE static bool IsBoilerplateProperty(
const PreParserExpression& property) {
// PreParser doesn't count boilerplate properties.
return false;
}
V8_INLINE bool IsNative(const PreParserExpression& expr) const {
// Preparsing is disabled for extensions (because the extension
// details aren't passed to lazily compiled functions), so we
// don't accept "native function" in the preparser and there is
// no need to keep track of "native".
return false;
}
V8_INLINE static bool IsArrayIndex(const PreParserIdentifier& string,
uint32_t* index) {
return false;
}
V8_INLINE bool IsUseStrictDirective(PreParserStatement statement) const {
return statement.IsUseStrictLiteral();
}
V8_INLINE bool IsUseAsmDirective(PreParserStatement statement) const {
return statement.IsUseAsmLiteral();
}
V8_INLINE bool IsStringLiteral(PreParserStatement statement) const {
return statement.IsStringLiteral();
}
V8_INLINE static void GetDefaultStrings(
PreParserIdentifier* default_string,
PreParserIdentifier* star_default_star_string) {}
// Functions for encapsulating the differences between parsing and preparsing;
// operations interleaved with the recursive descent.
V8_INLINE static void PushLiteralName(const PreParserIdentifier& id) {}
V8_INLINE static void PushVariableName(const PreParserIdentifier& id) {}
V8_INLINE void PushPropertyName(const PreParserExpression& expression) {}
V8_INLINE void PushEnclosingName(const PreParserIdentifier& name) {}
V8_INLINE static void AddFunctionForNameInference(
const PreParserExpression& expression) {}
V8_INLINE static void InferFunctionName() {}
V8_INLINE static void CheckAssigningFunctionLiteralToProperty(
const PreParserExpression& left, const PreParserExpression& right) {}
V8_INLINE void MarkExpressionAsAssigned(
const PreParserExpression& expression) {
// TODO(marja): To be able to produce the same errors, the preparser needs
// to start tracking which expressions are variables and which are assigned.
if (expression.variables_ != nullptr) {
DCHECK(FLAG_lazy_inner_functions);
DCHECK(track_unresolved_variables_);
for (auto variable : *expression.variables_) {
variable->set_is_assigned();
}
}
}
V8_INLINE bool ShortcutNumericLiteralBinaryExpression(
PreParserExpression* x, const PreParserExpression& y, Token::Value op,
int pos) {
return false;
}
V8_INLINE NaryOperation* CollapseNaryExpression(PreParserExpression* x,
PreParserExpression y,
Token::Value op, int pos,
const SourceRange& range) {
return nullptr;
}
V8_INLINE PreParserExpression BuildUnaryExpression(
const PreParserExpression& expression, Token::Value op, int pos) {
return PreParserExpression::Default();
}
V8_INLINE PreParserStatement
BuildInitializationBlock(DeclarationParsingResult* parsing_result,
ZoneList<const AstRawString*>* names, bool* ok) {
for (auto declaration : parsing_result->declarations) {
DeclareAndInitializeVariables(PreParserStatement::Default(),
&(parsing_result->descriptor), &declaration,
names, ok);
}
return PreParserStatement::Default();
}
V8_INLINE PreParserStatement InitializeForEachStatement(
PreParserStatement stmt, const PreParserExpression& each,
const PreParserExpression& subject, PreParserStatement body) {
MarkExpressionAsAssigned(each);
return stmt;
}
V8_INLINE PreParserStatement InitializeForOfStatement(
PreParserStatement stmt, const PreParserExpression& each,
const PreParserExpression& iterable, PreParserStatement body,
bool finalize, IteratorType type,
int next_result_pos = kNoSourcePosition) {
MarkExpressionAsAssigned(each);
return stmt;
}
V8_INLINE PreParserStatement RewriteForVarInLegacy(const ForInfo& for_info) {
return PreParserStatement::Null();
}
V8_INLINE void DesugarBindingInForEachStatement(
ForInfo* for_info, PreParserStatement* body_block,
