| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // A Disassembler object is used to disassemble a block of code instruction by |
| // instruction. The default implementation of the NameConverter object can be |
| // overriden to modify register names or to do symbol lookup on addresses. |
| // |
| // The example below will disassemble a block of code and print it to stdout. |
| // |
| // NameConverter converter; |
| // Disassembler d(converter); |
| // for (byte* pc = begin; pc < end;) { |
| // v8::internal::EmbeddedVector<char, 256> buffer; |
| // byte* prev_pc = pc; |
| // pc += d.InstructionDecode(buffer, pc); |
| // printf("%p %08x %s\n", |
| // prev_pc, *reinterpret_cast<int32_t*>(prev_pc), buffer); |
| // } |
| // |
| // The Disassembler class also has a convenience method to disassemble a block |
| // of code into a FILE*, meaning that the above functionality could also be |
| // achieved by just calling Disassembler::Disassemble(stdout, begin, end); |
| |
| |
| #include <assert.h> |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #if V8_TARGET_ARCH_PPC |
| |
| #include "src/base/platform/platform.h" |
| #include "src/disasm.h" |
| #include "src/macro-assembler.h" |
| #include "src/ppc/constants-ppc.h" |
| |
| |
| namespace v8 { |
| namespace internal { |
| |
| const auto GetRegConfig = RegisterConfiguration::Default; |
| |
| //------------------------------------------------------------------------------ |
| |
| // Decoder decodes and disassembles instructions into an output buffer. |
| // It uses the converter to convert register names and call destinations into |
| // more informative description. |
| class Decoder { |
| public: |
| Decoder(const disasm::NameConverter& converter, Vector<char> out_buffer) |
| : converter_(converter), out_buffer_(out_buffer), out_buffer_pos_(0) { |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| ~Decoder() {} |
| |
| // Writes one disassembled instruction into 'buffer' (0-terminated). |
| // Returns the length of the disassembled machine instruction in bytes. |
| int InstructionDecode(byte* instruction); |
| |
| private: |
| // Bottleneck functions to print into the out_buffer. |
| void PrintChar(const char ch); |
| void Print(const char* str); |
| |
| // Printing of common values. |
| void PrintRegister(int reg); |
| void PrintDRegister(int reg); |
| int FormatFPRegister(Instruction* instr, const char* format); |
| void PrintSoftwareInterrupt(SoftwareInterruptCodes svc); |
| |
| // Handle formatting of instructions and their options. |
| int FormatRegister(Instruction* instr, const char* option); |
| int FormatOption(Instruction* instr, const char* option); |
| void Format(Instruction* instr, const char* format); |
| void Unknown(Instruction* instr); |
| void UnknownFormat(Instruction* instr, const char* opcname); |
| |
| void DecodeExt1(Instruction* instr); |
| void DecodeExt2(Instruction* instr); |
| void DecodeExt3(Instruction* instr); |
| void DecodeExt4(Instruction* instr); |
| void DecodeExt5(Instruction* instr); |
| void DecodeExt6(Instruction* instr); |
| |
| const disasm::NameConverter& converter_; |
| Vector<char> out_buffer_; |
| int out_buffer_pos_; |
| |
| DISALLOW_COPY_AND_ASSIGN(Decoder); |
| }; |
| |
| |
| // Support for assertions in the Decoder formatting functions. |
| #define STRING_STARTS_WITH(string, compare_string) \ |
| (strncmp(string, compare_string, strlen(compare_string)) == 0) |
| |
| |
| // Append the ch to the output buffer. |
| void Decoder::PrintChar(const char ch) { out_buffer_[out_buffer_pos_++] = ch; } |
| |
| |
| // Append the str to the output buffer. |
| void Decoder::Print(const char* str) { |
| char cur = *str++; |
| while (cur != '\0' && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| PrintChar(cur); |
| cur = *str++; |
| } |
| out_buffer_[out_buffer_pos_] = 0; |
| } |
| |
| |
| // Print the register name according to the active name converter. |
| void Decoder::PrintRegister(int reg) { |
| Print(converter_.NameOfCPURegister(reg)); |
| } |
| |
| |
| // Print the double FP register name according to the active name converter. |
| void Decoder::PrintDRegister(int reg) { |
| Print(GetRegConfig()->GetDoubleRegisterName(reg)); |
| } |
| |
| |
| // Print SoftwareInterrupt codes. Factoring this out reduces the complexity of |
| // the FormatOption method. |
| void Decoder::PrintSoftwareInterrupt(SoftwareInterruptCodes svc) { |
| switch (svc) { |
| case kCallRtRedirected: |
