blob: 90b18b02bad1a7d6778efea21887bcf0a31916fa [file] [log] [blame]
// Copyright (c) 1994-2006 Sun Microsystems Inc.
// All Rights Reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// - Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// - Redistribution in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// - Neither the name of Sun Microsystems or the names of contributors may
// be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
// OF THE POSSIBILITY OF SUCH DAMAGE.
// The original source code covered by the above license above has been
// modified significantly by Google Inc.
// Copyright 2014 the V8 project authors. All rights reserved.
#include "src/ppc/assembler-ppc.h"
#if V8_TARGET_ARCH_PPC
#include "src/base/bits.h"
#include "src/base/cpu.h"
#include "src/code-stubs.h"
#include "src/macro-assembler.h"
#include "src/ppc/assembler-ppc-inl.h"
namespace v8 {
namespace internal {
// Get the CPU features enabled by the build.
static unsigned CpuFeaturesImpliedByCompiler() {
unsigned answer = 0;
return answer;
}
void CpuFeatures::ProbeImpl(bool cross_compile) {
supported_ |= CpuFeaturesImpliedByCompiler();
icache_line_size_ = 128;
// Only use statically determined features for cross compile (snapshot).
if (cross_compile) return;
// Detect whether frim instruction is supported (POWER5+)
// For now we will just check for processors we know do not
// support it
#ifndef USE_SIMULATOR
// Probe for additional features at runtime.
base::CPU cpu;
if (cpu.part() == base::CPU::PPC_POWER9) {
supported_ |= (1u << MODULO);
}
#if V8_TARGET_ARCH_PPC64
if (cpu.part() == base::CPU::PPC_POWER8) {
supported_ |= (1u << FPR_GPR_MOV);
}
#endif
if (cpu.part() == base::CPU::PPC_POWER6 ||
cpu.part() == base::CPU::PPC_POWER7 ||
cpu.part() == base::CPU::PPC_POWER8) {
supported_ |= (1u << LWSYNC);
}
if (cpu.part() == base::CPU::PPC_POWER7 ||
cpu.part() == base::CPU::PPC_POWER8) {
supported_ |= (1u << ISELECT);
supported_ |= (1u << VSX);
}
#if V8_OS_LINUX
if (!(cpu.part() == base::CPU::PPC_G5 || cpu.part() == base::CPU::PPC_G4)) {
// Assume support
supported_ |= (1u << FPU);
}
if (cpu.icache_line_size() != base::CPU::UNKNOWN_CACHE_LINE_SIZE) {
icache_line_size_ = cpu.icache_line_size();
}
#elif V8_OS_AIX
// Assume support FP support and default cache line size
supported_ |= (1u << FPU);
#endif
#else // Simulator
supported_ |= (1u << FPU);
supported_ |= (1u << LWSYNC);
supported_ |= (1u << ISELECT);
supported_ |= (1u << VSX);
supported_ |= (1u << MODULO);
#if V8_TARGET_ARCH_PPC64
supported_ |= (1u << FPR_GPR_MOV);
#endif
#endif
}
void CpuFeatures::PrintTarget() {
const char* ppc_arch = nullptr;
#if V8_TARGET_ARCH_PPC64
ppc_arch = "ppc64";
#else
ppc_arch = "ppc";
#endif
printf("target %s\n", ppc_arch);
}
void CpuFeatures::PrintFeatures() {
printf("FPU=%d\n", CpuFeatures::IsSupported(FPU));
}
Register ToRegister(int num) {
DCHECK(num >= 0 && num < kNumRegisters);
const Register kRegisters[] = {r0, sp, r2, r3, r4, r5, r6, r7,
r8, r9, r10, r11, ip, r13, r14, r15,
r16, r17, r18, r19, r20, r21, r22, r23,
r24, r25, r26, r27, r28, r29, r30, fp};
return kRegisters[num];
}
// -----------------------------------------------------------------------------
// Implementation of RelocInfo
const int RelocInfo::kApplyMask = 1 << RelocInfo::INTERNAL_REFERENCE |
1 << RelocInfo::INTERNAL_REFERENCE_ENCODED;
bool RelocInfo::IsCodedSpecially() {
// The deserializer needs to know whether a pointer is specially
// coded. Being specially coded on PPC means that it is a lis/ori
// instruction sequence or is a constant pool entry, and these are
// always the case inside code objects.
return true;
}
bool RelocInfo::IsInConstantPool() {
if (FLAG_enable_embedded_constant_pool && constant_pool_ != nullptr) {
return (constant_pool_ && Assembler::IsConstantPoolLoadStart(pc_));
}
return false;
}
Address RelocInfo::embedded_address() const {
return Assembler::target_address_at(pc_, constant_pool_);
}
uint32_t RelocInfo::embedded_size() const {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(
Assembler::target_address_at(pc_, constant_pool_)));
}
void RelocInfo::set_embedded_address(Isolate* isolate, Address address,
ICacheFlushMode flush_mode) {
Assembler::set_target_address_at(isolate, pc_, constant_pool_, address,
flush_mode);
}
void RelocInfo::set_embedded_size(Isolate* isolate, uint32_t size,
ICacheFlushMode flush_mode) {
Assembler::set_target_address_at(isolate, pc_, constant_pool_,
reinterpret_cast<Address>(size), flush_mode);
}
void RelocInfo::set_js_to_wasm_address(Isolate* isolate, Address address,
ICacheFlushMode icache_flush_mode) {
DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
set_embedded_address(isolate, address, icache_flush_mode);
}
Address RelocInfo::js_to_wasm_address() const {
DCHECK_EQ(rmode_, JS_TO_WASM_CALL);
return embedded_address();
}
// -----------------------------------------------------------------------------
// Implementation of Operand and MemOperand
// See assembler-ppc-inl.h for inlined constructors
Operand::Operand(Handle<HeapObject> handle) {
rm_ = no_reg;
value_.immediate = reinterpret_cast<intptr_t>(handle.address());
rmode_ = RelocInfo::EMBEDDED_OBJECT;
}
Operand Operand::EmbeddedNumber(double value) {
int32_t smi;
if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
Operand result(0, RelocInfo::EMBEDDED_OBJECT);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(value);
return result;
}
Operand Operand::EmbeddedCode(CodeStub* stub) {
Operand result(0, RelocInfo::CODE_TARGET);
result.is_heap_object_request_ = true;
result.value_.heap_object_request = HeapObjectRequest(stub);
return result;
}
MemOperand::MemOperand(Register rn, int32_t offset)
: ra_(rn), offset_(offset), rb_(no_reg) {}
MemOperand::MemOperand(Register ra, Register rb)
: ra_(ra), offset_(0), rb_(rb) {}
void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
for (auto& request : heap_object_requests_) {
Handle<HeapObject> object;
switch (request.kind()) {
case HeapObjectRequest::kHeapNumber:
object = isolate->factory()->NewHeapNumber(request.heap_number(),
IMMUTABLE, TENURED);
break;
case HeapObjectRequest::kCodeStub:
request.code_stub()->set_isolate(isolate);
object = request.code_stub()->GetCode();
break;
}
Address pc = buffer_ + request.offset();
Address constant_pool = nullptr;
set_target_address_at(nullptr, pc, constant_pool,
reinterpret_cast<Address>(object.location()),
SKIP_ICACHE_FLUSH);
}
}
// -----------------------------------------------------------------------------
// Specific instructions, constants, and masks.
