| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions |
| // are met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the |
| // distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| // OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been modified |
| // significantly by Google Inc. |
| // Copyright 2014 the V8 project authors. All rights reserved. |
| |
| #ifndef V8_PPC_ASSEMBLER_PPC_INL_H_ |
| #define V8_PPC_ASSEMBLER_PPC_INL_H_ |
| |
| #include "src/ppc/assembler-ppc.h" |
| |
| #include "src/assembler.h" |
| #include "src/debug/debug.h" |
| #include "src/objects-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| bool CpuFeatures::SupportsCrankshaft() { return true; } |
| |
| bool CpuFeatures::SupportsWasmSimd128() { return false; } |
| |
| void RelocInfo::apply(intptr_t delta) { |
| // absolute code pointer inside code object moves with the code object. |
| if (IsInternalReference(rmode_)) { |
| // Jump table entry |
| Address target = Memory::Address_at(pc_); |
| Memory::Address_at(pc_) = target + delta; |
| } else { |
| // mov sequence |
| DCHECK(IsInternalReferenceEncoded(rmode_)); |
| Address target = Assembler::target_address_at(pc_, constant_pool_); |
| Assembler::set_target_address_at(nullptr, pc_, constant_pool_, |
| target + delta, SKIP_ICACHE_FLUSH); |
| } |
| } |
| |
| |
| Address RelocInfo::target_internal_reference() { |
| if (IsInternalReference(rmode_)) { |
| // Jump table entry |
| return Memory::Address_at(pc_); |
| } else { |
| // mov sequence |
| DCHECK(IsInternalReferenceEncoded(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| } |
| |
| |
| Address RelocInfo::target_internal_reference_address() { |
| DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| return reinterpret_cast<Address>(pc_); |
| } |
| |
| |
| Address RelocInfo::target_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| Address RelocInfo::target_address_address() { |
| DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || |
| rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE); |
| |
| if (FLAG_enable_embedded_constant_pool && |
| Assembler::IsConstantPoolLoadStart(pc_)) { |
| // We return the PC for embedded constant pool since this function is used |
| // by the serializer and expects the address to reside within the code |
| // object. |
| return reinterpret_cast<Address>(pc_); |
| } |
| |
| // Read the address of the word containing the target_address in an |
| // instruction stream. |
| // The only architecture-independent user of this function is the serializer. |
| // The serializer uses it to find out how many raw bytes of instruction to |
| // output before the next target. |
| // For an instruction like LIS/ORI where the target bits are mixed into the |
| // instruction bits, the size of the target will be zero, indicating that the |
| // serializer should not step forward in memory after a target is resolved |
| // and written. |
| return reinterpret_cast<Address>(pc_); |
| } |
| |
| |
| Address RelocInfo::constant_pool_entry_address() { |
| if (FLAG_enable_embedded_constant_pool) { |
| DCHECK(constant_pool_); |
| ConstantPoolEntry::Access access; |
| if (Assembler::IsConstantPoolLoadStart(pc_, &access)) |
| return Assembler::target_constant_pool_address_at( |
| pc_, constant_pool_, access, ConstantPoolEntry::INTPTR); |
| } |
| UNREACHABLE(); |
| } |
| |
| |
| int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } |
| |
| Address Assembler::target_address_from_return_address(Address pc) { |
| // Returns the address of the call target from the return address that will |
| // be returned to after a call. |
| // Call sequence is : |
| // mov ip, @ call address |
| // mtlr ip |
| // blrl |
| // @ return address |
| int len; |
| ConstantPoolEntry::Access access; |
| if (FLAG_enable_embedded_constant_pool && |
| IsConstantPoolLoadEnd(pc - 3 * kInstrSize, &access)) { |
| len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; |