| Print("call rt redirected"); |
| return; |
| case kBreakpoint: |
| Print("breakpoint"); |
| return; |
| default: |
| if (svc >= kStopCode) { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d - 0x%x", |
| svc & kStopCodeMask, svc & kStopCodeMask); |
| } else { |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", svc); |
| } |
| return; |
| } |
| } |
| |
| |
| // Handle all register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatRegister(Instruction* instr, const char* format) { |
| DCHECK_EQ(format[0], 'r'); |
| |
| if ((format[1] == 't') || (format[1] == 's')) { // 'rt & 'rs register |
| int reg = instr->RTValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'a') { // 'ra: RA register |
| int reg = instr->RAValue(); |
| PrintRegister(reg); |
| return 2; |
| } else if (format[1] == 'b') { // 'rb: RB register |
| int reg = instr->RBValue(); |
| PrintRegister(reg); |
| return 2; |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| |
| // Handle all FP register based formatting in this function to reduce the |
| // complexity of FormatOption. |
| int Decoder::FormatFPRegister(Instruction* instr, const char* format) { |
| DCHECK_EQ(format[0], 'D'); |
| |
| int retval = 2; |
| int reg = -1; |
| if (format[1] == 't') { |
| reg = instr->RTValue(); |
| } else if (format[1] == 'a') { |
| reg = instr->RAValue(); |
| } else if (format[1] == 'b') { |
| reg = instr->RBValue(); |
| } else if (format[1] == 'c') { |
| reg = instr->RCValue(); |
| } else { |
| UNREACHABLE(); |
| } |
| |
| PrintDRegister(reg); |
| |
| return retval; |
| } |
| |
| |
| // FormatOption takes a formatting string and interprets it based on |
| // the current instructions. The format string points to the first |
| // character of the option string (the option escape has already been |
| // consumed by the caller.) FormatOption returns the number of |
| // characters that were consumed from the formatting string. |
| int Decoder::FormatOption(Instruction* instr, const char* format) { |
| switch (format[0]) { |
| case 'o': { |
| if (instr->Bit(10) == 1) { |
| Print("o"); |
| } |
| return 1; |
| } |
| case '.': { |
| if (instr->Bit(0) == 1) { |
| Print("."); |
| } else { |
| Print(" "); // ensure consistent spacing |
| } |
| return 1; |
| } |
| case 'r': { |
| return FormatRegister(instr, format); |
| } |
| case 'D': { |
| return FormatFPRegister(instr, format); |
| } |
| case 'i': { // int16 |
| int32_t value = (instr->Bits(15, 0) << 16) >> 16; |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
| return 5; |
| } |
| case 'u': { // uint16 |
| int32_t value = instr->Bits(15, 0); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
| return 6; |
| } |
| case 'l': { |
| // Link (LK) Bit 0 |
| if (instr->Bit(0) == 1) { |
| Print("l"); |
| } |
| return 1; |
| } |
| case 'a': { |
| // Absolute Address Bit 1 |
| if (instr->Bit(1) == 1) { |
| Print("a"); |
| } |
| return 1; |
| } |
| case 'c': { // 'cr: condition register of branch instruction |
| int code = instr->Bits(20, 18); |
| if (code != 7) { |
| out_buffer_pos_ += |
| SNPrintF(out_buffer_ + out_buffer_pos_, " cr%d", code); |
| } |
| return 2; |
| } |
| case 't': { // 'target: target of branch instructions |
| // target26 or target16 |
| DCHECK(STRING_STARTS_WITH(format, "target")); |
| if ((format[6] == '2') && (format[7] == '6')) { |
| int off = ((instr->Bits(25, 2)) << 8) >> 6; |
| out_buffer_pos_ += SNPrintF( |
| out_buffer_ + out_buffer_pos_, "%+d -> %s", off, |
| converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); |
| return 8; |
| } else if ((format[6] == '1') && (format[7] == '6')) { |
| int off = ((instr->Bits(15, 2)) << 18) >> 16; |
| out_buffer_pos_ += SNPrintF( |
| out_buffer_ + out_buffer_pos_, "%+d -> %s", off, |
| converter_.NameOfAddress(reinterpret_cast<byte*>(instr) + off)); |
| return 8; |
| } |
| case 's': { |
| DCHECK_EQ(format[1], 'h'); |
| int32_t value = 0; |
| int32_t opcode = instr->OpcodeValue() << 26; |
| int32_t sh = instr->Bits(15, 11); |
| if (opcode == EXT5 || |
| (opcode == EXT2 && instr->Bits(10, 2) << 2 == SRADIX)) { |
| // SH Bits 1 and 15-11 (split field) |
| value = (sh | (instr->Bit(1) << 5)); |
| } else { |
| // SH Bits 15-11 |
| value = (sh << 26) >> 26; |
| } |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
| return 2; |
| } |
| case 'm': { |
| int32_t value = 0; |
| if (format[1] == 'e') { |
| if (instr->OpcodeValue() << 26 != EXT5) { |
| // ME Bits 10-6 |
| value = (instr->Bits(10, 6) << 26) >> 26; |
| } else { |
