| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <assert.h> // For assert |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #if V8_TARGET_ARCH_PPC |
| |
| #include "src/base/bits.h" |
| #include "src/base/division-by-constant.h" |
| #include "src/bootstrapper.h" |
| #include "src/callable.h" |
| #include "src/code-stubs.h" |
| #include "src/debug/debug.h" |
| #include "src/external-reference-table.h" |
| #include "src/frames-inl.h" |
| #include "src/register-configuration.h" |
| #include "src/runtime/runtime.h" |
| |
| #include "src/ppc/macro-assembler-ppc.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(Isolate* isolate, void* buffer, int size, |
| CodeObjectRequired create_code_object) |
| : TurboAssembler(isolate, buffer, size, create_code_object) {} |
| |
| TurboAssembler::TurboAssembler(Isolate* isolate, void* buffer, int buffer_size, |
| CodeObjectRequired create_code_object) |
| : Assembler(isolate, buffer, buffer_size), isolate_(isolate) { |
| if (create_code_object == CodeObjectRequired::kYes) { |
| code_object_ = |
| Handle<HeapObject>::New(isolate->heap()->undefined_value(), isolate); |
| } |
| } |
| |
| int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, |
| Register exclusion1, |
| Register exclusion2, |
| Register exclusion3) const { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| bytes += kNumCallerSavedDoubles * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPush(list); |
| bytes += NumRegs(list) * kPointerSize; |
| |
| if (fp_mode == kSaveFPRegs) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| bytes += kNumCallerSavedDoubles * kDoubleSize; |
| } |
| |
| return bytes; |
| } |
| |
| int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, |
| Register exclusion2, Register exclusion3) { |
| int bytes = 0; |
| if (fp_mode == kSaveFPRegs) { |
| MultiPopDoubles(kCallerSavedDoubles); |
| bytes += kNumCallerSavedDoubles * kDoubleSize; |
| } |
| |
| RegList exclusions = 0; |
| if (exclusion1 != no_reg) { |
| exclusions |= exclusion1.bit(); |
| if (exclusion2 != no_reg) { |
| exclusions |= exclusion2.bit(); |
| if (exclusion3 != no_reg) { |
| exclusions |= exclusion3.bit(); |
| } |
| } |
| } |
| |
| RegList list = kJSCallerSaved & ~exclusions; |
| MultiPop(list); |
| bytes += NumRegs(list) * kPointerSize; |
| |
| return bytes; |
| } |
| |
| void TurboAssembler::Jump(Register target) { |
| mtctr(target); |
| bctr(); |
| } |
| |
| void MacroAssembler::JumpToJSEntry(Register target) { |
| Move(ip, target); |
| Jump(ip); |
| } |
| |
| void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond, CRegister cr) { |
| Label skip; |
| |
| if (cond != al) b(NegateCondition(cond), &skip, cr); |
| |
| DCHECK(rmode == RelocInfo::CODE_TARGET || rmode == RelocInfo::RUNTIME_ENTRY); |
| |
| mov(ip, Operand(target, rmode)); |
| mtctr(ip); |
| bctr(); |
| |
| bind(&skip); |
| } |
| |
| void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, |
| CRegister cr) { |
| DCHECK(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(target), rmode, cond, cr); |
| } |
| |
| void TurboAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond, CRegister cr) { |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| // 'code' is always generated ppc code, never THUMB code |
| Jump(reinterpret_cast<intptr_t>(code.address()), rmode, cond, cr); |
| } |
| |
| int TurboAssembler::CallSize(Register target) { return 2 * kInstrSize; } |
| |
| void TurboAssembler::Call(Register target) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label start; |
| bind(&start); |
| |
| // branch via link register and set LK bit for return point |
| mtctr(target); |
| bctrl(); |
| |
| DCHECK_EQ(CallSize(target), SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| void MacroAssembler::CallJSEntry(Register target) { |
| DCHECK(target == ip); |
| Call(target); |
| } |
| |
| int TurboAssembler::CallSize(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| Operand mov_operand = Operand(reinterpret_cast<intptr_t>(target), rmode); |
| return (2 + instructions_required_for_mov(ip, mov_operand)) * kInstrSize; |
| } |
| |
| int MacroAssembler::CallSizeNotPredictableCodeSize(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond) { |
| return (2 + kMovInstructionsNoConstantPool) * kInstrSize; |
| } |
| |
| void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, |
| Condition cond) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| DCHECK(cond == al); |
| |
| #ifdef DEBUG |
| // Check the expected size before generating code to ensure we assume the same |
| // constant pool availability (e.g., whether constant pool is full or not). |
| int expected_size = CallSize(target, rmode, cond); |
| Label start; |
| bind(&start); |
| #endif |
| // This can likely be optimized to make use of bc() with 24bit relative |
| // |
| // RecordRelocInfo(x.rmode_, x.immediate); |
| // bc( BA, .... offset, LKset); |
| // |
| |
| mov(ip, Operand(reinterpret_cast<intptr_t>(target), rmode)); |
| mtctr(ip); |
| bctrl(); |
| |
| DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| int TurboAssembler::CallSize(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| return CallSize(code.address(), rmode, cond); |
| } |
| |
| void TurboAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| DCHECK(RelocInfo::IsCodeTarget(rmode)); |
| |
| Label start; |
| bind(&start); |
| |
| #ifdef DEBUG |
| // Check the expected size before generating code to ensure we assume the same |
| // constant pool availability (e.g., whether constant pool is full or not). |
| int expected_size = CallSize(code, rmode, cond); |
| #endif |
| |
| Call(code.address(), rmode, cond); |
| DCHECK_EQ(expected_size, SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| void TurboAssembler::Drop(int count) { |
| if (count > 0) { |
| Add(sp, sp, count * kPointerSize, r0); |
| } |
| } |
| |
| void TurboAssembler::Drop(Register count, Register scratch) { |
| ShiftLeftImm(scratch, count, Operand(kPointerSizeLog2)); |
| add(sp, sp, scratch); |
| } |
| |
| void TurboAssembler::Call(Label* target) { b(target, SetLK); } |
| |
| void TurboAssembler::Push(Handle<HeapObject> handle) { |
| mov(r0, Operand(handle)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Push(Smi* smi) { |
| mov(r0, Operand(smi)); |
| push(r0); |
| } |
| |
| void TurboAssembler::Move(Register dst, Handle<HeapObject> value) { |
| mov(dst, Operand(value)); |
| } |
| |
| void TurboAssembler::Move(Register dst, Register src, Condition cond) { |
| DCHECK(cond == al); |
| if (dst != src) { |
| mr(dst, src); |
| } |
| } |
| |
| void TurboAssembler::Move(DoubleRegister dst, DoubleRegister src) { |
| if (dst != src) { |
| fmr(dst, src); |
| } |
| } |
| |
| void TurboAssembler::MultiPush(RegList regs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(regs); |
| int16_t stack_offset = num_to_push * kPointerSize; |
| |