| } else { |
| len = kMovInstructionsNoConstantPool; |
| } |
| return pc - (len + 2) * kInstrSize; |
| } |
| |
| |
| Address Assembler::return_address_from_call_start(Address pc) { |
| int len; |
| ConstantPoolEntry::Access access; |
| if (FLAG_enable_embedded_constant_pool && |
| IsConstantPoolLoadStart(pc, &access)) { |
| len = (access == ConstantPoolEntry::OVERFLOWED) ? 2 : 1; |
| } else { |
| len = kMovInstructionsNoConstantPool; |
| } |
| return pc + (len + 2) * kInstrSize; |
| } |
| |
| HeapObject* RelocInfo::target_object() { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| return HeapObject::cast(reinterpret_cast<Object*>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| return Handle<HeapObject>(reinterpret_cast<HeapObject**>( |
| Assembler::target_address_at(pc_, constant_pool_))); |
| } |
| |
| void RelocInfo::set_target_object(HeapObject* target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT); |
| Assembler::set_target_address_at(target->GetIsolate(), pc_, constant_pool_, |
| reinterpret_cast<Address>(target), |
| icache_flush_mode); |
| if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != nullptr) { |
| host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this, |
| target); |
| host()->GetHeap()->RecordWriteIntoCode(host(), this, target); |
| } |
| } |
| |
| |
| Address RelocInfo::target_external_reference() { |
| DCHECK(rmode_ == EXTERNAL_REFERENCE); |
| return Assembler::target_address_at(pc_, constant_pool_); |
| } |
| |
| |
| Address RelocInfo::target_runtime_entry(Assembler* origin) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| return target_address(); |
| } |
| |
| void RelocInfo::set_target_runtime_entry(Isolate* isolate, Address target, |
| WriteBarrierMode write_barrier_mode, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK(IsRuntimeEntry(rmode_)); |
| if (target_address() != target) |
| set_target_address(isolate, target, write_barrier_mode, icache_flush_mode); |
| } |
| |
| void RelocInfo::WipeOut(Isolate* isolate) { |
| DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || |
| IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) || |
| IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); |
| if (IsInternalReference(rmode_)) { |
| // Jump table entry |
| Memory::Address_at(pc_) = nullptr; |
| } else if (IsInternalReferenceEncoded(rmode_)) { |
| // mov sequence |
| // Currently used only by deserializer, no need to flush. |
| Assembler::set_target_address_at(isolate, pc_, constant_pool_, nullptr, |
| SKIP_ICACHE_FLUSH); |
| } else { |
| Assembler::set_target_address_at(isolate, pc_, constant_pool_, nullptr); |
| } |
| } |
| |
| template <typename ObjectVisitor> |
| void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) { |
| RelocInfo::Mode mode = rmode(); |
| if (mode == RelocInfo::EMBEDDED_OBJECT) { |
| visitor->VisitEmbeddedPointer(host(), this); |
| } else if (RelocInfo::IsCodeTarget(mode)) { |
| visitor->VisitCodeTarget(host(), this); |
| } else if (mode == RelocInfo::EXTERNAL_REFERENCE) { |
| visitor->VisitExternalReference(host(), this); |
| } else if (mode == RelocInfo::INTERNAL_REFERENCE || |
| mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) { |
| visitor->VisitInternalReference(host(), this); |
| } else if (IsRuntimeEntry(mode)) { |
| visitor->VisitRuntimeEntry(host(), this); |
| } |
| } |
| |
| Operand::Operand(Register rm) : rm_(rm), rmode_(kRelocInfo_NONEPTR) {} |
| |
| void Assembler::UntrackBranch() { |
| DCHECK(!trampoline_emitted_); |
| DCHECK_GT(tracked_branch_count_, 0); |
| int count = --tracked_branch_count_; |
| if (count == 0) { |
| // Reset |
| next_trampoline_check_ = kMaxInt; |
| } else { |
| next_trampoline_check_ += kTrampolineSlotsSize; |
| } |
| } |
| |
| // Fetch the 32bit value from the FIXED_SEQUENCE lis/ori |
| Address Assembler::target_address_at(Address pc, Address constant_pool) { |
| if (FLAG_enable_embedded_constant_pool && constant_pool) { |