| // ME Bits 5 and 10-6 (split field) |
| value = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
| } |
| } else if (format[1] == 'b') { |
| if (instr->OpcodeValue() << 26 != EXT5) { |
| // MB Bits 5-1 |
| value = (instr->Bits(5, 1) << 26) >> 26; |
| } else { |
| // MB Bits 5 and 10-6 (split field) |
| value = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); |
| } |
| } else { |
| UNREACHABLE(); // bad format |
| } |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
| return 2; |
| } |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case 'd': { // ds value for offset |
| int32_t value = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%d", value); |
| return 1; |
| } |
| #endif |
| default: { |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| UNREACHABLE(); |
| } |
| |
| |
| // Format takes a formatting string for a whole instruction and prints it into |
| // the output buffer. All escaped options are handed to FormatOption to be |
| // parsed further. |
| void Decoder::Format(Instruction* instr, const char* format) { |
| char cur = *format++; |
| while ((cur != 0) && (out_buffer_pos_ < (out_buffer_.length() - 1))) { |
| if (cur == '\'') { // Single quote is used as the formatting escape. |
| format += FormatOption(instr, format); |
| } else { |
| out_buffer_[out_buffer_pos_++] = cur; |
| } |
| cur = *format++; |
| } |
| out_buffer_[out_buffer_pos_] = '\0'; |
| } |
| |
| |
| // The disassembler may end up decoding data inlined in the code. We do not want |
| // it to crash if the data does not resemble any known instruction. |
| #define VERIFY(condition) \ |
| if (!(condition)) { \ |
| Unknown(instr); \ |
| return; \ |
| } |
| |
| |
| // For currently unimplemented decodings the disassembler calls Unknown(instr) |
| // which will just print "unknown" of the instruction bits. |
| void Decoder::Unknown(Instruction* instr) { Format(instr, "unknown"); } |
| |
| |
| // For currently unimplemented decodings the disassembler calls |
| // UnknownFormat(instr) which will just print opcode name of the |
| // instruction bits. |
| void Decoder::UnknownFormat(Instruction* instr, const char* name) { |
| char buffer[100]; |
| snprintf(buffer, sizeof(buffer), "%s (unknown-format)", name); |
| Format(instr, buffer); |
| } |
| |
| |
| void Decoder::DecodeExt1(Instruction* instr) { |
| switch (EXT1 | (instr->BitField(10, 1))) { |
| case MCRF: { |
| UnknownFormat(instr, "mcrf"); // not used by V8 |
| break; |
| } |
| case BCLRX: { |
| int bo = instr->BitField(25, 21); |
| int bi = instr->Bits(20, 16); |
| CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1)); |
| switch (bo) { |
| case DCBNZF: { |
| UnknownFormat(instr, "bclrx-dcbnzf"); |
| break; |
| } |
| case DCBEZF: { |
| UnknownFormat(instr, "bclrx-dcbezf"); |
| break; |
| } |
| case BF: { |
| switch (cond) { |
| case CR_EQ: |
| Format(instr, "bnelr'l'cr"); |
| break; |
| case CR_GT: |
| Format(instr, "blelr'l'cr"); |
| break; |
| case CR_LT: |
| Format(instr, "bgelr'l'cr"); |
| break; |
| case CR_SO: |
| Format(instr, "bnsolr'l'cr"); |
| break; |
| } |
| break; |
| } |
| case DCBNZT: { |
| UnknownFormat(instr, "bclrx-dcbbzt"); |
| break; |
| } |
| case DCBEZT: { |
| UnknownFormat(instr, "bclrx-dcbnezt"); |
| break; |
| } |
| case BT: { |
| switch (cond) { |
| case CR_EQ: |
| Format(instr, "beqlr'l'cr"); |
| break; |
| case CR_GT: |
| Format(instr, "bgtlr'l'cr"); |
| break; |
| case CR_LT: |
| Format(instr, "bltlr'l'cr"); |
| break; |
| case CR_SO: |
| Format(instr, "bsolr'l'cr"); |
| break; |
| } |
| break; |
| } |
| case DCBNZ: { |
| UnknownFormat(instr, "bclrx-dcbnz"); |
| break; |
| } |
| case DCBEZ: { |
| UnknownFormat(instr, "bclrx-dcbez"); // not used by V8 |
| break; |
| } |
| case BA: { |
| Format(instr, "blr'l"); |
| break; |
| } |
| } |
| break; |
| } |
| case BCCTRX: { |
| switch (instr->BitField(25, 21)) { |
| case DCBNZF: { |
| UnknownFormat(instr, "bcctrx-dcbnzf"); |
| break; |
| } |
| case DCBEZF: { |
| UnknownFormat(instr, "bcctrx-dcbezf"); |
| break; |
| } |
| case BF: { |
| UnknownFormat(instr, "bcctrx-bf"); |
| break; |
| } |
| case DCBNZT: { |
| UnknownFormat(instr, "bcctrx-dcbnzt"); |
| break; |
| } |
| case DCBEZT: { |
| UnknownFormat(instr, "bcctrx-dcbezf"); |
| break; |
| } |
| case BT: { |
| UnknownFormat(instr, "bcctrx-bt"); |
| break; |
| } |
| case DCBNZ: { |
| UnknownFormat(instr, "bcctrx-dcbnz"); |
| break; |
| } |
| case DCBEZ: { |
| UnknownFormat(instr, "bcctrx-dcbez"); |
| break; |
| } |