Assembler::Assembler(IsolateData isolate_data, void* buffer, int buffer_size)
: AssemblerBase(isolate_data, buffer, buffer_size),
constant_pool_builder_(kLoadPtrMaxReachBits, kLoadDoubleMaxReachBits) {
reloc_info_writer.Reposition(buffer_ + buffer_size_, pc_);
no_trampoline_pool_before_ = 0;
trampoline_pool_blocked_nesting_ = 0;
constant_pool_entry_sharing_blocked_nesting_ = 0;
next_trampoline_check_ = kMaxInt;
internal_trampoline_exception_ = false;
last_bound_pos_ = 0;
optimizable_cmpi_pos_ = -1;
trampoline_emitted_ = FLAG_force_long_branches;
tracked_branch_count_ = 0;
relocations_.reserve(128);
}
void Assembler::GetCode(Isolate* isolate, CodeDesc* desc) {
// Emit constant pool if necessary.
int constant_pool_offset = EmitConstantPool();
EmitRelocations();
AllocateAndInstallRequestedHeapObjects(isolate);
// Set up code descriptor.
desc->buffer = buffer_;
desc->buffer_size = buffer_size_;
desc->instr_size = pc_offset();
desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
desc->constant_pool_size =
(constant_pool_offset ? desc->instr_size - constant_pool_offset : 0);
desc->origin = this;
desc->unwinding_info_size = 0;
desc->unwinding_info = nullptr;
}
void Assembler::Align(int m) {
DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
DCHECK_EQ(pc_offset() & (kInstrSize - 1), 0);
while ((pc_offset() & (m - 1)) != 0) {
nop();
}
}
void Assembler::CodeTargetAlign() { Align(8); }
Condition Assembler::GetCondition(Instr instr) {
switch (instr & kCondMask) {
case BT:
return eq;
case BF:
return ne;
default:
UNIMPLEMENTED();
}
return al;
}
bool Assembler::IsLis(Instr instr) {
return ((instr & kOpcodeMask) == ADDIS) && GetRA(instr) == r0;
}
bool Assembler::IsLi(Instr instr) {
return ((instr & kOpcodeMask) == ADDI) && GetRA(instr) == r0;
}
bool Assembler::IsAddic(Instr instr) { return (instr & kOpcodeMask) == ADDIC; }
bool Assembler::IsOri(Instr instr) { return (instr & kOpcodeMask) == ORI; }
bool Assembler::IsBranch(Instr instr) { return ((instr & kOpcodeMask) == BCX); }
Register Assembler::GetRA(Instr instr) {
return Register::from_code(Instruction::RAValue(instr));
}
Register Assembler::GetRB(Instr instr) {
return Register::from_code(Instruction::RBValue(instr));
}
#if V8_TARGET_ARCH_PPC64
// This code assumes a FIXED_SEQUENCE for 64bit loads (lis/ori)
bool Assembler::Is64BitLoadIntoR12(Instr instr1, Instr instr2, Instr instr3,
Instr instr4, Instr instr5) {
// Check the instructions are indeed a five part load (into r12)
// 3d800000 lis r12, 0
// 618c0000 ori r12, r12, 0
// 798c07c6 rldicr r12, r12, 32, 31
// 658c00c3 oris r12, r12, 195
// 618ccd40 ori r12, r12, 52544
return (((instr1 >> 16) == 0x3D80) && ((instr2 >> 16) == 0x618C) &&
(instr3 == 0x798C07C6) && ((instr4 >> 16) == 0x658C) &&
((instr5 >> 16) == 0x618C));
}
#else
// This code assumes a FIXED_SEQUENCE for 32bit loads (lis/ori)
bool Assembler::Is32BitLoadIntoR12(Instr instr1, Instr instr2) {
// Check the instruction is indeed a two part load (into r12)
// 3d802553 lis r12, 9555
// 618c5000 ori r12, r12, 20480
return (((instr1 >> 16) == 0x3D80) && ((instr2 >> 16) == 0x618C));
}
#endif
bool Assembler::IsCmpRegister(Instr instr) {
return (((instr & kOpcodeMask) == EXT2) &&
((EXT2 | (instr & kExt2OpcodeMask)) == CMP));
}
bool Assembler::IsRlwinm(Instr instr) {
return ((instr & kOpcodeMask) == RLWINMX);
}
bool Assembler::IsAndi(Instr instr) { return ((instr & kOpcodeMask) == ANDIx); }
#if V8_TARGET_ARCH_PPC64
bool Assembler::IsRldicl(Instr instr) {
return (((instr & kOpcodeMask) == EXT5) &&
((EXT5 | (instr & kExt5OpcodeMask)) == RLDICL));
}
#endif
bool Assembler::IsCmpImmediate(Instr instr) {
return ((instr & kOpcodeMask) == CMPI);
}
bool Assembler::IsCrSet(Instr instr) {
return (((instr & kOpcodeMask) == EXT1) &&
((EXT1 | (instr & kExt1OpcodeMask)) == CREQV));
}
Register Assembler::GetCmpImmediateRegister(Instr instr) {
DCHECK(IsCmpImmediate(instr));
return GetRA(instr);
}
int Assembler::GetCmpImmediateRawImmediate(Instr instr) {
DCHECK(IsCmpImmediate(instr));
return instr & kOff16Mask;
}
// Labels refer to positions in the (to be) generated code.
// There are bound, linked, and unused labels.
//
// Bound labels refer to known positions in the already
// generated code. pos() is the position the label refers to.
//
// Linked labels refer to unknown positions in the code
// to be generated; pos() is the position of the last
// instruction using the label.
// The link chain is terminated by a negative code position (must be aligned)
const int kEndOfChain = -4;
// Dummy opcodes for unbound label mov instructions or jump table entries.
enum {
kUnboundMovLabelOffsetOpcode = 0 << 26,
kUnboundAddLabelOffsetOpcode = 1 << 26,
kUnboundMovLabelAddrOpcode = 2 << 26,
kUnboundJumpTableEntryOpcode = 3 << 26
};
int Assembler::target_at(int pos) {
Instr instr = instr_at(pos);
// check which type of branch this is 16 or 26 bit offset
uint32_t opcode = instr & kOpcodeMask;
int link;
switch (opcode) {
case BX:
link = SIGN_EXT_IMM26(instr & kImm26Mask);
link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
break;
case BCX:
link = SIGN_EXT_IMM16((instr & kImm16Mask));
link &= ~(kAAMask | kLKMask); // discard AA|LK bits if present
break;
case kUnboundMovLabelOffsetOpcode:
case kUnboundAddLabelOffsetOpcode:
case kUnboundMovLabelAddrOpcode:
case kUnboundJumpTableEntryOpcode:
link = SIGN_EXT_IMM26(instr & kImm26Mask);
link <<= 2;
break;
default:
DCHECK(false);
return -1;
}
if (link == 0) return kEndOfChain;
return pos + link;
}
void Assembler::target_at_put(int pos, int target_pos, bool* is_branch) {
Instr instr = instr_at(pos);
uint32_t opcode = instr & kOpcodeMask;
if (is_branch != nullptr) {
*is_branch = (opcode == BX || opcode == BCX);
}
switch (opcode) {
case BX: {
int imm26 = target_pos - pos;
CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
if (imm26 == kInstrSize && !(instr & kLKMask)) {
// Branch to next instr without link.
instr = ORI; // nop: ori, 0,0,0
} else {
instr &= ((~kImm26Mask) | kAAMask | kLKMask);
instr |= (imm26 & kImm26Mask);
}
instr_at_put(pos, instr);
break;
}
case BCX: {
int imm16 = target_pos - pos;
CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
if (imm16 == kInstrSize && !(instr & kLKMask)) {
// Branch to next instr without link.
instr = ORI; // nop: ori, 0,0,0
} else {
instr &= ((~kImm16Mask) | kAAMask | kLKMask);
instr |= (imm16 & kImm16Mask);
}
instr_at_put(pos, instr);
break;
}
case kUnboundMovLabelOffsetOpcode: {
// Load the position of the label relative to the generated code object
// pointer in a register.