PreParserExpression* each_variable, bool* ok) {
if (track_unresolved_variables_) {
DCHECK_EQ(1, for_info->parsing_result.declarations.size());
bool is_for_var_of =
for_info->mode == ForEachStatement::ITERATE &&
for_info->parsing_result.descriptor.mode == VariableMode::VAR;
bool collect_names =
IsLexicalVariableMode(for_info->parsing_result.descriptor.mode) ||
is_for_var_of;
DeclareAndInitializeVariables(
PreParserStatement::Default(), &for_info->parsing_result.descriptor,
&for_info->parsing_result.declarations[0],
collect_names ? &for_info->bound_names : nullptr, ok);
}
}
V8_INLINE PreParserStatement CreateForEachStatementTDZ(
PreParserStatement init_block, const ForInfo& for_info, bool* ok) {
if (track_unresolved_variables_) {
if (IsLexicalVariableMode(for_info.parsing_result.descriptor.mode)) {
for (auto name : for_info.bound_names) {
scope()->DeclareVariableName(name, LET);
}
return PreParserStatement::Default();
}
}
return init_block;
}
V8_INLINE StatementT DesugarLexicalBindingsInForStatement(
PreParserStatement loop, PreParserStatement init,
const PreParserExpression& cond, PreParserStatement next,
PreParserStatement body, Scope* inner_scope, const ForInfo& for_info,
bool* ok) {
// See Parser::DesugarLexicalBindingsInForStatement.
if (track_unresolved_variables_) {
for (auto name : for_info.bound_names) {
inner_scope->DeclareVariableName(
name, for_info.parsing_result.descriptor.mode);
}
}
return loop;
}
PreParserStatement BuildParameterInitializationBlock(
const PreParserFormalParameters& parameters, bool* ok);
V8_INLINE PreParserStatement
BuildRejectPromiseOnException(PreParserStatement init_block) {
return PreParserStatement::Default();
}
V8_INLINE void InsertSloppyBlockFunctionVarBindings(DeclarationScope* scope) {
scope->HoistSloppyBlockFunctions(nullptr);
}
V8_INLINE void InsertShadowingVarBindingInitializers(
PreParserStatement block) {}
V8_INLINE PreParserExpression
NewThrowReferenceError(MessageTemplate::Template message, int pos) {
return PreParserExpression::Default();
}
V8_INLINE PreParserExpression
NewThrowSyntaxError(MessageTemplate::Template message,
const PreParserIdentifier& arg, int pos) {
return PreParserExpression::Default();
}
V8_INLINE PreParserExpression
NewThrowTypeError(MessageTemplate::Template message,
const PreParserIdentifier& arg, int pos) {
return PreParserExpression::Default();
}
// Reporting errors.
void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const char* arg = nullptr,
ParseErrorType error_type = kSyntaxError) {
pending_error_handler()->ReportMessageAt(source_location.beg_pos,
source_location.end_pos, message,
arg, error_type);
}
V8_INLINE void ReportMessageAt(Scanner::Location source_location,
MessageTemplate::Template message,
const PreParserIdentifier& arg,
ParseErrorType error_type = kSyntaxError) {
UNREACHABLE();
}
// "null" return type creators.
V8_INLINE static PreParserIdentifier NullIdentifier() {
return PreParserIdentifier::Null();
}
V8_INLINE static PreParserExpression NullExpression() {
return PreParserExpression::Null();
}
V8_INLINE static PreParserExpression NullLiteralProperty() {
return PreParserExpression::Null();
}
V8_INLINE static PreParserExpressionList NullExpressionList() {
return PreParserExpressionList::Null();
}
V8_INLINE static PreParserStatementList NullStatementList() {
return PreParserStatementList::Null();
}
V8_INLINE static PreParserStatement NullStatement() {
return PreParserStatement::Null();
}
template <typename T>
V8_INLINE static bool IsNull(T subject) {
return subject.IsNull();
}
V8_INLINE PreParserIdentifier EmptyIdentifierString() const {
return PreParserIdentifier::Default();
}
// Producing data during the recursive descent.