| case BA: { |
| if (instr->Bit(0) == 1) { |
| Format(instr, "bctrl"); |
| } else { |
| Format(instr, "bctr"); |
| } |
| break; |
| } |
| default: { UNREACHABLE(); } |
| } |
| break; |
| } |
| case CRNOR: { |
| Format(instr, "crnor (stuff)"); |
| break; |
| } |
| case RFI: { |
| Format(instr, "rfi (stuff)"); |
| break; |
| } |
| case CRANDC: { |
| Format(instr, "crandc (stuff)"); |
| break; |
| } |
| case ISYNC: { |
| Format(instr, "isync (stuff)"); |
| break; |
| } |
| case CRXOR: { |
| Format(instr, "crxor (stuff)"); |
| break; |
| } |
| case CRNAND: { |
| UnknownFormat(instr, "crnand"); |
| break; |
| } |
| case CRAND: { |
| UnknownFormat(instr, "crand"); |
| break; |
| } |
| case CREQV: { |
| UnknownFormat(instr, "creqv"); |
| break; |
| } |
| case CRORC: { |
| UnknownFormat(instr, "crorc"); |
| break; |
| } |
| case CROR: { |
| UnknownFormat(instr, "cror"); |
| break; |
| } |
| default: { |
| Unknown(instr); // not used by V8 |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeExt2(Instruction* instr) { |
| // Some encodings are 10-1 bits, handle those first |
| switch (EXT2 | (instr->BitField(10, 1))) { |
| case SRWX: { |
| Format(instr, "srw'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SRDX: { |
| Format(instr, "srd'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #endif |
| case SRAW: { |
| Format(instr, "sraw'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SRAD: { |
| Format(instr, "srad'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #endif |
| case SYNC: { |
| Format(instr, "sync"); |
| return; |
| } |
| case MODSW: { |
| Format(instr, "modsw 'rt, 'ra, 'rb"); |
| return; |
| } |
| case MODUW: { |
| Format(instr, "moduw 'rt, 'ra, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case MODSD: { |
| Format(instr, "modsd 'rt, 'ra, 'rb"); |
| return; |
| } |
| case MODUD: { |
| Format(instr, "modud 'rt, 'ra, 'rb"); |
| return; |
| } |
| #endif |
| case SRAWIX: { |
| Format(instr, "srawi'. 'ra,'rs,'sh"); |
| return; |
| } |
| case EXTSH: { |
| Format(instr, "extsh'. 'ra, 'rs"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case EXTSW: { |
| Format(instr, "extsw'. 'ra, 'rs"); |
| return; |
| } |
| #endif |
| case EXTSB: { |
| Format(instr, "extsb'. 'ra, 'rs"); |
| return; |
| } |
| case LFSX: { |
| Format(instr, "lfsx 'Dt, 'ra, 'rb"); |
| return; |
| } |
| case LFSUX: { |
| Format(instr, "lfsux 'Dt, 'ra, 'rb"); |
| return; |
| } |
| case LFDX: { |
| Format(instr, "lfdx 'Dt, 'ra, 'rb"); |
| return; |
| } |
| case LFDUX: { |
| Format(instr, "lfdux 'Dt, 'ra, 'rb"); |
| return; |
| } |
| case STFSX: { |
| Format(instr, "stfsx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STFSUX: { |
| Format(instr, "stfsux 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STFDX: { |
| Format(instr, "stfdx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STFDUX: { |
| Format(instr, "stfdux 'rs, 'ra, 'rb"); |
| return; |
| } |
| case POPCNTW: { |
| Format(instr, "popcntw 'ra, 'rs"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case POPCNTD: { |
| Format(instr, "popcntd 'ra, 'rs"); |
| return; |
| } |
| #endif |
| } |
| |
| switch (EXT2 | (instr->BitField(10, 2))) { |
| case SRADIX: { |
| Format(instr, "sradi'. 'ra,'rs,'sh"); |
| return; |
| } |
| } |
| |
| switch (EXT2 | (instr->BitField(10, 0))) { |
| case STBCX: { |
| Format(instr, "stbcx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STHCX: { |
| Format(instr, "sthcx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STWCX: { |
| Format(instr, "stwcx 'rs, 'ra, 'rb"); |
| return; |
| } |
| } |
| |
| // ?? are all of these xo_form? |
| switch (EXT2 | (instr->BitField(9, 1))) { |
| case CMP: { |
| #if V8_TARGET_ARCH_PPC64 |
| if (instr->Bit(21)) { |
| #endif |
| Format(instr, "cmp 'ra, 'rb"); |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| Format(instr, "cmpw 'ra, 'rb"); |
| } |
| #endif |
| return; |
| } |
| case SLWX: { |
| Format(instr, "slw'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SLDX: { |
| Format(instr, "sld'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| #endif |
| case SUBFCX: { |
| Format(instr, "subfc'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case SUBFEX: { |
| Format(instr, "subfe'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case ADDCX: { |
| Format(instr, "addc'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case ADDEX: { |
| Format(instr, "adde'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case CNTLZWX: { |