Register dst = Register::from_code(instr_at(pos + kInstrSize));
int32_t offset = target_pos + (Code::kHeaderSize - kHeapObjectTag);
PatchingAssembler patcher(isolate_data(),
reinterpret_cast<byte*>(buffer_ + pos), 2);
patcher.bitwise_mov32(dst, offset);
break;
}
case kUnboundAddLabelOffsetOpcode: {
// dst = base + position + immediate
Instr operands = instr_at(pos + kInstrSize);
Register dst = Register::from_code((operands >> 21) & 0x1F);
Register base = Register::from_code((operands >> 16) & 0x1F);
int32_t offset = target_pos + SIGN_EXT_IMM16(operands & kImm16Mask);
PatchingAssembler patcher(isolate_data(),
reinterpret_cast<byte*>(buffer_ + pos), 2);
patcher.bitwise_add32(dst, base, offset);
break;
}
case kUnboundMovLabelAddrOpcode: {
// Load the address of the label in a register.
Register dst = Register::from_code(instr_at(pos + kInstrSize));
PatchingAssembler patcher(isolate_data(),
reinterpret_cast<byte*>(buffer_ + pos),
kMovInstructionsNoConstantPool);
// Keep internal references relative until EmitRelocations.
patcher.bitwise_mov(dst, target_pos);
break;
}
case kUnboundJumpTableEntryOpcode: {
PatchingAssembler patcher(isolate_data(),
reinterpret_cast<byte*>(buffer_ + pos),
kPointerSize / kInstrSize);
// Keep internal references relative until EmitRelocations.
patcher.dp(target_pos);
break;
}
default:
DCHECK(false);
break;
}
}
int Assembler::max_reach_from(int pos) {
Instr instr = instr_at(pos);
uint32_t opcode = instr & kOpcodeMask;
// check which type of branch this is 16 or 26 bit offset
switch (opcode) {
case BX:
return 26;
case BCX:
return 16;
case kUnboundMovLabelOffsetOpcode:
case kUnboundAddLabelOffsetOpcode:
case kUnboundMovLabelAddrOpcode:
case kUnboundJumpTableEntryOpcode:
return 0; // no limit on reach
}
DCHECK(false);
return 0;
}
void Assembler::bind_to(Label* L, int pos) {
DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position
int32_t trampoline_pos = kInvalidSlotPos;
bool is_branch = false;
while (L->is_linked()) {
int fixup_pos = L->pos();
int32_t offset = pos - fixup_pos;
int maxReach = max_reach_from(fixup_pos);
next(L); // call next before overwriting link with target at fixup_pos
if (maxReach && is_intn(offset, maxReach) == false) {
if (trampoline_pos == kInvalidSlotPos) {
trampoline_pos = get_trampoline_entry();
CHECK_NE(trampoline_pos, kInvalidSlotPos);
target_at_put(trampoline_pos, pos);
}
target_at_put(fixup_pos, trampoline_pos);
} else {
target_at_put(fixup_pos, pos, &is_branch);
}
}
L->bind_to(pos);
if (!trampoline_emitted_ && is_branch) {
UntrackBranch();
}
// Keep track of the last bound label so we don't eliminate any instructions
// before a bound label.
if (pos > last_bound_pos_) last_bound_pos_ = pos;
}
void Assembler::bind(Label* L) {
DCHECK(!L->is_bound()); // label can only be bound once
bind_to(L, pc_offset());
}
void Assembler::next(Label* L) {
DCHECK(L->is_linked());
int link = target_at(L->pos());
if (link == kEndOfChain) {
L->Unuse();
} else {
DCHECK_GE(link, 0);
L->link_to(link);
}
}
bool Assembler::is_near(Label* L, Condition cond) {
DCHECK(L->is_bound());
if (L->is_bound() == false) return false;
int maxReach = ((cond == al) ? 26 : 16);
int offset = L->pos() - pc_offset();
return is_intn(offset, maxReach);
}
void Assembler::a_form(Instr instr, DoubleRegister frt, DoubleRegister fra,
DoubleRegister frb, RCBit r) {
emit(instr | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 | r);
}
void Assembler::d_form(Instr instr, Register rt, Register ra,
const intptr_t val, bool signed_disp) {
if (signed_disp) {
if (!is_int16(val)) {
PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR "\n", val, val);
}
CHECK(is_int16(val));
} else {
if (!is_uint16(val)) {
PrintF("val = %" V8PRIdPTR ", 0x%" V8PRIxPTR
", is_unsigned_imm16(val)=%d, kImm16Mask=0x%x\n",
val, val, is_uint16(val), kImm16Mask);
}
CHECK(is_uint16(val));
}
emit(instr | rt.code() * B21 | ra.code() * B16 | (kImm16Mask & val));
}
void Assembler::xo_form(Instr instr, Register rt, Register ra, Register rb,
OEBit o, RCBit r) {
emit(instr | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 | o | r);
}
void Assembler::md_form(Instr instr, Register ra, Register rs, int shift,
int maskbit, RCBit r) {
int sh0_4 = shift & 0x1F;
int sh5 = (shift >> 5) & 0x1;
int m0_4 = maskbit & 0x1F;
int m5 = (maskbit >> 5) & 0x1;
emit(instr | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 | m0_4 * B6 |
m5 * B5 | sh5 * B1 | r);
}
void Assembler::mds_form(Instr instr, Register ra, Register rs, Register rb,
int maskbit, RCBit r) {
int m0_4 = maskbit & 0x1F;
int m5 = (maskbit >> 5) & 0x1;
emit(instr | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | m0_4 * B6 |
m5 * B5 | r);
}
// Returns the next free trampoline entry.
int32_t Assembler::get_trampoline_entry() {
int32_t trampoline_entry = kInvalidSlotPos;
if (!internal_trampoline_exception_) {
trampoline_entry = trampoline_.take_slot();
if (kInvalidSlotPos == trampoline_entry) {
internal_trampoline_exception_ = true;
}
}
return trampoline_entry;
}
int Assembler::link(Label* L) {
int position;
if (L->is_bound()) {
position = L->pos();
} else {
if (L->is_linked()) {
position = L->pos(); // L's link
} else {
// was: target_pos = kEndOfChain;
// However, using self to mark the first reference
// should avoid most instances of branch offset overflow. See
// target_at() for where this is converted back to kEndOfChain.
position = pc_offset();
}
L->link_to(pc_offset());
}
return position;
}
// Branch instructions.