PreParserIdentifier GetSymbol() const;
V8_INLINE PreParserIdentifier GetNextSymbol() const {
return PreParserIdentifier::Default();
}
V8_INLINE PreParserIdentifier GetNumberAsSymbol() const {
return PreParserIdentifier::Default();
}
V8_INLINE PreParserExpression ThisExpression(int pos = kNoSourcePosition) {
ZoneList<VariableProxy*>* variables = nullptr;
if (track_unresolved_variables_) {
VariableProxy* proxy = scope()->NewUnresolved(
factory()->ast_node_factory(), ast_value_factory()->this_string(),
pos, THIS_VARIABLE);
variables = new (zone()) ZoneList<VariableProxy*>(1, zone());
variables->Add(proxy, zone());
}
return PreParserExpression::This(variables);
}
V8_INLINE PreParserExpression NewSuperPropertyReference(int pos) {
if (track_unresolved_variables_) {
scope()->NewUnresolved(factory()->ast_node_factory(),
ast_value_factory()->this_function_string(), pos,
NORMAL_VARIABLE);
scope()->NewUnresolved(factory()->ast_node_factory(),
ast_value_factory()->this_string(), pos,
THIS_VARIABLE);
}
return PreParserExpression::Default();
}
V8_INLINE PreParserExpression NewSuperCallReference(int pos) {
if (track_unresolved_variables_) {
scope()->NewUnresolved(factory()->ast_node_factory(),
ast_value_factory()->this_function_string(), pos,
NORMAL_VARIABLE);
scope()->NewUnresolved(factory()->ast_node_factory(),
ast_value_factory()->new_target_string(), pos,
NORMAL_VARIABLE);
scope()->NewUnresolved(factory()->ast_node_factory(),
ast_value_factory()->this_string(), pos,
THIS_VARIABLE);
}
return PreParserExpression::SuperCallReference();
}
V8_INLINE PreParserExpression NewTargetExpression(int pos) {
return PreParserExpression::NewTargetExpression();
}
V8_INLINE PreParserExpression FunctionSentExpression(int pos) {
return PreParserExpression::Default();
}
V8_INLINE PreParserExpression ImportMetaExpression(int pos) {
return PreParserExpression::Default();
}
V8_INLINE PreParserExpression ExpressionFromLiteral(Token::Value token,
int pos) {
return PreParserExpression::Default();
}
PreParserExpression ExpressionFromIdentifier(
const PreParserIdentifier& name, int start_position,
InferName infer = InferName::kYes);
V8_INLINE PreParserExpression ExpressionFromString(int pos) {
if (scanner()->IsUseStrict()) {
return PreParserExpression::UseStrictStringLiteral();
}
return PreParserExpression::StringLiteral();
}
V8_INLINE PreParserExpressionList NewExpressionList(int size) const {
return PreParserExpressionList();
}
V8_INLINE PreParserExpressionList NewObjectPropertyList(int size) const {
return PreParserExpressionList();
}
V8_INLINE PreParserExpressionList NewClassPropertyList(int size) const {
return PreParserExpressionList();
}
V8_INLINE PreParserStatementList NewStatementList(int size) const {
return PreParserStatementList();
}
V8_INLINE PreParserExpression
NewV8Intrinsic(const PreParserIdentifier& name,
const PreParserExpressionList& arguments, int pos, bool* ok) {
return PreParserExpression::Default();
}
V8_INLINE PreParserStatement
NewThrowStatement(const PreParserExpression& exception, int pos) {
return PreParserStatement::Jump();
}
V8_INLINE void AddParameterInitializationBlock(
const PreParserFormalParameters& parameters, PreParserStatementList body,
bool is_async, bool* ok) {
if (!parameters.is_simple) {
BuildParameterInitializationBlock(parameters, ok);
}
}
V8_INLINE void AddFormalParameter(PreParserFormalParameters* parameters,
const PreParserExpression& pattern,
const PreParserExpression& initializer,
int initializer_end_position,
bool is_rest) {
if (track_unresolved_variables_) {
DCHECK(FLAG_lazy_inner_functions);
parameters->params.Add(new (zone()) PreParserFormalParameters::Parameter(
pattern.variables_, is_rest));
}
parameters->UpdateArityAndFunctionLength(!initializer.IsNull(), is_rest);
}
V8_INLINE void DeclareFormalParameters(
DeclarationScope* scope,
const ThreadedList<PreParserFormalParameters::Parameter>& parameters,
bool is_simple) {
if (!is_simple) scope->SetHasNonSimpleParameters();
if (track_unresolved_variables_) {
DCHECK(FLAG_lazy_inner_functions);
for (auto parameter : parameters) {
DCHECK_IMPLIES(is_simple, parameter->variables_ != nullptr);
DCHECK_IMPLIES(is_simple, parameter->variables_->length() == 1);
// Make sure each parameter is added only once even if it's a
// destructuring parameter which contains multiple names.