| Format(instr, "cntlzw'. 'ra, 'rs"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case CNTLZDX: { |
| Format(instr, "cntlzd'. 'ra, 'rs"); |
| return; |
| } |
| #endif |
| case ANDX: { |
| Format(instr, "and'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| case ANDCX: { |
| Format(instr, "andc'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| case CMPL: { |
| #if V8_TARGET_ARCH_PPC64 |
| if (instr->Bit(21)) { |
| #endif |
| Format(instr, "cmpl 'ra, 'rb"); |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| Format(instr, "cmplw 'ra, 'rb"); |
| } |
| #endif |
| return; |
| } |
| case NEGX: { |
| Format(instr, "neg'. 'rt, 'ra"); |
| return; |
| } |
| case NORX: { |
| Format(instr, "nor'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case SUBFX: { |
| Format(instr, "subf'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case MULHWX: { |
| Format(instr, "mulhw'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case ADDZEX: { |
| Format(instr, "addze'. 'rt, 'ra"); |
| return; |
| } |
| case MULLW: { |
| Format(instr, "mullw'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case MULLD: { |
| Format(instr, "mulld'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| #endif |
| case DIVW: { |
| Format(instr, "divw'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| case DIVWU: { |
| Format(instr, "divwu'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case DIVD: { |
| Format(instr, "divd'o'. 'rt, 'ra, 'rb"); |
| return; |
| } |
| #endif |
| case ADDX: { |
| Format(instr, "add'o 'rt, 'ra, 'rb"); |
| return; |
| } |
| case XORX: { |
| Format(instr, "xor'. 'ra, 'rs, 'rb"); |
| return; |
| } |
| case ORX: { |
| if (instr->RTValue() == instr->RBValue()) { |
| Format(instr, "mr 'ra, 'rb"); |
| } else { |
| Format(instr, "or 'ra, 'rs, 'rb"); |
| } |
| return; |
| } |
| case MFSPR: { |
| int spr = instr->Bits(20, 11); |
| if (256 == spr) { |
| Format(instr, "mflr 'rt"); |
| } else { |
| Format(instr, "mfspr 'rt ??"); |
| } |
| return; |
| } |
| case MTSPR: { |
| int spr = instr->Bits(20, 11); |
| if (256 == spr) { |
| Format(instr, "mtlr 'rt"); |
| } else if (288 == spr) { |
| Format(instr, "mtctr 'rt"); |
| } else { |
| Format(instr, "mtspr 'rt ??"); |
| } |
| return; |
| } |
| case MFCR: { |
| Format(instr, "mfcr 'rt"); |
| return; |
| } |
| case STWX: { |
| Format(instr, "stwx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STWUX: { |
| Format(instr, "stwux 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STBX: { |
| Format(instr, "stbx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STBUX: { |
| Format(instr, "stbux 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STHX: { |
| Format(instr, "sthx 'rs, 'ra, 'rb"); |
| return; |
| } |
| case STHUX: { |
| Format(instr, "sthux 'rs, 'ra, 'rb"); |
| return; |
| } |
| case LWZX: { |
| Format(instr, "lwzx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LWZUX: { |
| Format(instr, "lwzux 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LWAX: { |
| Format(instr, "lwax 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LBZX: { |
| Format(instr, "lbzx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LBZUX: { |
| Format(instr, "lbzux 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LHZX: { |
| Format(instr, "lhzx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LHZUX: { |
| Format(instr, "lhzux 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LHAX: { |
| Format(instr, "lhax 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LBARX: { |
| Format(instr, "lbarx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LHARX: { |
| Format(instr, "lharx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LWARX: { |
| Format(instr, "lwarx 'rt, 'ra, 'rb"); |
| return; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case LDX: { |
| Format(instr, "ldx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case LDUX: { |
| Format(instr, "ldux 'rt, 'ra, 'rb"); |
| return; |
| } |
| case STDX: { |
| Format(instr, "stdx 'rt, 'ra, 'rb"); |
| return; |
| } |
| case STDUX: { |
| Format(instr, "stdux 'rt, 'ra, 'rb"); |
| return; |
| } |
| case MFVSRD: { |
| Format(instr, "mffprd 'ra, 'Dt"); |
| return; |
| } |
| case MFVSRWZ: { |
| Format(instr, "mffprwz 'ra, 'Dt"); |
| return; |
| } |
| case MTVSRD: { |
| Format(instr, "mtfprd 'Dt, 'ra"); |
| return; |
| } |
| case MTVSRWA: { |
| Format(instr, "mtfprwa 'Dt, 'ra"); |
| return; |
| } |
| case MTVSRWZ: { |
| Format(instr, "mtfprwz 'Dt, 'ra"); |
| return; |
| } |
| #endif |
| } |
| |