| subi(location, location, Operand(stack_offset)); |
| for (int16_t i = Register::kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kPointerSize; |
| StoreP(ToRegister(i), MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPop(RegList regs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < Register::kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| LoadP(ToRegister(i), MemOperand(location, stack_offset)); |
| stack_offset += kPointerSize; |
| } |
| } |
| addi(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::MultiPushDoubles(RegList dregs, Register location) { |
| int16_t num_to_push = base::bits::CountPopulation(dregs); |
| int16_t stack_offset = num_to_push * kDoubleSize; |
| |
| subi(location, location, Operand(stack_offset)); |
| for (int16_t i = DoubleRegister::kNumRegisters - 1; i >= 0; i--) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| stack_offset -= kDoubleSize; |
| stfd(dreg, MemOperand(location, stack_offset)); |
| } |
| } |
| } |
| |
| void TurboAssembler::MultiPopDoubles(RegList dregs, Register location) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| if ((dregs & (1 << i)) != 0) { |
| DoubleRegister dreg = DoubleRegister::from_code(i); |
| lfd(dreg, MemOperand(location, stack_offset)); |
| stack_offset += kDoubleSize; |
| } |
| } |
| addi(location, location, Operand(stack_offset)); |
| } |
| |
| void TurboAssembler::LoadRoot(Register destination, Heap::RootListIndex index, |
| Condition cond) { |
| DCHECK(cond == al); |
| LoadP(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), r0); |
| } |
| |
| void MacroAssembler::RecordWriteField(Register object, int offset, |
| Register value, Register dst, |
| LinkRegisterStatus lr_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| DCHECK(IsAligned(offset, kPointerSize)); |
| |
| Add(dst, object, offset - kHeapObjectTag, r0); |
| if (emit_debug_code()) { |
| Label ok; |
| andi(r0, dst, Operand(kPointerSize - 1)); |
| beq(&ok, cr0); |
| stop("Unaligned cell in write barrier"); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 4))); |
| mov(dst, Operand(bit_cast<intptr_t>(kZapValue + 8))); |
| } |
| } |
| |
| void TurboAssembler::SaveRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| |
| MultiPush(regs); |
| } |
| |
| void TurboAssembler::RestoreRegisters(RegList registers) { |
| DCHECK_GT(NumRegs(registers), 0); |
| RegList regs = 0; |
| for (int i = 0; i < Register::kNumRegisters; ++i) { |
| if ((registers >> i) & 1u) { |
| regs |= Register::from_code(i).bit(); |
| } |
| } |
| MultiPop(regs); |
| } |
| |
| void TurboAssembler::CallRecordWriteStub( |
| Register object, Register address, |
| RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { |
| // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, |
| // i.e. always emit remember set and save FP registers in RecordWriteStub. If |
| // large performance regression is observed, we should use these values to |
| // avoid unnecessary work. |
| |
| Callable const callable = |
| Builtins::CallableFor(isolate(), Builtins::kRecordWrite); |
| RegList registers = callable.descriptor().allocatable_registers(); |
| |
| SaveRegisters(registers); |
| |
| Register object_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kObject)); |
| Register slot_parameter( |
| callable.descriptor().GetRegisterParameter(RecordWriteDescriptor::kSlot)); |
| Register isolate_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kIsolate)); |
| Register remembered_set_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kRememberedSet)); |
| Register fp_mode_parameter(callable.descriptor().GetRegisterParameter( |
| RecordWriteDescriptor::kFPMode)); |
| |
| push(object); |
| push(address); |
| |
| pop(slot_parameter); |
| pop(object_parameter); |
| |
| mov(isolate_parameter, |
| Operand(ExternalReference::isolate_address(isolate()))); |
| Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); |
| Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); |
| Call(callable.code(), RelocInfo::CODE_TARGET); |
| |
| RestoreRegisters(registers); |
| } |
| |
| // Will clobber 4 registers: object, address, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, Register address, |
| Register value, LinkRegisterStatus lr_status, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| DCHECK(object != value); |
| if (emit_debug_code()) { |
| LoadP(r0, MemOperand(address)); |
| cmp(r0, value); |
| Check(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite); |
| } |
| |
| if (remembered_set_action == OMIT_REMEMBERED_SET && |
| !FLAG_incremental_marking) { |
| return; |
| } |
| |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of smis and stores into the young generation. |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); |
| |
| // Record the actual write. |
| if (lr_status == kLRHasNotBeenSaved) { |
| mflr(r0); |
| push(r0); |
| } |
| CallRecordWriteStub(object, address, remembered_set_action, fp_mode); |
| if (lr_status == kLRHasNotBeenSaved) { |
| pop(r0); |
| mtlr(r0); |
| } |
| |
| bind(&done); |
| |
| // Count number of write barriers in generated code. |
| isolate()->counters()->write_barriers_static()->Increment(); |
| IncrementCounter(isolate()->counters()->write_barriers_dynamic(), 1, ip, |
| value); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| mov(address, Operand(bit_cast<intptr_t>(kZapValue + 12))); |
| mov(value, Operand(bit_cast<intptr_t>(kZapValue + 16))); |
| } |
| } |
| |
| void TurboAssembler::PushCommonFrame(Register marker_reg) { |
| int fp_delta = 0; |
| mflr(r0); |
| if (FLAG_enable_embedded_constant_pool) { |
| if (marker_reg.is_valid()) { |
| Push(r0, fp, kConstantPoolRegister, marker_reg); |
| fp_delta = 2; |
| } else { |
| Push(r0, fp, kConstantPoolRegister); |
| fp_delta = 1; |
| } |
| } else { |
| if (marker_reg.is_valid()) { |
| Push(r0, fp, marker_reg); |
| fp_delta = 1; |
| } else { |
| Push(r0, fp); |
| fp_delta = 0; |
| } |
| } |
| addi(fp, sp, Operand(fp_delta * kPointerSize)); |
| } |
| |
| void TurboAssembler::PushStandardFrame(Register function_reg) { |
| int fp_delta = 0; |
| mflr(r0); |
| if (FLAG_enable_embedded_constant_pool) { |
| if (function_reg.is_valid()) { |
| Push(r0, fp, kConstantPoolRegister, cp, function_reg); |
| fp_delta = 3; |
| } else { |
| Push(r0, fp, kConstantPoolRegister, cp); |
| fp_delta = 2; |
| } |
| } else { |
| if (function_reg.is_valid()) { |
| Push(r0, fp, cp, function_reg); |
| fp_delta = 2; |
| } else { |
| Push(r0, fp, cp); |
| fp_delta = 1; |
| } |
| } |
| addi(fp, sp, Operand(fp_delta * kPointerSize)); |
| } |
| |
| void TurboAssembler::RestoreFrameStateForTailCall() { |
| if (FLAG_enable_embedded_constant_pool) { |
| LoadP(kConstantPoolRegister, |
| MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); |
| set_constant_pool_available(false); |
| } |
| LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| LoadP(fp, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| mtlr(r0); |