| ConstantPoolEntry::Access access; |
| if (IsConstantPoolLoadStart(pc, &access)) |
| return Memory::Address_at(target_constant_pool_address_at( |
| pc, constant_pool, access, ConstantPoolEntry::INTPTR)); |
| } |
| |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| // Interpret 2 instructions generated by lis/ori |
| if (IsLis(instr1) && IsOri(instr2)) { |
| #if V8_TARGET_ARCH_PPC64 |
| Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
| Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
| // Assemble the 64 bit value. |
| uint64_t hi = (static_cast<uint32_t>((instr1 & kImm16Mask) << 16) | |
| static_cast<uint32_t>(instr2 & kImm16Mask)); |
| uint64_t lo = (static_cast<uint32_t>((instr4 & kImm16Mask) << 16) | |
| static_cast<uint32_t>(instr5 & kImm16Mask)); |
| return reinterpret_cast<Address>((hi << 32) | lo); |
| #else |
| // Assemble the 32 bit value. |
| return reinterpret_cast<Address>(((instr1 & kImm16Mask) << 16) | |
| (instr2 & kImm16Mask)); |
| #endif |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| |
| #if V8_TARGET_ARCH_PPC64 |
| const uint32_t kLoadIntptrOpcode = LD; |
| #else |
| const uint32_t kLoadIntptrOpcode = LWZ; |
| #endif |
| |
| // Constant pool load sequence detection: |
| // 1) REGULAR access: |
| // load <dst>, kConstantPoolRegister + <offset> |
| // |
| // 2) OVERFLOWED access: |
| // addis <scratch>, kConstantPoolRegister, <offset_high> |
| // load <dst>, <scratch> + <offset_low> |
| bool Assembler::IsConstantPoolLoadStart(Address pc, |
| ConstantPoolEntry::Access* access) { |
| Instr instr = instr_at(pc); |
| uint32_t opcode = instr & kOpcodeMask; |
| if (GetRA(instr) != kConstantPoolRegister) return false; |
| bool overflowed = (opcode == ADDIS); |
| #ifdef DEBUG |
| if (overflowed) { |
| opcode = instr_at(pc + kInstrSize) & kOpcodeMask; |
| } |
| DCHECK(opcode == kLoadIntptrOpcode || opcode == LFD); |
| #endif |
| if (access) { |
| *access = (overflowed ? ConstantPoolEntry::OVERFLOWED |
| : ConstantPoolEntry::REGULAR); |
| } |
| return true; |
| } |
| |
| |
| bool Assembler::IsConstantPoolLoadEnd(Address pc, |
| ConstantPoolEntry::Access* access) { |
| Instr instr = instr_at(pc); |
| uint32_t opcode = instr & kOpcodeMask; |
| bool overflowed = false; |
| if (!(opcode == kLoadIntptrOpcode || opcode == LFD)) return false; |
| if (GetRA(instr) != kConstantPoolRegister) { |
| instr = instr_at(pc - kInstrSize); |
| opcode = instr & kOpcodeMask; |
| if ((opcode != ADDIS) || GetRA(instr) != kConstantPoolRegister) { |
| return false; |
| } |
| overflowed = true; |
| } |
| if (access) { |
| *access = (overflowed ? ConstantPoolEntry::OVERFLOWED |
| : ConstantPoolEntry::REGULAR); |
| } |
| return true; |
| } |
| |
| |
| int Assembler::GetConstantPoolOffset(Address pc, |
| ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); |
| #ifdef DEBUG |
| ConstantPoolEntry::Access access_check = |
| static_cast<ConstantPoolEntry::Access>(-1); |
| DCHECK(IsConstantPoolLoadStart(pc, &access_check)); |
| DCHECK(access_check == access); |
| #endif |
| int offset; |
| if (overflowed) { |
| offset = (instr_at(pc) & kImm16Mask) << 16; |
| offset += SIGN_EXT_IMM16(instr_at(pc + kInstrSize) & kImm16Mask); |
| DCHECK(!is_int16(offset)); |
| } else { |
| offset = SIGN_EXT_IMM16((instr_at(pc) & kImm16Mask)); |
| } |
| return offset; |
| } |
| |
| |
| void Assembler::PatchConstantPoolAccessInstruction( |
| int pc_offset, int offset, ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| Address pc = buffer_ + pc_offset; |
| bool overflowed = (access == ConstantPoolEntry::OVERFLOWED); |
| CHECK(overflowed != is_int16(offset)); |
| #ifdef DEBUG |
| ConstantPoolEntry::Access access_check = |
| static_cast<ConstantPoolEntry::Access>(-1); |
| DCHECK(IsConstantPoolLoadStart(pc, &access_check)); |
| DCHECK(access_check == access); |
| #endif |
| if (overflowed) { |
| int hi_word = static_cast<int>(offset >> 16); |