| switch (EXT2 | (instr->BitField(5, 1))) { |
| case ISEL: { |
| Format(instr, "isel 'rt, 'ra, 'rb"); |
| return; |
| } |
| default: { |
| Unknown(instr); // not used by V8 |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeExt3(Instruction* instr) { |
| switch (EXT3 | (instr->BitField(10, 1))) { |
| case FCFID: { |
| Format(instr, "fcfids'. 'Dt, 'Db"); |
| break; |
| } |
| case FCFIDU: { |
| Format(instr, "fcfidus'.'Dt, 'Db"); |
| break; |
| } |
| default: { |
| Unknown(instr); // not used by V8 |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeExt4(Instruction* instr) { |
| switch (EXT4 | (instr->BitField(5, 1))) { |
| case FDIV: { |
| Format(instr, "fdiv'. 'Dt, 'Da, 'Db"); |
| return; |
| } |
| case FSUB: { |
| Format(instr, "fsub'. 'Dt, 'Da, 'Db"); |
| return; |
| } |
| case FADD: { |
| Format(instr, "fadd'. 'Dt, 'Da, 'Db"); |
| return; |
| } |
| case FSQRT: { |
| Format(instr, "fsqrt'. 'Dt, 'Db"); |
| return; |
| } |
| case FSEL: { |
| Format(instr, "fsel'. 'Dt, 'Da, 'Dc, 'Db"); |
| return; |
| } |
| case FMUL: { |
| Format(instr, "fmul'. 'Dt, 'Da, 'Dc"); |
| return; |
| } |
| case FMSUB: { |
| Format(instr, "fmsub'. 'Dt, 'Da, 'Dc, 'Db"); |
| return; |
| } |
| case FMADD: { |
| Format(instr, "fmadd'. 'Dt, 'Da, 'Dc, 'Db"); |
| return; |
| } |
| } |
| |
| switch (EXT4 | (instr->BitField(10, 1))) { |
| case FCMPU: { |
| Format(instr, "fcmpu 'Da, 'Db"); |
| break; |
| } |
| case FRSP: { |
| Format(instr, "frsp'. 'Dt, 'Db"); |
| break; |
| } |
| case FCFID: { |
| Format(instr, "fcfid'. 'Dt, 'Db"); |
| break; |
| } |
| case FCFIDU: { |
| Format(instr, "fcfidu'. 'Dt, 'Db"); |
| break; |
| } |
| case FCTID: { |
| Format(instr, "fctid 'Dt, 'Db"); |
| break; |
| } |
| case FCTIDZ: { |
| Format(instr, "fctidz 'Dt, 'Db"); |
| break; |
| } |
| case FCTIDU: { |
| Format(instr, "fctidu 'Dt, 'Db"); |
| break; |
| } |
| case FCTIDUZ: { |
| Format(instr, "fctiduz 'Dt, 'Db"); |
| break; |
| } |
| case FCTIW: { |
| Format(instr, "fctiw'. 'Dt, 'Db"); |
| break; |
| } |
| case FCTIWZ: { |
| Format(instr, "fctiwz'. 'Dt, 'Db"); |
| break; |
| } |
| case FMR: { |
| Format(instr, "fmr'. 'Dt, 'Db"); |
| break; |
| } |
| case MTFSFI: { |
| Format(instr, "mtfsfi'. ?,?"); |
| break; |
| } |
| case MFFS: { |
| Format(instr, "mffs'. 'Dt"); |
| break; |
| } |
| case MTFSF: { |
| Format(instr, "mtfsf'. 'Db ?,?,?"); |
| break; |
| } |
| case FABS: { |
| Format(instr, "fabs'. 'Dt, 'Db"); |
| break; |
| } |
| case FRIN: { |
| Format(instr, "frin. 'Dt, 'Db"); |
| break; |
| } |
| case FRIZ: { |
| Format(instr, "friz. 'Dt, 'Db"); |
| break; |
| } |
| case FRIP: { |
| Format(instr, "frip. 'Dt, 'Db"); |
| break; |
| } |
| case FRIM: { |
| Format(instr, "frim. 'Dt, 'Db"); |
| break; |
| } |
| case FNEG: { |
| Format(instr, "fneg'. 'Dt, 'Db"); |
| break; |
| } |
| case MCRFS: { |
| Format(instr, "mcrfs ?,?"); |
| break; |
| } |
| case MTFSB0: { |
| Format(instr, "mtfsb0'. ?"); |
| break; |
| } |
| case MTFSB1: { |
| Format(instr, "mtfsb1'. ?"); |
| break; |
| } |
| default: { |
| Unknown(instr); // not used by V8 |
| } |
| } |
| } |
| |
| |
| void Decoder::DecodeExt5(Instruction* instr) { |
| switch (EXT5 | (instr->BitField(4, 2))) { |
| case RLDICL: { |
| Format(instr, "rldicl'. 'ra, 'rs, 'sh, 'mb"); |
| return; |
| } |
| case RLDICR: { |
| Format(instr, "rldicr'. 'ra, 'rs, 'sh, 'me"); |
| return; |
| } |
| case RLDIC: { |
| Format(instr, "rldic'. 'ra, 'rs, 'sh, 'mb"); |
| return; |
| } |
| case RLDIMI: { |
| Format(instr, "rldimi'. 'ra, 'rs, 'sh, 'mb"); |
| return; |
| } |
| } |
| switch (EXT5 | (instr->BitField(4, 1))) { |
| case RLDCL: { |
| Format(instr, "rldcl'. 'ra, 'rs, 'sb, 'mb"); |
| return; |
| } |
| } |
| Unknown(instr); // not used by V8 |
| } |
| |
| void Decoder::DecodeExt6(Instruction* instr) { |
| switch (EXT6 | (instr->BitField(10, 3))) { |
| #define DECODE_XX3_INSTRUCTIONS(name, opcode_name, opcode_value) \ |
| case opcode_name: { \ |
| Format(instr, #name" 'Dt, 'Da, 'Db"); \ |
| return; \ |
| } |
| PPC_XX3_OPCODE_LIST(DECODE_XX3_INSTRUCTIONS) |
| #undef DECODE_XX3_INSTRUCTIONS |
| } |
| switch (EXT6 | (instr->BitField(10, 2))) { |
| #define DECODE_XX2_INSTRUCTIONS(name, opcode_name, opcode_value) \ |
| case opcode_name: { \ |
| Format(instr, #name" 'Dt, 'Db"); \ |
| return; \ |
| } |
| PPC_XX2_OPCODE_LIST(DECODE_XX2_INSTRUCTIONS) |
| } |
| #undef DECODE_XX3_INSTRUCTIONS |
| Unknown(instr); // not used by V8 |
| } |
| |
| #undef VERIFIY |
| |
| // Disassemble the instruction at *instr_ptr into the output buffer. |