void Assembler::bclr(BOfield bo, int condition_bit, LKBit lk) {
emit(EXT1 | bo | condition_bit * B16 | BCLRX | lk);
}
void Assembler::bcctr(BOfield bo, int condition_bit, LKBit lk) {
emit(EXT1 | bo | condition_bit * B16 | BCCTRX | lk);
}
// Pseudo op - branch to link register
void Assembler::blr() { bclr(BA, 0, LeaveLK); }
// Pseudo op - branch to count register -- used for "jump"
void Assembler::bctr() { bcctr(BA, 0, LeaveLK); }
void Assembler::bctrl() { bcctr(BA, 0, SetLK); }
void Assembler::bc(int branch_offset, BOfield bo, int condition_bit, LKBit lk) {
int imm16 = branch_offset;
CHECK(is_int16(imm16) && (imm16 & (kAAMask | kLKMask)) == 0);
emit(BCX | bo | condition_bit * B16 | (imm16 & kImm16Mask) | lk);
}
void Assembler::b(int branch_offset, LKBit lk) {
int imm26 = branch_offset;
CHECK(is_int26(imm26) && (imm26 & (kAAMask | kLKMask)) == 0);
emit(BX | (imm26 & kImm26Mask) | lk);
}
void Assembler::xori(Register dst, Register src, const Operand& imm) {
d_form(XORI, src, dst, imm.immediate(), false);
}
void Assembler::xoris(Register ra, Register rs, const Operand& imm) {
d_form(XORIS, rs, ra, imm.immediate(), false);
}
void Assembler::rlwinm(Register ra, Register rs, int sh, int mb, int me,
RCBit rc) {
sh &= 0x1F;
mb &= 0x1F;
me &= 0x1F;
emit(RLWINMX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
me << 1 | rc);
}
void Assembler::rlwnm(Register ra, Register rs, Register rb, int mb, int me,
RCBit rc) {
mb &= 0x1F;
me &= 0x1F;
emit(RLWNMX | rs.code() * B21 | ra.code() * B16 | rb.code() * B11 | mb * B6 |
me << 1 | rc);
}
void Assembler::rlwimi(Register ra, Register rs, int sh, int mb, int me,
RCBit rc) {
sh &= 0x1F;
mb &= 0x1F;
me &= 0x1F;
emit(RLWIMIX | rs.code() * B21 | ra.code() * B16 | sh * B11 | mb * B6 |
me << 1 | rc);
}
void Assembler::slwi(Register dst, Register src, const Operand& val, RCBit rc) {
DCHECK((32 > val.immediate()) && (val.immediate() >= 0));
rlwinm(dst, src, val.immediate(), 0, 31 - val.immediate(), rc);
}
void Assembler::srwi(Register dst, Register src, const Operand& val, RCBit rc) {
DCHECK((32 > val.immediate()) && (val.immediate() >= 0));
rlwinm(dst, src, 32 - val.immediate(), val.immediate(), 31, rc);
}
void Assembler::clrrwi(Register dst, Register src, const Operand& val,
RCBit rc) {
DCHECK((32 > val.immediate()) && (val.immediate() >= 0));
rlwinm(dst, src, 0, 0, 31 - val.immediate(), rc);
}
void Assembler::clrlwi(Register dst, Register src, const Operand& val,
RCBit rc) {
DCHECK((32 > val.immediate()) && (val.immediate() >= 0));
rlwinm(dst, src, 0, val.immediate(), 31, rc);
}
void Assembler::rotlw(Register ra, Register rs, Register rb, RCBit r) {
rlwnm(ra, rs, rb, 0, 31, r);
}
void Assembler::rotlwi(Register ra, Register rs, int sh, RCBit r) {
rlwinm(ra, rs, sh, 0, 31, r);
}
void Assembler::rotrwi(Register ra, Register rs, int sh, RCBit r) {
rlwinm(ra, rs, 32 - sh, 0, 31, r);
}
void Assembler::subi(Register dst, Register src, const Operand& imm) {
addi(dst, src, Operand(-(imm.immediate())));
}
void Assembler::addc(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | ADDCX, dst, src1, src2, o, r);
}
void Assembler::adde(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | ADDEX, dst, src1, src2, o, r);
}
void Assembler::addze(Register dst, Register src1, OEBit o, RCBit r) {
// a special xo_form
emit(EXT2 | ADDZEX | dst.code() * B21 | src1.code() * B16 | o | r);
}
void Assembler::sub(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | SUBFX, dst, src2, src1, o, r);
}
void Assembler::subc(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | SUBFCX, dst, src2, src1, o, r);
}
void Assembler::sube(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | SUBFEX, dst, src2, src1, o, r);
}
void Assembler::subfic(Register dst, Register src, const Operand& imm) {
d_form(SUBFIC, dst, src, imm.immediate(), true);
}
void Assembler::add(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | ADDX, dst, src1, src2, o, r);
}
// Multiply low word
void Assembler::mullw(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | MULLW, dst, src1, src2, o, r);
}
// Multiply hi word
void Assembler::mulhw(Register dst, Register src1, Register src2, RCBit r) {
xo_form(EXT2 | MULHWX, dst, src1, src2, LeaveOE, r);
}
// Multiply hi word unsigned
void Assembler::mulhwu(Register dst, Register src1, Register src2, RCBit r) {
xo_form(EXT2 | MULHWUX, dst, src1, src2, LeaveOE, r);
}
// Divide word
void Assembler::divw(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | DIVW, dst, src1, src2, o, r);
}
// Divide word unsigned
void Assembler::divwu(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | DIVWU, dst, src1, src2, o, r);
}
void Assembler::addi(Register dst, Register src, const Operand& imm) {
DCHECK(src != r0); // use li instead to show intent
d_form(ADDI, dst, src, imm.immediate(), true);
}
void Assembler::addis(Register dst, Register src, const Operand& imm) {
DCHECK(src != r0); // use lis instead to show intent
d_form(ADDIS, dst, src, imm.immediate(), true);
}
void Assembler::addic(Register dst, Register src, const Operand& imm) {
d_form(ADDIC, dst, src, imm.immediate(), true);
}
void Assembler::andi(Register ra, Register rs, const Operand& imm) {
d_form(ANDIx, rs, ra, imm.immediate(), false);
}
void Assembler::andis(Register ra, Register rs, const Operand& imm) {
d_form(ANDISx, rs, ra, imm.immediate(), false);
}
void Assembler::ori(Register ra, Register rs, const Operand& imm) {
d_form(ORI, rs, ra, imm.immediate(), false);
}
void Assembler::oris(Register dst, Register src, const Operand& imm) {
d_form(ORIS, src, dst, imm.immediate(), false);
}
void Assembler::cmpi(Register src1, const Operand& src2, CRegister cr) {
intptr_t imm16 = src2.immediate();
#if V8_TARGET_ARCH_PPC64
int L = 1;
#else
int L = 0;
#endif
DCHECK(is_int16(imm16));
DCHECK(cr.code() >= 0 && cr.code() <= 7);
imm16 &= kImm16Mask;
emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
}
void Assembler::cmpli(Register src1, const Operand& src2, CRegister cr) {
uintptr_t uimm16 = src2.immediate();
#if V8_TARGET_ARCH_PPC64
int L = 1;
#else
int L = 0;
#endif
DCHECK(is_uint16(uimm16));
DCHECK(cr.code() >= 0 && cr.code() <= 7);
uimm16 &= kImm16Mask;
emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
}
void Assembler::cmpwi(Register src1, const Operand& src2, CRegister cr) {
intptr_t imm16 = src2.immediate();
int L = 0;
int pos = pc_offset();
DCHECK(is_int16(imm16));
DCHECK(cr.code() >= 0 && cr.code() <= 7);
imm16 &= kImm16Mask;
// For cmpwi against 0, save postition and cr for later examination
// of potential optimization.