| } |
| |
| // Push and pop all registers that can hold pointers. |
| void MacroAssembler::PushSafepointRegisters() { |
| // Safepoints expect a block of kNumSafepointRegisters values on the |
| // stack, so adjust the stack for unsaved registers. |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| DCHECK_GE(num_unsaved, 0); |
| if (num_unsaved > 0) { |
| subi(sp, sp, Operand(num_unsaved * kPointerSize)); |
| } |
| MultiPush(kSafepointSavedRegisters); |
| } |
| |
| |
| void MacroAssembler::PopSafepointRegisters() { |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| MultiPop(kSafepointSavedRegisters); |
| if (num_unsaved > 0) { |
| addi(sp, sp, Operand(num_unsaved * kPointerSize)); |
| } |
| } |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the highest encoding, |
| // which means that lowest encodings are closest to the stack pointer. |
| RegList regs = kSafepointSavedRegisters; |
| int index = 0; |
| |
| DCHECK(reg_code >= 0 && reg_code < kNumRegisters); |
| |
| for (int16_t i = 0; i < reg_code; i++) { |
| if ((regs & (1 << i)) != 0) { |
| index++; |
| } |
| } |
| |
| return index; |
| } |
| |
| |
| void TurboAssembler::CanonicalizeNaN(const DoubleRegister dst, |
| const DoubleRegister src) { |
| // Turn potential sNaN into qNaN. |
| fsub(dst, src, kDoubleRegZero); |
| } |
| |
| void TurboAssembler::ConvertIntToDouble(Register src, DoubleRegister dst) { |
| MovIntToDouble(dst, src, r0); |
| fcfid(dst, dst); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToDouble(Register src, |
| DoubleRegister dst) { |
| MovUnsignedIntToDouble(dst, src, r0); |
| fcfid(dst, dst); |
| } |
| |
| void TurboAssembler::ConvertIntToFloat(Register src, DoubleRegister dst) { |
| MovIntToDouble(dst, src, r0); |
| fcfids(dst, dst); |
| } |
| |
| void TurboAssembler::ConvertUnsignedIntToFloat(Register src, |
| DoubleRegister dst) { |
| MovUnsignedIntToDouble(dst, src, r0); |
| fcfids(dst, dst); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void TurboAssembler::ConvertInt64ToDouble(Register src, |
| DoubleRegister double_dst) { |
| MovInt64ToDouble(double_dst, src); |
| fcfid(double_dst, double_dst); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToFloat(Register src, |
| DoubleRegister double_dst) { |
| MovInt64ToDouble(double_dst, src); |
| fcfidus(double_dst, double_dst); |
| } |
| |
| void TurboAssembler::ConvertUnsignedInt64ToDouble(Register src, |
| DoubleRegister double_dst) { |
| MovInt64ToDouble(double_dst, src); |
| fcfidu(double_dst, double_dst); |
| } |
| |
| void TurboAssembler::ConvertInt64ToFloat(Register src, |
| DoubleRegister double_dst) { |
| MovInt64ToDouble(double_dst, src); |
| fcfids(double_dst, double_dst); |
| } |
| #endif |
| |
| void TurboAssembler::ConvertDoubleToInt64(const DoubleRegister double_input, |
| #if !V8_TARGET_ARCH_PPC64 |
| const Register dst_hi, |
| #endif |
| const Register dst, |
| const DoubleRegister double_dst, |
| FPRoundingMode rounding_mode) { |
| if (rounding_mode == kRoundToZero) { |
| fctidz(double_dst, double_input); |
| } else { |
| SetRoundingMode(rounding_mode); |
| fctid(double_dst, double_input); |
| ResetRoundingMode(); |
| } |
| |
| MovDoubleToInt64( |
| #if !V8_TARGET_ARCH_PPC64 |
| dst_hi, |
| #endif |
| dst, double_dst); |
| } |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void TurboAssembler::ConvertDoubleToUnsignedInt64( |
| const DoubleRegister double_input, const Register dst, |
| const DoubleRegister double_dst, FPRoundingMode rounding_mode) { |
| if (rounding_mode == kRoundToZero) { |
| fctiduz(double_dst, double_input); |
| } else { |
| SetRoundingMode(rounding_mode); |
| fctidu(double_dst, double_input); |
| ResetRoundingMode(); |
| } |
| |
| MovDoubleToInt64(dst, double_dst); |
| } |
| #endif |
| |
| #if !V8_TARGET_ARCH_PPC64 |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_high, src_low)); |
| DCHECK(!AreAliased(dst_low, dst_high, shift)); |
| Label less_than_32; |
| Label done; |
| cmpi(shift, Operand(32)); |
| blt(&less_than_32); |
| // If shift >= 32 |
| andi(scratch, shift, Operand(0x1F)); |
| slw(dst_high, src_low, scratch); |
| li(dst_low, Operand::Zero()); |
| b(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| subfic(scratch, shift, Operand(32)); |
| slw(dst_high, src_high, shift); |
| srw(scratch, src_low, scratch); |
| orx(dst_high, dst_high, scratch); |
| slw(dst_low, src_low, shift); |
| bind(&done); |
| } |
| |
| void TurboAssembler::ShiftLeftPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_high, src_low)); |
| if (shift == 32) { |
| Move(dst_high, src_low); |
| li(dst_low, Operand::Zero()); |
| } else if (shift > 32) { |
| shift &= 0x1F; |
| slwi(dst_high, src_low, Operand(shift)); |
| li(dst_low, Operand::Zero()); |
| } else if (shift == 0) { |
| Move(dst_low, src_low); |
| Move(dst_high, src_high); |
| } else { |
| slwi(dst_high, src_high, Operand(shift)); |
| rlwimi(dst_high, src_low, shift, 32 - shift, 31); |
| slwi(dst_low, src_low, Operand(shift)); |
| } |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_high, src_low)); |
| DCHECK(!AreAliased(dst_low, dst_high, shift)); |
| Label less_than_32; |
| Label done; |
| cmpi(shift, Operand(32)); |
| blt(&less_than_32); |
| // If shift >= 32 |
| andi(scratch, shift, Operand(0x1F)); |
| srw(dst_low, src_high, scratch); |
| li(dst_high, Operand::Zero()); |
| b(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| subfic(scratch, shift, Operand(32)); |
| srw(dst_low, src_low, shift); |
| slw(scratch, src_high, scratch); |
| orx(dst_low, dst_low, scratch); |
| srw(dst_high, src_high, shift); |
| bind(&done); |
| } |
| |
| void TurboAssembler::ShiftRightPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_high, src_low)); |
| if (shift == 32) { |
| Move(dst_low, src_high); |
| li(dst_high, Operand::Zero()); |
| } else if (shift > 32) { |
| shift &= 0x1F; |
| srwi(dst_low, src_high, Operand(shift)); |
| li(dst_high, Operand::Zero()); |
| } else if (shift == 0) { |
| Move(dst_low, src_low); |
| Move(dst_high, src_high); |
| } else { |
| srwi(dst_low, src_low, Operand(shift)); |
| rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1); |
| srwi(dst_high, src_high, Operand(shift)); |
| } |
| } |
| |
| void TurboAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| Register scratch, Register shift) { |
| DCHECK(!AreAliased(dst_low, src_high, shift)); |
| DCHECK(!AreAliased(dst_high, src_low, shift)); |
| Label less_than_32; |
| Label done; |
| cmpi(shift, Operand(32)); |
| blt(&less_than_32); |
| // If shift >= 32 |
| andi(scratch, shift, Operand(0x1F)); |
| sraw(dst_low, src_high, scratch); |
| srawi(dst_high, src_high, 31); |
| b(&done); |
| bind(&less_than_32); |
| // If shift < 32 |
| subfic(scratch, shift, Operand(32)); |
| srw(dst_low, src_low, shift); |
| slw(scratch, src_high, scratch); |