| int Decoder::InstructionDecode(byte* instr_ptr) { |
| Instruction* instr = Instruction::At(instr_ptr); |
| // Print raw instruction bytes. |
| out_buffer_pos_ += SNPrintF(out_buffer_ + out_buffer_pos_, "%08x ", |
| instr->InstructionBits()); |
| |
| if (ABI_USES_FUNCTION_DESCRIPTORS && instr->InstructionBits() == 0) { |
| // The first field will be identified as a jump table entry. We |
| // emit the rest of the structure as zero, so just skip past them. |
| Format(instr, "constant"); |
| return Instruction::kInstrSize; |
| } |
| |
| uint32_t opcode = instr->OpcodeValue() << 26; |
| switch (opcode) { |
| case TWI: { |
| PrintSoftwareInterrupt(instr->SvcValue()); |
| break; |
| } |
| case MULLI: { |
| UnknownFormat(instr, "mulli"); |
| break; |
| } |
| case SUBFIC: { |
| Format(instr, "subfic 'rt, 'ra, 'int16"); |
| break; |
| } |
| case CMPLI: { |
| #if V8_TARGET_ARCH_PPC64 |
| if (instr->Bit(21)) { |
| #endif |
| Format(instr, "cmpli 'ra, 'uint16"); |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| Format(instr, "cmplwi 'ra, 'uint16"); |
| } |
| #endif |
| break; |
| } |
| case CMPI: { |
| #if V8_TARGET_ARCH_PPC64 |
| if (instr->Bit(21)) { |
| #endif |
| Format(instr, "cmpi 'ra, 'int16"); |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| Format(instr, "cmpwi 'ra, 'int16"); |
| } |
| #endif |
| break; |
| } |
| case ADDIC: { |
| Format(instr, "addic 'rt, 'ra, 'int16"); |
| break; |
| } |
| case ADDICx: { |
| UnknownFormat(instr, "addicx"); |
| break; |
| } |
| case ADDI: { |
| if (instr->RAValue() == 0) { |
| // this is load immediate |
| Format(instr, "li 'rt, 'int16"); |
| } else { |
| Format(instr, "addi 'rt, 'ra, 'int16"); |
| } |
| break; |
| } |
| case ADDIS: { |
| if (instr->RAValue() == 0) { |
| Format(instr, "lis 'rt, 'int16"); |
| } else { |
| Format(instr, "addis 'rt, 'ra, 'int16"); |
| } |
| break; |
| } |
| case BCX: { |
| int bo = instr->Bits(25, 21) << 21; |
| int bi = instr->Bits(20, 16); |
| CRBit cond = static_cast<CRBit>(bi & (CRWIDTH - 1)); |
| switch (bo) { |
| case BT: { // Branch if condition true |
| switch (cond) { |
| case CR_EQ: |
| Format(instr, "beq'l'a'cr 'target16"); |
| break; |
| case CR_GT: |
| Format(instr, "bgt'l'a'cr 'target16"); |
| break; |
| case CR_LT: |
| Format(instr, "blt'l'a'cr 'target16"); |
| break; |
| case CR_SO: |
| Format(instr, "bso'l'a'cr 'target16"); |
| break; |
| } |
| break; |
| } |
| case BF: { // Branch if condition false |
| switch (cond) { |
| case CR_EQ: |
| Format(instr, "bne'l'a'cr 'target16"); |
| break; |
| case CR_GT: |
| Format(instr, "ble'l'a'cr 'target16"); |
| break; |
| case CR_LT: |
| Format(instr, "bge'l'a'cr 'target16"); |
| break; |
| case CR_SO: |
| Format(instr, "bnso'l'a'cr 'target16"); |
| break; |
| } |
| break; |
| } |
| case DCBNZ: { // Decrement CTR; branch if CTR != 0 |
| Format(instr, "bdnz'l'a 'target16"); |
| break; |
| } |
| default: |
| Format(instr, "bc'l'a'cr 'target16"); |
| break; |
| } |
| break; |
| } |
| case SC: { |
| UnknownFormat(instr, "sc"); |
| break; |
| } |
| case BX: { |
| Format(instr, "b'l'a 'target26"); |
| break; |
| } |
| case EXT1: { |
| DecodeExt1(instr); |
| break; |
| } |
| case RLWIMIX: { |
| Format(instr, "rlwimi'. 'ra, 'rs, 'sh, 'me, 'mb"); |
| break; |
| } |
| case RLWINMX: { |
| Format(instr, "rlwinm'. 'ra, 'rs, 'sh, 'me, 'mb"); |
| break; |
| } |
| case RLWNMX: { |
| Format(instr, "rlwnm'. 'ra, 'rs, 'rb, 'me, 'mb"); |
| break; |
| } |
| case ORI: { |
| Format(instr, "ori 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case ORIS: { |
| Format(instr, "oris 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case XORI: { |
| Format(instr, "xori 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case XORIS: { |
| Format(instr, "xoris 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case ANDIx: { |
| Format(instr, "andi. 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case ANDISx: { |
| Format(instr, "andis. 'ra, 'rs, 'uint16"); |
| break; |
| } |
| case EXT2: { |
| DecodeExt2(instr); |
| break; |
| } |
| case LWZ: { |
| Format(instr, "lwz 'rt, 'int16('ra)"); |
| break; |
| } |
| case LWZU: { |
| Format(instr, "lwzu 'rt, 'int16('ra)"); |
| break; |
| } |
| case LBZ: { |
| Format(instr, "lbz 'rt, 'int16('ra)"); |
| break; |
| } |
| case LBZU: { |
| Format(instr, "lbzu 'rt, 'int16('ra)"); |
| break; |
| } |
| case STW: { |
| Format(instr, "stw 'rs, 'int16('ra)"); |
| break; |
| } |
| case STWU: { |
| Format(instr, "stwu 'rs, 'int16('ra)"); |