if (imm16 == 0 && pos > 0 && last_bound_pos_ != pos) {
optimizable_cmpi_pos_ = pos;
cmpi_cr_ = cr;
}
emit(CMPI | cr.code() * B23 | L * B21 | src1.code() * B16 | imm16);
}
void Assembler::cmplwi(Register src1, const Operand& src2, CRegister cr) {
uintptr_t uimm16 = src2.immediate();
int L = 0;
DCHECK(is_uint16(uimm16));
DCHECK(cr.code() >= 0 && cr.code() <= 7);
uimm16 &= kImm16Mask;
emit(CMPLI | cr.code() * B23 | L * B21 | src1.code() * B16 | uimm16);
}
void Assembler::isel(Register rt, Register ra, Register rb, int cb) {
emit(EXT2 | ISEL | rt.code() * B21 | ra.code() * B16 | rb.code() * B11 |
cb * B6);
}
// Pseudo op - load immediate
void Assembler::li(Register dst, const Operand& imm) {
d_form(ADDI, dst, r0, imm.immediate(), true);
}
void Assembler::lis(Register dst, const Operand& imm) {
d_form(ADDIS, dst, r0, imm.immediate(), true);
}
// Pseudo op - move register
void Assembler::mr(Register dst, Register src) {
// actually or(dst, src, src)
orx(dst, src, src);
}
void Assembler::lbz(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(LBZ, dst, src.ra(), src.offset(), true);
}
void Assembler::lhz(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(LHZ, dst, src.ra(), src.offset(), true);
}
void Assembler::lwz(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(LWZ, dst, src.ra(), src.offset(), true);
}
void Assembler::lwzu(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(LWZU, dst, src.ra(), src.offset(), true);
}
void Assembler::lha(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(LHA, dst, src.ra(), src.offset(), true);
}
void Assembler::lwa(Register dst, const MemOperand& src) {
#if V8_TARGET_ARCH_PPC64
int offset = src.offset();
DCHECK(src.ra_ != r0);
CHECK(!(offset & 3) && is_int16(offset));
offset = kImm16Mask & offset;
emit(LD | dst.code() * B21 | src.ra().code() * B16 | offset | 2);
#else
lwz(dst, src);
#endif
}
void Assembler::stb(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(STB, dst, src.ra(), src.offset(), true);
}
void Assembler::sth(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(STH, dst, src.ra(), src.offset(), true);
}
void Assembler::stw(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(STW, dst, src.ra(), src.offset(), true);
}
void Assembler::stwu(Register dst, const MemOperand& src) {
DCHECK(src.ra_ != r0);
d_form(STWU, dst, src.ra(), src.offset(), true);
}
void Assembler::neg(Register rt, Register ra, OEBit o, RCBit r) {
emit(EXT2 | NEGX | rt.code() * B21 | ra.code() * B16 | o | r);
}
#if V8_TARGET_ARCH_PPC64
// 64bit specific instructions
void Assembler::ld(Register rd, const MemOperand& src) {
int offset = src.offset();
DCHECK(src.ra_ != r0);
CHECK(!(offset & 3) && is_int16(offset));
offset = kImm16Mask & offset;
emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset);
}
void Assembler::ldu(Register rd, const MemOperand& src) {
int offset = src.offset();
DCHECK(src.ra_ != r0);
CHECK(!(offset & 3) && is_int16(offset));
offset = kImm16Mask & offset;
emit(LD | rd.code() * B21 | src.ra().code() * B16 | offset | 1);
}
void Assembler::std(Register rs, const MemOperand& src) {
int offset = src.offset();
DCHECK(src.ra_ != r0);
CHECK(!(offset & 3) && is_int16(offset));
offset = kImm16Mask & offset;
emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset);
}
void Assembler::stdu(Register rs, const MemOperand& src) {
int offset = src.offset();
DCHECK(src.ra_ != r0);
CHECK(!(offset & 3) && is_int16(offset));
offset = kImm16Mask & offset;
emit(STD | rs.code() * B21 | src.ra().code() * B16 | offset | 1);
}
void Assembler::rldic(Register ra, Register rs, int sh, int mb, RCBit r) {
md_form(EXT5 | RLDIC, ra, rs, sh, mb, r);
}
void Assembler::rldicl(Register ra, Register rs, int sh, int mb, RCBit r) {
md_form(EXT5 | RLDICL, ra, rs, sh, mb, r);
}
void Assembler::rldcl(Register ra, Register rs, Register rb, int mb, RCBit r) {
mds_form(EXT5 | RLDCL, ra, rs, rb, mb, r);
}
void Assembler::rldicr(Register ra, Register rs, int sh, int me, RCBit r) {
md_form(EXT5 | RLDICR, ra, rs, sh, me, r);
}
void Assembler::sldi(Register dst, Register src, const Operand& val, RCBit rc) {
DCHECK((64 > val.immediate()) && (val.immediate() >= 0));
rldicr(dst, src, val.immediate(), 63 - val.immediate(), rc);
}
void Assembler::srdi(Register dst, Register src, const Operand& val, RCBit rc) {
DCHECK((64 > val.immediate()) && (val.immediate() >= 0));
rldicl(dst, src, 64 - val.immediate(), val.immediate(), rc);
}
void Assembler::clrrdi(Register dst, Register src, const Operand& val,
RCBit rc) {
DCHECK((64 > val.immediate()) && (val.immediate() >= 0));
rldicr(dst, src, 0, 63 - val.immediate(), rc);
}
void Assembler::clrldi(Register dst, Register src, const Operand& val,
RCBit rc) {
DCHECK((64 > val.immediate()) && (val.immediate() >= 0));
rldicl(dst, src, 0, val.immediate(), rc);
}
void Assembler::rldimi(Register ra, Register rs, int sh, int mb, RCBit r) {
md_form(EXT5 | RLDIMI, ra, rs, sh, mb, r);
}
void Assembler::sradi(Register ra, Register rs, int sh, RCBit r) {
int sh0_4 = sh & 0x1F;
int sh5 = (sh >> 5) & 0x1;
emit(EXT2 | SRADIX | rs.code() * B21 | ra.code() * B16 | sh0_4 * B11 |
sh5 * B1 | r);
}
void Assembler::rotld(Register ra, Register rs, Register rb, RCBit r) {
rldcl(ra, rs, rb, 0, r);
}
void Assembler::rotldi(Register ra, Register rs, int sh, RCBit r) {
rldicl(ra, rs, sh, 0, r);
}
void Assembler::rotrdi(Register ra, Register rs, int sh, RCBit r) {
rldicl(ra, rs, 64 - sh, 0, r);
}
void Assembler::mulld(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | MULLD, dst, src1, src2, o, r);
}
void Assembler::divd(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | DIVD, dst, src1, src2, o, r);
}
void Assembler::divdu(Register dst, Register src1, Register src2, OEBit o,
RCBit r) {
xo_form(EXT2 | DIVDU, dst, src1, src2, o, r);
}
#endif
// Function descriptor for AIX.
// Code address skips the function descriptor "header".
// TOC and static chain are ignored and set to 0.
void Assembler::function_descriptor() {
if (ABI_USES_FUNCTION_DESCRIPTORS) {
Label instructions;
DCHECK_EQ(pc_offset(), 0);
emit_label_addr(&instructions);
dp(0);
dp(0);
bind(&instructions);
}
}
int Assembler::instructions_required_for_mov(Register dst,
const Operand& src) const {
bool canOptimize =
!(src.must_output_reloc_info(this) || is_trampoline_pool_blocked());
if (use_constant_pool_for_mov(dst, src, canOptimize)) {
if (ConstantPoolAccessIsInOverflow()) {
return kMovInstructionsConstantPool + 1;
}
return kMovInstructionsConstantPool;
}
DCHECK(!canOptimize);
return kMovInstructionsNoConstantPool;
}
bool Assembler::use_constant_pool_for_mov(Register dst, const Operand& src,
bool canOptimize) const {
if (!FLAG_enable_embedded_constant_pool || !is_constant_pool_available()) {
// If there is no constant pool available, we must use a mov
// immediate sequence.
return false;
}
intptr_t value = src.immediate();
#if V8_TARGET_ARCH_PPC64
bool allowOverflow = !((canOptimize && is_int32(value)) || dst == r0);
#else
bool allowOverflow = !(canOptimize || dst == r0);
#endif
if (canOptimize && is_int16(value)) {
// Prefer a single-instruction load-immediate.