| orx(dst_low, dst_low, scratch); |
| sraw(dst_high, src_high, shift); |
| bind(&done); |
| } |
| |
| void TurboAssembler::ShiftRightAlgPair(Register dst_low, Register dst_high, |
| Register src_low, Register src_high, |
| uint32_t shift) { |
| DCHECK(!AreAliased(dst_low, src_high)); |
| DCHECK(!AreAliased(dst_high, src_low)); |
| if (shift == 32) { |
| Move(dst_low, src_high); |
| srawi(dst_high, src_high, 31); |
| } else if (shift > 32) { |
| shift &= 0x1F; |
| srawi(dst_low, src_high, shift); |
| srawi(dst_high, src_high, 31); |
| } else if (shift == 0) { |
| Move(dst_low, src_low); |
| Move(dst_high, src_high); |
| } else { |
| srwi(dst_low, src_low, Operand(shift)); |
| rlwimi(dst_low, src_high, 32 - shift, 0, shift - 1); |
| srawi(dst_high, src_high, shift); |
| } |
| } |
| #endif |
| |
| void MacroAssembler::LoadConstantPoolPointerRegisterFromCodeTargetAddress( |
| Register code_target_address) { |
| lwz(kConstantPoolRegister, |
| MemOperand(code_target_address, |
| Code::kConstantPoolOffset - Code::kHeaderSize)); |
| add(kConstantPoolRegister, kConstantPoolRegister, code_target_address); |
| } |
| |
| void TurboAssembler::LoadConstantPoolPointerRegister(Register base, |
| int code_start_delta) { |
| add_label_offset(kConstantPoolRegister, base, ConstantPoolPosition(), |
| code_start_delta); |
| } |
| |
| void TurboAssembler::LoadConstantPoolPointerRegister() { |
| mov_label_addr(kConstantPoolRegister, ConstantPoolPosition()); |
| } |
| |
| void TurboAssembler::StubPrologue(StackFrame::Type type, Register base, |
| int prologue_offset) { |
| { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| mov(r11, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(r11); |
| } |
| if (FLAG_enable_embedded_constant_pool) { |
| if (base != no_reg) { |
| // base contains prologue address |
| LoadConstantPoolPointerRegister(base, -prologue_offset); |
| } else { |
| LoadConstantPoolPointerRegister(); |
| } |
| set_constant_pool_available(true); |
| } |
| } |
| |
| void TurboAssembler::Prologue(Register base, int prologue_offset) { |
| DCHECK(base != no_reg); |
| PushStandardFrame(r4); |
| if (FLAG_enable_embedded_constant_pool) { |
| // base contains prologue address |
| LoadConstantPoolPointerRegister(base, -prologue_offset); |
| set_constant_pool_available(true); |
| } |
| } |
| |
| void TurboAssembler::EnterFrame(StackFrame::Type type, |
| bool load_constant_pool_pointer_reg) { |
| if (FLAG_enable_embedded_constant_pool && load_constant_pool_pointer_reg) { |
| // Push type explicitly so we can leverage the constant pool. |
| // This path cannot rely on ip containing code entry. |
| PushCommonFrame(); |
| LoadConstantPoolPointerRegister(); |
| mov(ip, Operand(StackFrame::TypeToMarker(type))); |
| push(ip); |
| } else { |
| mov(ip, Operand(StackFrame::TypeToMarker(type))); |
| PushCommonFrame(ip); |
| } |
| if (type == StackFrame::INTERNAL) { |
| mov(r0, Operand(CodeObject())); |
| push(r0); |
| } |
| } |
| |
| int TurboAssembler::LeaveFrame(StackFrame::Type type, int stack_adjustment) { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| // r3: preserved |
| // r4: preserved |
| // r5: preserved |
| |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller's state. |
| int frame_ends; |
| LoadP(r0, MemOperand(fp, StandardFrameConstants::kCallerPCOffset)); |
| LoadP(ip, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
| if (FLAG_enable_embedded_constant_pool) { |
| LoadP(kConstantPoolRegister, |
| MemOperand(fp, StandardFrameConstants::kConstantPoolOffset)); |
| } |
| mtlr(r0); |
| frame_ends = pc_offset(); |
| Add(sp, fp, StandardFrameConstants::kCallerSPOffset + stack_adjustment, r0); |
| mr(fp, ip); |
| return frame_ends; |
| } |
| |
| // ExitFrame layout (probably wrongish.. needs updating) |
| // |
| // SP -> previousSP |
| // LK reserved |
| // code |
| // sp_on_exit (for debug?) |
| // oldSP->prev SP |
| // LK |
| // <parameters on stack> |
| |
| // Prior to calling EnterExitFrame, we've got a bunch of parameters |
| // on the stack that we need to wrap a real frame around.. so first |
| // we reserve a slot for LK and push the previous SP which is captured |
| // in the fp register (r31) |
| // Then - we buy a new frame |
| |
| void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, |
| StackFrame::Type frame_type) { |
| DCHECK(frame_type == StackFrame::EXIT || |
| frame_type == StackFrame::BUILTIN_EXIT); |
| // Set up the frame structure on the stack. |
| DCHECK_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); |
| DCHECK_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); |
| DCHECK_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); |
| DCHECK_GT(stack_space, 0); |
| |
| // This is an opportunity to build a frame to wrap |
| // all of the pushes that have happened inside of V8 |
| // since we were called from C code |
| |
| mov(ip, Operand(StackFrame::TypeToMarker(frame_type))); |
| PushCommonFrame(ip); |
| // Reserve room for saved entry sp and code object. |
| subi(sp, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp)); |
| |
| if (emit_debug_code()) { |
| li(r8, Operand::Zero()); |
| StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| if (FLAG_enable_embedded_constant_pool) { |
| StoreP(kConstantPoolRegister, |
| MemOperand(fp, ExitFrameConstants::kConstantPoolOffset)); |
| } |
| mov(r8, Operand(CodeObject())); |
| StoreP(r8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); |
| |
| // Save the frame pointer and the context in top. |
| mov(r8, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate()))); |
| StoreP(fp, MemOperand(r8)); |
| mov(r8, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| StoreP(cp, MemOperand(r8)); |
| |
| // Optionally save all volatile double registers. |
| if (save_doubles) { |
| MultiPushDoubles(kCallerSavedDoubles); |
| // Note that d0 will be accessible at |
| // fp - ExitFrameConstants::kFrameSize - |
| // kNumCallerSavedDoubles * kDoubleSize, |
| // since the sp slot and code slot were pushed after the fp. |
| } |
| |
| addi(sp, sp, Operand(-stack_space * kPointerSize)); |
| |
| // Allocate and align the frame preparing for calling the runtime |
| // function. |
| const int frame_alignment = ActivationFrameAlignment(); |
| if (frame_alignment > kPointerSize) { |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
| } |
| li(r0, Operand::Zero()); |
| StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); |
| |
| // Set the exit frame sp value to point just before the return address |
| // location. |
| addi(r8, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
| StoreP(r8, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| int TurboAssembler::ActivationFrameAlignment() { |
| #if !defined(USE_SIMULATOR) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one PPC |
| // platform for another PPC platform with a different alignment. |