| break; |
| } |
| case STB: { |
| Format(instr, "stb 'rs, 'int16('ra)"); |
| break; |
| } |
| case STBU: { |
| Format(instr, "stbu 'rs, 'int16('ra)"); |
| break; |
| } |
| case LHZ: { |
| Format(instr, "lhz 'rt, 'int16('ra)"); |
| break; |
| } |
| case LHZU: { |
| Format(instr, "lhzu 'rt, 'int16('ra)"); |
| break; |
| } |
| case LHA: { |
| Format(instr, "lha 'rt, 'int16('ra)"); |
| break; |
| } |
| case LHAU: { |
| Format(instr, "lhau 'rt, 'int16('ra)"); |
| break; |
| } |
| case STH: { |
| Format(instr, "sth 'rs, 'int16('ra)"); |
| break; |
| } |
| case STHU: { |
| Format(instr, "sthu 'rs, 'int16('ra)"); |
| break; |
| } |
| case LMW: { |
| UnknownFormat(instr, "lmw"); |
| break; |
| } |
| case STMW: { |
| UnknownFormat(instr, "stmw"); |
| break; |
| } |
| case LFS: { |
| Format(instr, "lfs 'Dt, 'int16('ra)"); |
| break; |
| } |
| case LFSU: { |
| Format(instr, "lfsu 'Dt, 'int16('ra)"); |
| break; |
| } |
| case LFD: { |
| Format(instr, "lfd 'Dt, 'int16('ra)"); |
| break; |
| } |
| case LFDU: { |
| Format(instr, "lfdu 'Dt, 'int16('ra)"); |
| break; |
| } |
| case STFS: { |
| Format(instr, "stfs 'Dt, 'int16('ra)"); |
| break; |
| } |
| case STFSU: { |
| Format(instr, "stfsu 'Dt, 'int16('ra)"); |
| break; |
| } |
| case STFD: { |
| Format(instr, "stfd 'Dt, 'int16('ra)"); |
| break; |
| } |
| case STFDU: { |
| Format(instr, "stfdu 'Dt, 'int16('ra)"); |
| break; |
| } |
| case EXT3: { |
| DecodeExt3(instr); |
| break; |
| } |
| case EXT4: { |
| DecodeExt4(instr); |
| break; |
| } |
| case EXT5: { |
| DecodeExt5(instr); |
| break; |
| } |
| case EXT6: { |
| DecodeExt6(instr); |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case LD: { |
| switch (instr->Bits(1, 0)) { |
| case 0: |
| Format(instr, "ld 'rt, 'd('ra)"); |
| break; |
| case 1: |
| Format(instr, "ldu 'rt, 'd('ra)"); |
| break; |
| case 2: |
| Format(instr, "lwa 'rt, 'd('ra)"); |
| break; |
| } |
| break; |
| } |
| case STD: { // could be STD or STDU |
| if (instr->Bit(0) == 0) { |
| Format(instr, "std 'rs, 'd('ra)"); |
| } else { |
| Format(instr, "stdu 'rs, 'd('ra)"); |
| } |
| break; |
| } |
| #endif |
| default: { |
| Unknown(instr); |
| break; |
| } |
| } |
| |
| return Instruction::kInstrSize; |
| } |
| } // namespace internal |
| } // namespace v8 |
| |
| |
| //------------------------------------------------------------------------------ |
| |
| namespace disasm { |
| |
| |
| const char* NameConverter::NameOfAddress(byte* addr) const { |
| v8::internal::SNPrintF(tmp_buffer_, "%p", static_cast<void*>(addr)); |
| return tmp_buffer_.start(); |
| } |
| |
| |
| const char* NameConverter::NameOfConstant(byte* addr) const { |
| return NameOfAddress(addr); |
| } |
| |
| |
| const char* NameConverter::NameOfCPURegister(int reg) const { |
| return v8::internal::GetRegConfig()->GetGeneralRegisterName(reg); |
| } |
| |
| const char* NameConverter::NameOfByteCPURegister(int reg) const { |
| UNREACHABLE(); // PPC does not have the concept of a byte register |
| return "nobytereg"; |
| } |
| |
| |
| const char* NameConverter::NameOfXMMRegister(int reg) const { |
| UNREACHABLE(); // PPC does not have any XMM registers |
| return "noxmmreg"; |
| } |
| |
| const char* NameConverter::NameInCode(byte* addr) const { |
| // The default name converter is called for unknown code. So we will not try |
| // to access any memory. |
| return ""; |
| } |
| |
| |
| //------------------------------------------------------------------------------ |
| |
| Disassembler::Disassembler(const NameConverter& converter) |
| : converter_(converter) {} |
| |
| |
| Disassembler::~Disassembler() {} |
| |
| |
| int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer, |
| byte* instruction) { |
| v8::internal::Decoder d(converter_, buffer); |
| return d.InstructionDecode(instruction); |
| } |
| |
| |
| // The PPC assembler does not currently use constant pools. |
| int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; } |
| |
| |
| void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { |
| NameConverter converter; |
| Disassembler d(converter); |
| for (byte* pc = begin; pc < end;) { |
| v8::internal::EmbeddedVector<char, 128> buffer; |
| buffer[0] = '\0'; |
| byte* prev_pc = pc; |
| pc += d.InstructionDecode(buffer, pc); |
| v8::internal::PrintF(f, "%p %08x %s\n", static_cast<void*>(prev_pc), |
| *reinterpret_cast<int32_t*>(prev_pc), buffer.start()); |
| } |
| } |
| |
| |
| } // namespace disasm |
| |
| #endif // V8_TARGET_ARCH_PPC |