return false;
}
if (!allowOverflow && ConstantPoolAccessIsInOverflow()) {
// Prefer non-relocatable two-instruction bitwise-mov32 over
// overflow sequence.
return false;
}
return true;
}
void Assembler::EnsureSpaceFor(int space_needed) {
if (buffer_space() <= (kGap + space_needed)) {
GrowBuffer(space_needed);
}
}
bool Operand::must_output_reloc_info(const Assembler* assembler) const {
if (rmode_ == RelocInfo::EXTERNAL_REFERENCE) {
if (assembler != nullptr && assembler->predictable_code_size()) return true;
return assembler->serializer_enabled();
} else if (RelocInfo::IsNone(rmode_)) {
return false;
}
return true;
}
// Primarily used for loading constants
// This should really move to be in macro-assembler as it
// is really a pseudo instruction
// Some usages of this intend for a FIXED_SEQUENCE to be used
// Todo - break this dependency so we can optimize mov() in general
// and only use the generic version when we require a fixed sequence
void Assembler::mov(Register dst, const Operand& src) {
intptr_t value;
if (src.IsHeapObjectRequest()) {
RequestHeapObject(src.heap_object_request());
value = 0;
} else {
value = src.immediate();
}
bool relocatable = src.must_output_reloc_info(this);
bool canOptimize;
canOptimize =
!(relocatable || (is_trampoline_pool_blocked() && !is_int16(value)));
if (!src.IsHeapObjectRequest() &&
use_constant_pool_for_mov(dst, src, canOptimize)) {
DCHECK(is_constant_pool_available());
if (relocatable) {
RecordRelocInfo(src.rmode_);
}
ConstantPoolEntry::Access access = ConstantPoolAddEntry(src.rmode_, value);
#if V8_TARGET_ARCH_PPC64
if (access == ConstantPoolEntry::OVERFLOWED) {
addis(dst, kConstantPoolRegister, Operand::Zero());
ld(dst, MemOperand(dst, 0));
} else {
ld(dst, MemOperand(kConstantPoolRegister, 0));
}
#else
if (access == ConstantPoolEntry::OVERFLOWED) {
addis(dst, kConstantPoolRegister, Operand::Zero());
lwz(dst, MemOperand(dst, 0));
} else {
lwz(dst, MemOperand(kConstantPoolRegister, 0));
}
#endif
return;
}
if (canOptimize) {
if (is_int16(value)) {
li(dst, Operand(value));
} else {
uint16_t u16;
#if V8_TARGET_ARCH_PPC64
if (is_int32(value)) {
#endif
lis(dst, Operand(value >> 16));
#if V8_TARGET_ARCH_PPC64
} else {
if (is_int48(value)) {
li(dst, Operand(value >> 32));
} else {
lis(dst, Operand(value >> 48));
u16 = ((value >> 32) & 0xFFFF);
if (u16) {
ori(dst, dst, Operand(u16));
}
}
sldi(dst, dst, Operand(32));
u16 = ((value >> 16) & 0xFFFF);
if (u16) {
oris(dst, dst, Operand(u16));
}
}
#endif
u16 = (value & 0xFFFF);
if (u16) {
ori(dst, dst, Operand(u16));
}
}
return;
}
DCHECK(!canOptimize);
if (relocatable) {
RecordRelocInfo(src.rmode_);
}
bitwise_mov(dst, value);
}
void Assembler::bitwise_mov(Register dst, intptr_t value) {
BlockTrampolinePoolScope block_trampoline_pool(this);
#if V8_TARGET_ARCH_PPC64
int32_t hi_32 = static_cast<int32_t>(value >> 32);
int32_t lo_32 = static_cast<int32_t>(value);
int hi_word = static_cast<int>(hi_32 >> 16);
int lo_word = static_cast<int>(hi_32 & 0xFFFF);
lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
ori(dst, dst, Operand(lo_word));
sldi(dst, dst, Operand(32));
hi_word = static_cast<int>(((lo_32 >> 16) & 0xFFFF));
lo_word = static_cast<int>(lo_32 & 0xFFFF);
oris(dst, dst, Operand(hi_word));
ori(dst, dst, Operand(lo_word));
#else
int hi_word = static_cast<int>(value >> 16);
int lo_word = static_cast<int>(value & 0xFFFF);
lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
ori(dst, dst, Operand(lo_word));
#endif
}
void Assembler::bitwise_mov32(Register dst, int32_t value) {
BlockTrampolinePoolScope block_trampoline_pool(this);
int hi_word = static_cast<int>(value >> 16);
int lo_word = static_cast<int>(value & 0xFFFF);
lis(dst, Operand(SIGN_EXT_IMM16(hi_word)));
ori(dst, dst, Operand(lo_word));
}
void Assembler::bitwise_add32(Register dst, Register src, int32_t value) {
BlockTrampolinePoolScope block_trampoline_pool(this);
if (is_int16(value)) {
addi(dst, src, Operand(value));
nop();
} else {
int hi_word = static_cast<int>(value >> 16);
int lo_word = static_cast<int>(value & 0xFFFF);
if (lo_word & 0x8000) hi_word++;
addis(dst, src, Operand(SIGN_EXT_IMM16(hi_word)));
addic(dst, dst, Operand(SIGN_EXT_IMM16(lo_word)));
}
}
void Assembler::mov_label_offset(Register dst, Label* label) {
int position = link(label);
if (label->is_bound()) {
// Load the position of the label relative to the generated code object.
mov(dst, Operand(position + Code::kHeaderSize - kHeapObjectTag));
} else {
// Encode internal reference to unbound label. We use a dummy opcode
// such that it won't collide with any opcode that might appear in the
// label's chain. Encode the destination register in the 2nd instruction.
int link = position - pc_offset();
DCHECK_EQ(0, link & 3);
link >>= 2;
DCHECK(is_int26(link));
// When the label is bound, these instructions will be patched
// with a 2 instruction mov sequence that will load the
// destination register with the position of the label from the
// beginning of the code.
//
// target_at extracts the link and target_at_put patches the instructions.
BlockTrampolinePoolScope block_trampoline_pool(this);
emit(kUnboundMovLabelOffsetOpcode | (link & kImm26Mask));
emit(dst.code());
}
}
void Assembler::add_label_offset(Register dst, Register base, Label* label,
int delta) {
int position = link(label);
if (label->is_bound()) {
// dst = base + position + delta
position += delta;
bitwise_add32(dst, base, position);
} else {
// Encode internal reference to unbound label. We use a dummy opcode
// such that it won't collide with any opcode that might appear in the
// label's chain. Encode the operands in the 2nd instruction.
int link = position - pc_offset();
DCHECK_EQ(0, link & 3);
link >>= 2;
DCHECK(is_int26(link));
DCHECK(is_int16(delta));
BlockTrampolinePoolScope block_trampoline_pool(this);
emit(kUnboundAddLabelOffsetOpcode | (link & kImm26Mask));
emit(dst.code() * B21 | base.code() * B16 | (delta & kImm16Mask));
}
}
void Assembler::mov_label_addr(Register dst, Label* label) {
CheckBuffer();
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE_ENCODED);
int position = link(label);
if (label->is_bound()) {
// Keep internal references relative until EmitRelocations.
bitwise_mov(dst, position);
} else {
// Encode internal reference to unbound label. We use a dummy opcode
// such that it won't collide with any opcode that might appear in the
// label's chain. Encode the destination register in the 2nd instruction.
int link = position - pc_offset();
DCHECK_EQ(0, link & 3);
link >>= 2;
DCHECK(is_int26(link));
// When the label is bound, these instructions will be patched
// with a multi-instruction mov sequence that will load the
// destination register with the address of the label.