| return base::OS::ActivationFrameAlignment(); |
| #else // Simulated |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, |
| bool argument_count_is_length) { |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| // Optionally restore all double registers. |
| if (save_doubles) { |
| // Calculate the stack location of the saved doubles and restore them. |
| const int kNumRegs = kNumCallerSavedDoubles; |
| const int offset = |
| (ExitFrameConstants::kFixedFrameSizeFromFp + kNumRegs * kDoubleSize); |
| addi(r6, fp, Operand(-offset)); |
| MultiPopDoubles(kCallerSavedDoubles, r6); |
| } |
| |
| // Clear top frame. |
| li(r6, Operand::Zero()); |
| mov(ip, Operand(ExternalReference(IsolateAddressId::kCEntryFPAddress, |
| isolate()))); |
| StoreP(r6, MemOperand(ip)); |
| |
| // Restore current context from top and clear it in debug mode. |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| LoadP(cp, MemOperand(ip)); |
| |
| #ifdef DEBUG |
| mov(r6, Operand(Context::kInvalidContext)); |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kContextAddress, isolate()))); |
| StoreP(r6, MemOperand(ip)); |
| #endif |
| |
| // Tear down the exit frame, pop the arguments, and return. |
| LeaveFrame(StackFrame::EXIT); |
| |
| if (argument_count.is_valid()) { |
| if (!argument_count_is_length) { |
| ShiftLeftImm(argument_count, argument_count, Operand(kPointerSizeLog2)); |
| } |
| add(sp, sp, argument_count); |
| } |
| } |
| |
| void TurboAssembler::MovFromFloatResult(const DoubleRegister dst) { |
| Move(dst, d1); |
| } |
| |
| void TurboAssembler::MovFromFloatParameter(const DoubleRegister dst) { |
| Move(dst, d1); |
| } |
| |
| void TurboAssembler::PrepareForTailCall(const ParameterCount& callee_args_count, |
| Register caller_args_count_reg, |
| Register scratch0, Register scratch1) { |
| #if DEBUG |
| if (callee_args_count.is_reg()) { |
| DCHECK(!AreAliased(callee_args_count.reg(), caller_args_count_reg, scratch0, |
| scratch1)); |
| } else { |
| DCHECK(!AreAliased(caller_args_count_reg, scratch0, scratch1)); |
| } |
| #endif |
| |
| // Calculate the end of destination area where we will put the arguments |
| // after we drop current frame. We add kPointerSize to count the receiver |
| // argument which is not included into formal parameters count. |
| Register dst_reg = scratch0; |
| ShiftLeftImm(dst_reg, caller_args_count_reg, Operand(kPointerSizeLog2)); |
| add(dst_reg, fp, dst_reg); |
| addi(dst_reg, dst_reg, |
| Operand(StandardFrameConstants::kCallerSPOffset + kPointerSize)); |
| |
| Register src_reg = caller_args_count_reg; |
| // Calculate the end of source area. +kPointerSize is for the receiver. |
| if (callee_args_count.is_reg()) { |
| ShiftLeftImm(src_reg, callee_args_count.reg(), Operand(kPointerSizeLog2)); |
| add(src_reg, sp, src_reg); |
| addi(src_reg, src_reg, Operand(kPointerSize)); |
| } else { |
| Add(src_reg, sp, (callee_args_count.immediate() + 1) * kPointerSize, r0); |
| } |
| |
| if (FLAG_debug_code) { |
| cmpl(src_reg, dst_reg); |
| Check(lt, AbortReason::kStackAccessBelowStackPointer); |
| } |
| |
| // Restore caller's frame pointer and return address now as they will be |
| // overwritten by the copying loop. |
| RestoreFrameStateForTailCall(); |
| |
| // Now copy callee arguments to the caller frame going backwards to avoid |
| // callee arguments corruption (source and destination areas could overlap). |
| |
| // Both src_reg and dst_reg are pointing to the word after the one to copy, |
| // so they must be pre-decremented in the loop. |
| Register tmp_reg = scratch1; |
| Label loop; |
| if (callee_args_count.is_reg()) { |
| addi(tmp_reg, callee_args_count.reg(), Operand(1)); // +1 for receiver |
| } else { |
| mov(tmp_reg, Operand(callee_args_count.immediate() + 1)); |
| } |
| mtctr(tmp_reg); |
| bind(&loop); |
| LoadPU(tmp_reg, MemOperand(src_reg, -kPointerSize)); |
| StorePU(tmp_reg, MemOperand(dst_reg, -kPointerSize)); |
| bdnz(&loop); |
| |
| // Leave current frame. |
| mr(sp, dst_reg); |
| } |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r3: actual arguments count |
| // r4: function (passed through to callee) |
| // r5: expected arguments count |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| |
| // ARM has some sanity checks as per below, considering add them for PPC |
| // DCHECK(actual.is_immediate() || actual.reg() == r3); |
| // DCHECK(expected.is_immediate() || expected.reg() == r5); |
| |
| if (expected.is_immediate()) { |
| DCHECK(actual.is_immediate()); |
| mov(r3, Operand(actual.immediate())); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| mov(r5, Operand(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| mov(r3, Operand(actual.immediate())); |
| cmpi(expected.reg(), Operand(actual.immediate())); |
| beq(®ular_invoke); |
| } else { |
| cmp(expected.reg(), actual.reg()); |
| beq(®ular_invoke); |
| } |
| } |
| |
| if (!definitely_matches) { |
| Handle<Code> adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor); |
| if (!*definitely_mismatches) { |
| b(done); |
| } |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| void MacroAssembler::CheckDebugHook(Register fun, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual) { |
| Label skip_hook; |
| ExternalReference debug_hook_avtive = |
| ExternalReference::debug_hook_on_function_call_address(isolate()); |
| mov(r7, Operand(debug_hook_avtive)); |
| LoadByte(r7, MemOperand(r7), r0); |
| extsb(r7, r7); |
| CmpSmiLiteral(r7, Smi::kZero, r0); |
| beq(&skip_hook); |
| { |
| FrameScope frame(this, |
| has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); |
| if (expected.is_reg()) { |
| SmiTag(expected.reg()); |
| Push(expected.reg()); |
| } |
| if (actual.is_reg()) { |
| SmiTag(actual.reg()); |
| Push(actual.reg()); |
| } |
| if (new_target.is_valid()) { |
| Push(new_target); |
| } |
| Push(fun, fun); |
| CallRuntime(Runtime::kDebugOnFunctionCall); |
| Pop(fun); |
| if (new_target.is_valid()) { |
| Pop(new_target); |
| } |
| if (actual.is_reg()) { |
| Pop(actual.reg()); |
| SmiUntag(actual.reg()); |
| } |
| if (expected.is_reg()) { |
| Pop(expected.reg()); |
| SmiUntag(expected.reg()); |
| } |
| } |
| bind(&skip_hook); |
| } |
| |
| void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| DCHECK(function == r4); |
| DCHECK_IMPLIES(new_target.is_valid(), new_target == r6); |
| |
| // On function call, call into the debugger if necessary. |
| CheckDebugHook(function, new_target, expected, actual); |
| |
| // Clear the new.target register if not given. |
| if (!new_target.is_valid()) { |
| LoadRoot(r6, Heap::kUndefinedValueRootIndex); |
| } |
| |
| Label done; |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, &done, &definitely_mismatches, flag); |
| if (!definitely_mismatches) { |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| Register code = ip; |