| int lo_word = static_cast<int>(offset & 0xffff); |
| if (lo_word & 0x8000) hi_word++; |
| |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| instr1 &= ~kImm16Mask; |
| instr1 |= (hi_word & kImm16Mask); |
| instr2 &= ~kImm16Mask; |
| instr2 |= (lo_word & kImm16Mask); |
| instr_at_put(pc, instr1); |
| instr_at_put(pc + kInstrSize, instr2); |
| } else { |
| Instr instr = instr_at(pc); |
| instr &= ~kImm16Mask; |
| instr |= (offset & kImm16Mask); |
| instr_at_put(pc, instr); |
| } |
| } |
| |
| |
| Address Assembler::target_constant_pool_address_at( |
| Address pc, Address constant_pool, ConstantPoolEntry::Access access, |
| ConstantPoolEntry::Type type) { |
| Address addr = constant_pool; |
| DCHECK(addr); |
| addr += GetConstantPoolOffset(pc, access, type); |
| return addr; |
| } |
| |
| |
| // This sets the branch destination (which gets loaded at the call address). |
| // This is for calls and branches within generated code. The serializer |
| // has already deserialized the mov instructions etc. |
| // There is a FIXED_SEQUENCE assumption here |
| void Assembler::deserialization_set_special_target_at( |
| Isolate* isolate, Address instruction_payload, Code* code, Address target) { |
| set_target_address_at(isolate, instruction_payload, |
| code ? code->constant_pool() : nullptr, target); |
| } |
| |
| |
| void Assembler::deserialization_set_target_internal_reference_at( |
| Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) { |
| if (RelocInfo::IsInternalReferenceEncoded(mode)) { |
| set_target_address_at(isolate, pc, nullptr, target, SKIP_ICACHE_FLUSH); |
| } else { |
| Memory::Address_at(pc) = target; |
| } |
| } |
| |
| |
| // This code assumes the FIXED_SEQUENCE of lis/ori |
| void Assembler::set_target_address_at(Isolate* isolate, Address pc, |
| Address constant_pool, Address target, |
| ICacheFlushMode icache_flush_mode) { |
| DCHECK_IMPLIES(isolate == nullptr, icache_flush_mode == SKIP_ICACHE_FLUSH); |
| |
| if (FLAG_enable_embedded_constant_pool && constant_pool) { |
| ConstantPoolEntry::Access access; |
| if (IsConstantPoolLoadStart(pc, &access)) { |
| Memory::Address_at(target_constant_pool_address_at( |
| pc, constant_pool, access, ConstantPoolEntry::INTPTR)) = target; |
| return; |
| } |
| } |
| |
| Instr instr1 = instr_at(pc); |
| Instr instr2 = instr_at(pc + kInstrSize); |
| // Interpret 2 instructions generated by lis/ori |
| if (IsLis(instr1) && IsOri(instr2)) { |
| #if V8_TARGET_ARCH_PPC64 |
| Instr instr4 = instr_at(pc + (3 * kInstrSize)); |
| Instr instr5 = instr_at(pc + (4 * kInstrSize)); |
| // Needs to be fixed up when mov changes to handle 64-bit values. |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| uintptr_t itarget = reinterpret_cast<uintptr_t>(target); |
| |
| instr5 &= ~kImm16Mask; |
| instr5 |= itarget & kImm16Mask; |
| itarget = itarget >> 16; |
| |
| instr4 &= ~kImm16Mask; |
| instr4 |= itarget & kImm16Mask; |
| itarget = itarget >> 16; |
| |
| instr2 &= ~kImm16Mask; |
| instr2 |= itarget & kImm16Mask; |
| itarget = itarget >> 16; |
| |
| instr1 &= ~kImm16Mask; |
| instr1 |= itarget & kImm16Mask; |
| itarget = itarget >> 16; |
| |
| *p = instr1; |
| *(p + 1) = instr2; |
| *(p + 3) = instr4; |
| *(p + 4) = instr5; |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| Assembler::FlushICache(isolate, p, 5 * kInstrSize); |
| } |
| #else |
| uint32_t* p = reinterpret_cast<uint32_t*>(pc); |
| uint32_t itarget = reinterpret_cast<uint32_t>(target); |
| int lo_word = itarget & kImm16Mask; |
| int hi_word = itarget >> 16; |
| instr1 &= ~kImm16Mask; |
| instr1 |= hi_word; |
| instr2 &= ~kImm16Mask; |
| instr2 |= lo_word; |
| |
| *p = instr1; |
| *(p + 1) = instr2; |
| if (icache_flush_mode != SKIP_ICACHE_FLUSH) { |
| Assembler::FlushICache(isolate, p, 2 * kInstrSize); |
| } |
| #endif |
| return; |
| } |
| UNREACHABLE(); |
| } |
| } // namespace internal |
| } // namespace v8 |
| |
| #endif // V8_PPC_ASSEMBLER_PPC_INL_H_ |