//
// target_at extracts the link and target_at_put patches the instructions.
BlockTrampolinePoolScope block_trampoline_pool(this);
emit(kUnboundMovLabelAddrOpcode | (link & kImm26Mask));
emit(dst.code());
DCHECK_GE(kMovInstructionsNoConstantPool, 2);
for (int i = 0; i < kMovInstructionsNoConstantPool - 2; i++) nop();
}
}
void Assembler::emit_label_addr(Label* label) {
CheckBuffer();
RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
int position = link(label);
if (label->is_bound()) {
// Keep internal references relative until EmitRelocations.
dp(position);
} else {
// Encode internal reference to unbound label. We use a dummy opcode
// such that it won't collide with any opcode that might appear in the
// label's chain.
int link = position - pc_offset();
DCHECK_EQ(0, link & 3);
link >>= 2;
DCHECK(is_int26(link));
// When the label is bound, the instruction(s) will be patched
// as a jump table entry containing the label address. target_at extracts
// the link and target_at_put patches the instruction(s).
BlockTrampolinePoolScope block_trampoline_pool(this);
emit(kUnboundJumpTableEntryOpcode | (link & kImm26Mask));
#if V8_TARGET_ARCH_PPC64
nop();
#endif
}
}
// Special register instructions
void Assembler::crxor(int bt, int ba, int bb) {
emit(EXT1 | CRXOR | bt * B21 | ba * B16 | bb * B11);
}
void Assembler::creqv(int bt, int ba, int bb) {
emit(EXT1 | CREQV | bt * B21 | ba * B16 | bb * B11);
}
void Assembler::mflr(Register dst) {
emit(EXT2 | MFSPR | dst.code() * B21 | 256 << 11); // Ignore RC bit
}
void Assembler::mtlr(Register src) {
emit(EXT2 | MTSPR | src.code() * B21 | 256 << 11); // Ignore RC bit
}
void Assembler::mtctr(Register src) {
emit(EXT2 | MTSPR | src.code() * B21 | 288 << 11); // Ignore RC bit
}
void Assembler::mtxer(Register src) {
emit(EXT2 | MTSPR | src.code() * B21 | 32 << 11);
}
void Assembler::mcrfs(CRegister cr, FPSCRBit bit) {
DCHECK_LT(static_cast<int>(bit), 32);
int bf = cr.code();
int bfa = bit / CRWIDTH;
emit(EXT4 | MCRFS | bf * B23 | bfa * B18);
}
void Assembler::mfcr(Register dst) { emit(EXT2 | MFCR | dst.code() * B21); }
#if V8_TARGET_ARCH_PPC64
void Assembler::mffprd(Register dst, DoubleRegister src) {
emit(EXT2 | MFVSRD | src.code() * B21 | dst.code() * B16);
}
void Assembler::mffprwz(Register dst, DoubleRegister src) {
emit(EXT2 | MFVSRWZ | src.code() * B21 | dst.code() * B16);
}
void Assembler::mtfprd(DoubleRegister dst, Register src) {
emit(EXT2 | MTVSRD | dst.code() * B21 | src.code() * B16);
}
void Assembler::mtfprwz(DoubleRegister dst, Register src) {
emit(EXT2 | MTVSRWZ | dst.code() * B21 | src.code() * B16);
}
void Assembler::mtfprwa(DoubleRegister dst, Register src) {
emit(EXT2 | MTVSRWA | dst.code() * B21 | src.code() * B16);
}
#endif
// Exception-generating instructions and debugging support.
// Stops with a non-negative code less than kNumOfWatchedStops support
// enabling/disabling and a counter feature. See simulator-ppc.h .
void Assembler::stop(const char* msg, Condition cond, int32_t code,
CRegister cr) {
if (cond != al) {
Label skip;
b(NegateCondition(cond), &skip, cr);
bkpt(0);
bind(&skip);
} else {
bkpt(0);
}
}
void Assembler::bkpt(uint32_t imm16) { emit(0x7D821008); }
void Assembler::dcbf(Register ra, Register rb) {
emit(EXT2 | DCBF | ra.code() * B16 | rb.code() * B11);
}
void Assembler::sync() { emit(EXT2 | SYNC); }
void Assembler::lwsync() { emit(EXT2 | SYNC | 1 * B21); }
void Assembler::icbi(Register ra, Register rb) {
emit(EXT2 | ICBI | ra.code() * B16 | rb.code() * B11);
}
void Assembler::isync() { emit(EXT1 | ISYNC); }
// Floating point support
void Assembler::lfd(const DoubleRegister frt, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
DCHECK(ra != r0);
CHECK(is_int16(offset));
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(LFD | frt.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::lfdu(const DoubleRegister frt, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
DCHECK(ra != r0);
CHECK(is_int16(offset));
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(LFDU | frt.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::lfs(const DoubleRegister frt, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(LFS | frt.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::lfsu(const DoubleRegister frt, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(LFSU | frt.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::stfd(const DoubleRegister frs, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(STFD | frs.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::stfdu(const DoubleRegister frs, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(STFDU | frs.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::stfs(const DoubleRegister frs, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(STFS | frs.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::stfsu(const DoubleRegister frs, const MemOperand& src) {
int offset = src.offset();
Register ra = src.ra();
CHECK(is_int16(offset));
DCHECK(ra != r0);
int imm16 = offset & kImm16Mask;
// could be x_form instruction with some casting magic
emit(STFSU | frs.code() * B21 | ra.code() * B16 | imm16);
}
void Assembler::fsub(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc) {
a_form(EXT4 | FSUB, frt, fra, frb, rc);
}
void Assembler::fadd(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc) {
a_form(EXT4 | FADD, frt, fra, frb, rc);
}
void Assembler::fmul(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, RCBit rc) {
emit(EXT4 | FMUL | frt.code() * B21 | fra.code() * B16 | frc.code() * B6 |
rc);
}
void Assembler::fdiv(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frb, RCBit rc) {
a_form(EXT4 | FDIV, frt, fra, frb, rc);
}
void Assembler::fcmpu(const DoubleRegister fra, const DoubleRegister frb,
CRegister cr) {
DCHECK(cr.code() >= 0 && cr.code() <= 7);
emit(EXT4 | FCMPU | cr.code() * B23 | fra.code() * B16 | frb.code() * B11);
}
void Assembler::fmr(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FMR | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fctiwz(const DoubleRegister frt, const DoubleRegister frb) {
emit(EXT4 | FCTIWZ | frt.code() * B21 | frb.code() * B11);
}
void Assembler::fctiw(const DoubleRegister frt, const DoubleRegister frb) {
emit(EXT4 | FCTIW | frt.code() * B21 | frb.code() * B11);
}
void Assembler::frin(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FRIN | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::friz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FRIZ | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::frip(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FRIP | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::frim(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FRIM | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::frsp(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FRSP | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fcfid(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCFID | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fcfidu(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCFIDU | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fcfidus(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT3 | FCFIDUS | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fcfids(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT3 | FCFIDS | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fctid(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCTID | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fctidz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCTIDZ | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fctidu(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCTIDU | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fctiduz(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FCTIDUZ | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fsel(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FSEL | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
frc.code() * B6 | rc);
}
void Assembler::fneg(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FNEG | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::mtfsb0(FPSCRBit bit, RCBit rc) {
DCHECK_LT(static_cast<int>(bit), 32);
int bt = bit;
emit(EXT4 | MTFSB0 | bt * B21 | rc);
}
void Assembler::mtfsb1(FPSCRBit bit, RCBit rc) {
DCHECK_LT(static_cast<int>(bit), 32);
int bt = bit;
emit(EXT4 | MTFSB1 | bt * B21 | rc);
}
void Assembler::mtfsfi(int bf, int immediate, RCBit rc) {
emit(EXT4 | MTFSFI | bf * B23 | immediate * B12 | rc);
}
void Assembler::mffs(const DoubleRegister frt, RCBit rc) {
emit(EXT4 | MFFS | frt.code() * B21 | rc);
}
void Assembler::mtfsf(const DoubleRegister frb, bool L, int FLM, bool W,
RCBit rc) {
emit(EXT4 | MTFSF | frb.code() * B11 | W * B16 | FLM * B17 | L * B25 | rc);
}
void Assembler::fsqrt(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FSQRT | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fabs(const DoubleRegister frt, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FABS | frt.code() * B21 | frb.code() * B11 | rc);
}
void Assembler::fmadd(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FMADD | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
frc.code() * B6 | rc);
}
void Assembler::fmsub(const DoubleRegister frt, const DoubleRegister fra,
const DoubleRegister frc, const DoubleRegister frb,
RCBit rc) {
emit(EXT4 | FMSUB | frt.code() * B21 | fra.code() * B16 | frb.code() * B11 |
frc.code() * B6 | rc);
}
// Pseudo instructions.