| LoadP(code, FieldMemOperand(function, JSFunction::kCodeOffset)); |
| addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| if (flag == CALL_FUNCTION) { |
| CallJSEntry(code); |
| } else { |
| DCHECK(flag == JUMP_FUNCTION); |
| JumpToJSEntry(code); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| } |
| |
| void MacroAssembler::InvokeFunction(Register fun, Register new_target, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r4. |
| DCHECK(fun == r4); |
| |
| Register expected_reg = r5; |
| Register temp_reg = r7; |
| |
| LoadP(temp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
| LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| LoadWordArith(expected_reg, |
| FieldMemOperand( |
| temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeFunctionCode(fun, new_target, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // You can't call a function without a valid frame. |
| DCHECK(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in r4. |
| DCHECK(function == r4); |
| |
| // Get the function and setup the context. |
| LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); |
| |
| InvokeFunctionCode(r4, no_reg, expected, actual, flag); |
| } |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Move(r4, function); |
| InvokeFunction(r4, expected, actual, flag); |
| } |
| |
| void MacroAssembler::MaybeDropFrames() { |
| // Check whether we need to drop frames to restart a function on the stack. |
| ExternalReference restart_fp = |
| ExternalReference::debug_restart_fp_address(isolate()); |
| mov(r4, Operand(restart_fp)); |
| LoadP(r4, MemOperand(r4)); |
| cmpi(r4, Operand::Zero()); |
| Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET, |
| ne); |
| } |
| |
| void MacroAssembler::PushStackHandler() { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| |
| Push(Smi::kZero); // Padding. |
| |
| // Link the current handler as the next handler. |
| // Preserve r3-r7. |
| mov(r8, |
| Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate()))); |
| LoadP(r0, MemOperand(r8)); |
| push(r0); |
| |
| // Set this new handler as the current one. |
| StoreP(sp, MemOperand(r8)); |
| } |
| |
| |
| void MacroAssembler::PopStackHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| |
| pop(r4); |
| mov(ip, |
| Operand(ExternalReference(IsolateAddressId::kHandlerAddress, isolate()))); |
| StoreP(r4, MemOperand(ip)); |
| |
| Drop(1); // Drop padding. |
| } |
| |
| |
| void MacroAssembler::CompareObjectType(Register object, Register map, |
| Register type_reg, InstanceType type) { |
| const Register temp = type_reg == no_reg ? r0 : type_reg; |
| |
| LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareInstanceType(map, temp, type); |
| } |
| |
| |
| void MacroAssembler::CompareInstanceType(Register map, Register type_reg, |
| InstanceType type) { |
| STATIC_ASSERT(Map::kInstanceTypeOffset < 4096); |
| STATIC_ASSERT(LAST_TYPE <= 0xFFFF); |
| lhz(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| cmpi(type_reg, Operand(type)); |
| } |
| |
| |
| void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { |
| DCHECK(obj != r0); |
| LoadRoot(r0, index); |
| cmp(obj, r0); |
| } |
| |
| void TurboAssembler::AddAndCheckForOverflow(Register dst, Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch) { |
| DCHECK(dst != overflow_dst); |
| DCHECK(dst != scratch); |
| DCHECK(overflow_dst != scratch); |
| DCHECK(overflow_dst != left); |
| DCHECK(overflow_dst != right); |
| |
| bool left_is_right = left == right; |
| RCBit xorRC = left_is_right ? SetRC : LeaveRC; |
| |
| // C = A+B; C overflows if A/B have same sign and C has diff sign than A |
| if (dst == left) { |
| mr(scratch, left); // Preserve left. |
| add(dst, left, right); // Left is overwritten. |
| xor_(overflow_dst, dst, scratch, xorRC); // Original left. |
| if (!left_is_right) xor_(scratch, dst, right); |
| } else if (dst == right) { |
| mr(scratch, right); // Preserve right. |
| add(dst, left, right); // Right is overwritten. |
| xor_(overflow_dst, dst, left, xorRC); |
| if (!left_is_right) xor_(scratch, dst, scratch); // Original right. |
| } else { |
| add(dst, left, right); |
| xor_(overflow_dst, dst, left, xorRC); |
| if (!left_is_right) xor_(scratch, dst, right); |
| } |
| if (!left_is_right) and_(overflow_dst, scratch, overflow_dst, SetRC); |
| } |
| |
| void TurboAssembler::AddAndCheckForOverflow(Register dst, Register left, |
| intptr_t right, |
| Register overflow_dst, |
| Register scratch) { |
| Register original_left = left; |
| DCHECK(dst != overflow_dst); |
| DCHECK(dst != scratch); |
| DCHECK(overflow_dst != scratch); |
| DCHECK(overflow_dst != left); |
| |
| // C = A+B; C overflows if A/B have same sign and C has diff sign than A |
| if (dst == left) { |
| // Preserve left. |
| original_left = overflow_dst; |
| mr(original_left, left); |
| } |
| Add(dst, left, right, scratch); |
| xor_(overflow_dst, dst, original_left); |
| if (right >= 0) { |
| and_(overflow_dst, overflow_dst, dst, SetRC); |
| } else { |
| andc(overflow_dst, overflow_dst, dst, SetRC); |
| } |
| } |
| |
| void TurboAssembler::SubAndCheckForOverflow(Register dst, Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch) { |
| DCHECK(dst != overflow_dst); |
| DCHECK(dst != scratch); |
| DCHECK(overflow_dst != scratch); |
| DCHECK(overflow_dst != left); |
| DCHECK(overflow_dst != right); |
| |
| // C = A-B; C overflows if A/B have diff signs and C has diff sign than A |
| if (dst == left) { |
| mr(scratch, left); // Preserve left. |
| sub(dst, left, right); // Left is overwritten. |
| xor_(overflow_dst, dst, scratch); |
| xor_(scratch, scratch, right); |
| and_(overflow_dst, overflow_dst, scratch, SetRC); |
| } else if (dst == right) { |
| mr(scratch, right); // Preserve right. |
| sub(dst, left, right); // Right is overwritten. |
| xor_(overflow_dst, dst, left); |
| xor_(scratch, left, scratch); |
| and_(overflow_dst, overflow_dst, scratch, SetRC); |
| } else { |
| sub(dst, left, right); |
| xor_(overflow_dst, dst, left); |
| xor_(scratch, left, right); |
| and_(overflow_dst, scratch, overflow_dst, SetRC); |
| } |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { |
| DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| void TurboAssembler::CallStubDelayed(CodeStub* stub) { |
| DCHECK(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| |
| // Block constant pool for the call instruction sequence. |
| ConstantPoolUnavailableScope constant_pool_unavailable(this); |
| |
| mov(ip, Operand::EmbeddedCode(stub)); |
| mtctr(ip); |
| bctrl(); |
| } |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| bool TurboAssembler::AllowThisStubCall(CodeStub* stub) { |
| return has_frame_ || !stub->SometimesSetsUpAFrame(); |
| } |
| |
| void MacroAssembler::TryDoubleToInt32Exact(Register result, |
| DoubleRegister double_input, |
| Register scratch, |
| DoubleRegister double_scratch) { |
| Label done; |