bool add_parameter = true;
if (parameter->variables_ != nullptr) {
for (auto variable : (*parameter->variables_)) {
// We declare the parameter name for all names, but only create a
// parameter entry for the first one.
scope->DeclareParameterName(variable->raw_name(),
parameter->is_rest, ast_value_factory(),
true, add_parameter);
add_parameter = false;
}
}
if (add_parameter) {
// No names were declared; declare a dummy one here to up the
// parameter count.
DCHECK(!is_simple);
scope->DeclareParameterName(ast_value_factory()->empty_string(),
parameter->is_rest, ast_value_factory(),
false, add_parameter);
}
}
}
}
V8_INLINE void DeclareArrowFunctionFormalParameters(
PreParserFormalParameters* parameters, const PreParserExpression& params,
const Scanner::Location& params_loc, Scanner::Location* duplicate_loc,
bool* ok) {
// TODO(wingo): Detect duplicated identifiers in paramlists. Detect
// parameter lists that are too long.
if (track_unresolved_variables_) {
DCHECK(FLAG_lazy_inner_functions);
if (params.variables_ != nullptr) {
for (auto variable : *params.variables_) {
parameters->scope->DeclareVariableName(variable->raw_name(), VAR);
}
}
}
}
V8_INLINE PreParserExpression
ExpressionListToExpression(const PreParserExpressionList& args) {
return PreParserExpression::Default(args.variables_);
}
V8_INLINE void SetFunctionNameFromPropertyName(
const PreParserExpression& property, const PreParserIdentifier& name,
const AstRawString* prefix = nullptr) {}
V8_INLINE void SetFunctionNameFromIdentifierRef(
const PreParserExpression& value, const PreParserExpression& identifier) {
}
V8_INLINE ZoneList<typename ExpressionClassifier::Error>*
GetReportedErrorList() const {
return function_state_->GetReportedErrorList();
}
V8_INLINE void CountUsage(v8::Isolate::UseCounterFeature feature) {
if (use_counts_ != nullptr) ++use_counts_[feature];
}
V8_INLINE bool ParsingDynamicFunctionDeclaration() const { return false; }
// Generate empty functions here as the preparser does not collect source
// ranges for block coverage.
#define DEFINE_RECORD_SOURCE_RANGE(Name) \
template <typename... Ts> \
V8_INLINE void Record##Name##SourceRange(Ts... args) {}
AST_SOURCE_RANGE_LIST(DEFINE_RECORD_SOURCE_RANGE)
#undef DEFINE_RECORD_SOURCE_RANGE
// Preparser's private field members.
int* use_counts_;
bool track_unresolved_variables_;
PreParserLogger log_;
ProducedPreParsedScopeData* produced_preparsed_scope_data_;
};
PreParserExpression PreParser::SpreadCall(const PreParserExpression& function,
const PreParserExpressionList& args,
int pos,
Call::PossiblyEval possibly_eval) {
return factory()->NewCall(function, args, pos, possibly_eval);
}
PreParserExpression PreParser::SpreadCallNew(
const PreParserExpression& function, const PreParserExpressionList& args,
int pos) {
return factory()->NewCallNew(function, args, pos);
}
} // namespace internal
} // namespace v8
#endif // V8_PARSING_PREPARSER_H