void Assembler::nop(int type) {
Register reg = r0;
switch (type) {
case NON_MARKING_NOP:
reg = r0;
break;
case GROUP_ENDING_NOP:
reg = r2;
break;
case DEBUG_BREAK_NOP:
reg = r3;
break;
default:
UNIMPLEMENTED();
}
ori(reg, reg, Operand::Zero());
}
bool Assembler::IsNop(Instr instr, int type) {
int reg = 0;
switch (type) {
case NON_MARKING_NOP:
reg = 0;
break;
case GROUP_ENDING_NOP:
reg = 2;
break;
case DEBUG_BREAK_NOP:
reg = 3;
break;
default:
UNIMPLEMENTED();
}
return instr == (ORI | reg * B21 | reg * B16);
}
void Assembler::GrowBuffer(int needed) {
if (!own_buffer_) FATAL("external code buffer is too small");
// Compute new buffer size.
CodeDesc desc; // the new buffer
if (buffer_size_ < 4 * KB) {
desc.buffer_size = 4 * KB;
} else if (buffer_size_ < 1 * MB) {
desc.buffer_size = 2 * buffer_size_;
} else {
desc.buffer_size = buffer_size_ + 1 * MB;
}
int space = buffer_space() + (desc.buffer_size - buffer_size_);
if (space < needed) {
desc.buffer_size += needed - space;
}
// Some internal data structures overflow for very large buffers,
// they must ensure that kMaximalBufferSize is not too large.
if (desc.buffer_size > kMaximalBufferSize) {
V8::FatalProcessOutOfMemory("Assembler::GrowBuffer");
}
// Set up new buffer.
desc.buffer = NewArray<byte>(desc.buffer_size);
desc.origin = this;
desc.instr_size = pc_offset();
desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos();
// Copy the data.
intptr_t pc_delta = desc.buffer - buffer_;
intptr_t rc_delta =
(desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_);
memmove(desc.buffer, buffer_, desc.instr_size);
memmove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
desc.reloc_size);
// Switch buffers.
DeleteArray(buffer_);
buffer_ = desc.buffer;
buffer_size_ = desc.buffer_size;
pc_ += pc_delta;
reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
reloc_info_writer.last_pc() + pc_delta);
// Nothing else to do here since we keep all internal references and
// deferred relocation entries relative to the buffer (until
// EmitRelocations).
}
void Assembler::db(uint8_t data) {
CheckBuffer();
*reinterpret_cast<uint8_t*>(pc_) = data;
pc_ += sizeof(uint8_t);
}
void Assembler::dd(uint32_t data) {
CheckBuffer();
*reinterpret_cast<uint32_t*>(pc_) = data;
pc_ += sizeof(uint32_t);
}
void Assembler::dq(uint64_t value) {
CheckBuffer();
*reinterpret_cast<uint64_t*>(pc_) = value;
pc_ += sizeof(uint64_t);
}
void Assembler::dp(uintptr_t data) {
CheckBuffer();
*reinterpret_cast<uintptr_t*>(pc_) = data;
pc_ += sizeof(uintptr_t);
}
void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
if (RelocInfo::IsNone(rmode) ||
// Don't record external references unless the heap will be serialized.
(rmode == RelocInfo::EXTERNAL_REFERENCE && !serializer_enabled() &&
!emit_debug_code())) {
return;
}
DeferredRelocInfo rinfo(pc_offset(), rmode, data);
relocations_.push_back(rinfo);
}
void Assembler::EmitRelocations() {
EnsureSpaceFor(relocations_.size() * kMaxRelocSize);
for (std::vector<DeferredRelocInfo>::iterator it = relocations_.begin();
it != relocations_.end(); it++) {
RelocInfo::Mode rmode = it->rmode();
Address pc = buffer_ + it->position();
RelocInfo rinfo(pc, rmode, it->data(), nullptr);
// Fix up internal references now that they are guaranteed to be bound.
if (RelocInfo::IsInternalReference(rmode)) {
// Jump table entry
intptr_t pos = reinterpret_cast<intptr_t>(Memory::Address_at(pc));
Memory::Address_at(pc) = buffer_ + pos;
} else if (RelocInfo::IsInternalReferenceEncoded(rmode)) {
// mov sequence
intptr_t pos = reinterpret_cast<intptr_t>(target_address_at(pc, nullptr));
set_target_address_at(nullptr, pc, nullptr, buffer_ + pos,
SKIP_ICACHE_FLUSH);
}
reloc_info_writer.Write(&rinfo);
}
}
void Assembler::BlockTrampolinePoolFor(int instructions) {
BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
}
void Assembler::CheckTrampolinePool() {
// Some small sequences of instructions must not be broken up by the
// insertion of a trampoline pool; such sequences are protected by setting
// either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
// which are both checked here. Also, recursive calls to CheckTrampolinePool
// are blocked by trampoline_pool_blocked_nesting_.
if (trampoline_pool_blocked_nesting_ > 0) return;
if (pc_offset() < no_trampoline_pool_before_) {
next_trampoline_check_ = no_trampoline_pool_before_;
return;
}
DCHECK(!trampoline_emitted_);
if (tracked_branch_count_ > 0) {
int size = tracked_branch_count_ * kInstrSize;
// As we are only going to emit trampoline once, we need to prevent any
// further emission.
trampoline_emitted_ = true;
next_trampoline_check_ = kMaxInt;
// First we emit jump, then we emit trampoline pool.
b(size + kInstrSize, LeaveLK);
for (int i = size; i > 0; i -= kInstrSize) {
b(i, LeaveLK);
}
trampoline_ = Trampoline(pc_offset() - size, tracked_branch_count_);
}
}
PatchingAssembler::PatchingAssembler(IsolateData isolate_data, byte* address,
int instructions)
: Assembler(isolate_data, address, instructions * kInstrSize + kGap) {
DCHECK_EQ(reloc_info_writer.pos(), buffer_ + buffer_size_);
}
PatchingAssembler::~PatchingAssembler() {
// Check that the code was patched as expected.
DCHECK_EQ(pc_, buffer_ + buffer_size_ - kGap);
DCHECK_EQ(reloc_info_writer.pos(), buffer_ + buffer_size_);
}
void PatchingAssembler::FlushICache(Isolate* isolate) {
Assembler::FlushICache(isolate, buffer_, buffer_size_ - kGap);
}
} // namespace internal
} // namespace v8
#endif // V8_TARGET_ARCH_PPC