| DCHECK(double_input != double_scratch); |
| |
| ConvertDoubleToInt64(double_input, |
| #if !V8_TARGET_ARCH_PPC64 |
| scratch, |
| #endif |
| result, double_scratch); |
| |
| #if V8_TARGET_ARCH_PPC64 |
| TestIfInt32(result, r0); |
| #else |
| TestIfInt32(scratch, result, r0); |
| #endif |
| bne(&done); |
| |
| // convert back and compare |
| fcfid(double_scratch, double_scratch); |
| fcmpu(double_scratch, double_input); |
| bind(&done); |
| } |
| |
| void TurboAssembler::TruncateDoubleToIDelayed(Zone* zone, Register result, |
| DoubleRegister double_input) { |
| Label done; |
| |
| TryInlineTruncateDoubleToI(result, double_input, &done); |
| |
| // If we fell through then inline version didn't succeed - call stub instead. |
| mflr(r0); |
| push(r0); |
| // Put input on stack. |
| stfdu(double_input, MemOperand(sp, -kDoubleSize)); |
| |
| CallStubDelayed(new (zone) DoubleToIStub(nullptr, result)); |
| |
| addi(sp, sp, Operand(kDoubleSize)); |
| pop(r0); |
| mtlr(r0); |
| |
| bind(&done); |
| } |
| |
| void TurboAssembler::TryInlineTruncateDoubleToI(Register result, |
| DoubleRegister double_input, |
| Label* done) { |
| DoubleRegister double_scratch = kScratchDoubleReg; |
| #if !V8_TARGET_ARCH_PPC64 |
| Register scratch = ip; |
| #endif |
| |
| ConvertDoubleToInt64(double_input, |
| #if !V8_TARGET_ARCH_PPC64 |
| scratch, |
| #endif |
| result, double_scratch); |
| |
| // Test for overflow |
| #if V8_TARGET_ARCH_PPC64 |
| TestIfInt32(result, r0); |
| #else |
| TestIfInt32(scratch, result, r0); |
| #endif |
| beq(done); |
| } |
| |
| void TurboAssembler::CallRuntimeDelayed(Zone* zone, Runtime::FunctionId fid, |
| SaveFPRegsMode save_doubles) { |
| const Runtime::Function* f = Runtime::FunctionForId(fid); |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r3, Operand(f->nargs)); |
| mov(r4, Operand(ExternalReference(f, isolate()))); |
| CallStubDelayed(new (zone) CEntryStub(nullptr, |
| #if V8_TARGET_ARCH_PPC64 |
| f->result_size, |
| #else |
| 1, |
| #endif |
| save_doubles)); |
| } |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, |
| SaveFPRegsMode save_doubles) { |
| // All parameters are on the stack. r3 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| CHECK(f->nargs < 0 || f->nargs == num_arguments); |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r3, Operand(num_arguments)); |
| mov(r4, Operand(ExternalReference(f, isolate()))); |
| CEntryStub stub(isolate(), |
| #if V8_TARGET_ARCH_PPC64 |
| f->result_size, |
| #else |
| 1, |
| #endif |
| save_doubles); |
| CallStub(&stub); |
| } |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { |
| const Runtime::Function* function = Runtime::FunctionForId(fid); |
| DCHECK_EQ(1, function->result_size); |
| if (function->nargs >= 0) { |
| mov(r3, Operand(function->nargs)); |
| } |
| JumpToExternalReference(ExternalReference(fid, isolate())); |
| } |
| |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, |
| bool builtin_exit_frame) { |
| mov(r4, Operand(builtin)); |
| CEntryStub stub(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, |
| builtin_exit_frame); |
| Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| lwz(scratch1, MemOperand(scratch2)); |
| addi(scratch1, scratch1, Operand(value)); |
| stw(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| DCHECK_GT(value, 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| lwz(scratch1, MemOperand(scratch2)); |
| subi(scratch1, scratch1, Operand(value)); |
| stw(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| void TurboAssembler::Assert(Condition cond, AbortReason reason, |
| CRegister cr) { |
| if (emit_debug_code()) Check(cond, reason, cr); |
| } |
| |
| void TurboAssembler::Check(Condition cond, AbortReason reason, CRegister cr) { |
| Label L; |
| b(cond, &L, cr); |
| Abort(reason); |
| // will not return here |
| bind(&L); |
| } |
| |
| void TurboAssembler::Abort(AbortReason reason) { |
| Label abort_start; |
| bind(&abort_start); |
| #ifdef DEBUG |
| const char* msg = GetBailoutReason(reason); |
| if (msg != nullptr) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| |
| if (FLAG_trap_on_abort) { |
| stop(msg); |
| return; |
| } |
| #endif |
| |
| LoadSmiLiteral(r4, Smi::FromInt(static_cast<int>(reason))); |
| |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } else { |
| Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); |
| } |
| // will not return here |
| } |
| |
| void MacroAssembler::LoadNativeContextSlot(int index, Register dst) { |
| LoadP(dst, NativeContextMemOperand()); |
| LoadP(dst, ContextMemOperand(dst, index)); |
| } |
| |
| |
| void MacroAssembler::UntagAndJumpIfSmi(Register dst, Register src, |
| Label* smi_case) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestBitRange(src, kSmiTagSize - 1, 0, r0); |
| SmiUntag(dst, src); |
| beq(smi_case, cr0); |
| } |
| |
| void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, |
| Label* on_either_smi) { |
| STATIC_ASSERT(kSmiTag == 0); |
| JumpIfSmi(reg1, on_either_smi); |
| JumpIfSmi(reg2, on_either_smi); |
| } |
| |
| void MacroAssembler::AssertNotSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object, r0); |
| Check(ne, AbortReason::kOperandIsASmi, cr0); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertSmi(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object, r0); |
| Check(eq, AbortReason::kOperandIsNotASmi, cr0); |
| } |
| } |
| |
| void MacroAssembler::AssertFixedArray(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object, r0); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFixedArray, cr0); |
| push(object); |
| CompareObjectType(object, object, object, FIXED_ARRAY_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFixedArray); |
| } |
| } |
| |
| void MacroAssembler::AssertFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object, r0); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAFunction); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertBoundFunction(Register object) { |
| if (emit_debug_code()) { |
| STATIC_ASSERT(kSmiTag == 0); |
| TestIfSmi(object, r0); |
| Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, cr0); |
| push(object); |
| CompareObjectType(object, object, object, JS_BOUND_FUNCTION_TYPE); |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotABoundFunction); |
| } |
| } |
| |
| void MacroAssembler::AssertGeneratorObject(Register object) { |
| if (!emit_debug_code()) return; |
| TestIfSmi(object, r0); |
| Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, cr0); |
| |
| // Load map |
| Register map = object; |
| push(object); |
| LoadP(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| |
| // Check if JSGeneratorObject |
| Label do_check; |
| Register instance_type = object; |
| CompareInstanceType(map, instance_type, JS_GENERATOR_OBJECT_TYPE); |
| beq(&do_check); |
| |
| // Check if JSAsyncGeneratorObject (See MacroAssembler::CompareInstanceType) |
| cmpi(instance_type, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); |
| |
| bind(&do_check); |
| // Restore generator object to register and perform assertion |
| pop(object); |
| Check(eq, AbortReason::kOperandIsNotAGeneratorObject); |
| } |
| |
| void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, |
| Register scratch) { |
| if (emit_debug_code()) { |
| Label done_checking; |
| AssertNotSmi(object); |
| CompareRoot(object, Heap::kUndefinedValueRootIndex); |
| beq(&done_checking); |
| LoadP(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex); |
| Assert(eq, AbortReason::kExpectedUndefinedOrCell); |
| bind(&done_checking); |
| } |
| } |
| |
| |
| static const int kRegisterPassedArguments = 8; |
| |
| int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments) { |
| int stack_passed_words = 0; |
| if (num_double_arguments > DoubleRegister::kNumRegisters) { |
| stack_passed_words += |
| 2 * (num_double_arguments - DoubleRegister::kNumRegisters); |
| } |
| // Up to 8 simple arguments are passed in registers r3..r10. |
| if (num_reg_arguments > kRegisterPassedArguments) { |
| stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| } |
| return stack_passed_words; |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| int num_double_arguments, |
| Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots; |
| |
| if (frame_alignment > kPointerSize) { |
| // Make stack end at alignment and make room for stack arguments |
| // -- preserving original value of sp. |
| mr(scratch, sp); |
| addi(sp, sp, Operand(-(stack_passed_arguments + 1) * kPointerSize)); |
| DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); |
| ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
| StoreP(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| // Make room for stack arguments |
| stack_space += stack_passed_arguments; |
| } |
| |
| // Allocate frame with required slots to make ABI work. |
| li(r0, Operand::Zero()); |
| StorePU(r0, MemOperand(sp, -stack_space * kPointerSize)); |
| } |
| |
| void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, |
| Register scratch) { |
| PrepareCallCFunction(num_reg_arguments, 0, scratch); |
| } |
| |
| void TurboAssembler::MovToFloatParameter(DoubleRegister src) { Move(d1, src); } |
| |
| void TurboAssembler::MovToFloatResult(DoubleRegister src) { Move(d1, src); } |
| |
| void TurboAssembler::MovToFloatParameters(DoubleRegister src1, |
| DoubleRegister src2) { |
| if (src2 == d1) { |
| DCHECK(src1 != d2); |
| Move(d2, src2); |
| Move(d1, src1); |
| } else { |
| Move(d1, src1); |
| Move(d2, src2); |
| } |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| mov(ip, Operand(function)); |
| CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, |
| int num_double_arguments) { |
| CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| } |
| |
| void TurboAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunction(Register function, int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| void TurboAssembler::CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); |
| DCHECK(has_frame()); |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| Register dest = function; |
| if (ABI_USES_FUNCTION_DESCRIPTORS) { |
| // AIX/PPC64BE Linux uses a function descriptor. When calling C code be |
| // aware of this descriptor and pick up values from it |
| LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(function, kPointerSize)); |
| LoadP(ip, MemOperand(function, 0)); |
| dest = ip; |
| } else if (ABI_CALL_VIA_IP) { |
| Move(ip, function); |
| dest = ip; |
| } |
| |
| Call(dest); |
| |
| // Remove frame bought in PrepareCallCFunction |
| int stack_passed_arguments = |
| CalculateStackPassedWords(num_reg_arguments, num_double_arguments); |
| int stack_space = kNumRequiredStackFrameSlots + stack_passed_arguments; |
| if (ActivationFrameAlignment() > kPointerSize) { |
| LoadP(sp, MemOperand(sp, stack_space * kPointerSize)); |
| } else { |
| addi(sp, sp, Operand(stack_space * kPointerSize)); |
| } |
| } |
| |
| |
| void TurboAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, // scratch may be same register as object |
| int mask, Condition cc, Label* condition_met) { |
| DCHECK(cc == ne || cc == eq); |
| ClearRightImm(scratch, object, Operand(kPageSizeBits)); |
| LoadP(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
| |
| mov(r0, Operand(mask)); |
| and_(r0, scratch, r0, SetRC); |
| |
| if (cc == ne) { |
| bne(condition_met, cr0); |
| } |
| if (cc == eq) { |
| beq(condition_met, cr0); |
| } |
| } |
| |
| void TurboAssembler::SetRoundingMode(FPRoundingMode RN) { mtfsfi(7, RN); } |
| |
| void TurboAssembler::ResetRoundingMode() { |
| mtfsfi(7, kRoundToNearest); // reset (default is kRoundToNearest) |
| } |
| |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // |
| // New MacroAssembler Interfaces added for PPC |
| // |
| //////////////////////////////////////////////////////////////////////////////// |
| void TurboAssembler::LoadIntLiteral(Register dst, int value) { |
| mov(dst, Operand(value)); |
| } |
| |
| void TurboAssembler::LoadSmiLiteral(Register dst, Smi* smi) { |
| mov(dst, Operand(smi)); |
| } |
| |
| void TurboAssembler::LoadDoubleLiteral(DoubleRegister result, Double value, |
| Register scratch) { |
| if (FLAG_enable_embedded_constant_pool && is_constant_pool_available() && |
| !(scratch == r0 && ConstantPoolAccessIsInOverflow())) { |
| ConstantPoolEntry::Access access = ConstantPoolAddEntry(value); |
| if (access == ConstantPoolEntry::OVERFLOWED) { |
| addis(scratch, kConstantPoolRegister, Operand::Zero()); |
| lfd(result, MemOperand(scratch, 0)); |
| } else { |
| lfd(result, MemOperand(kConstantPoolRegister, 0)); |
| } |
| return; |
| } |
| |
| // avoid gcc strict aliasing error using union cast |
| union { |
| uint64_t dval; |
| #if V8_TARGET_ARCH_PPC64 |
| intptr_t ival; |
| #else |
| intptr_t ival[2]; |
| #endif |
| } litVal; |
| |
| litVal.dval = value.AsUint64(); |
| |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mov(scratch, Operand(litVal.ival)); |
| mtfprd(result, scratch); |
| return; |
| } |
| #endif |
| |
| addi(sp, sp, Operand(-kDoubleSize)); |
| #if V8_TARGET_ARCH_PPC64 |
| mov(scratch, Operand(litVal.ival)); |
| std(scratch, MemOperand(sp)); |
| #else |
| LoadIntLiteral(scratch, litVal.ival[0]); |
| stw(scratch, MemOperand(sp, 0)); |
| LoadIntLiteral(scratch, litVal.ival[1]); |
| stw(scratch, MemOperand(sp, 4)); |
| #endif |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(result, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovIntToDouble(DoubleRegister dst, Register src, |
| Register scratch) { |
| // sign-extend src to 64-bit |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mtfprwa(dst, src); |
| return; |
| } |
| #endif |
| |
| DCHECK(src != scratch); |
| subi(sp, sp, Operand(kDoubleSize)); |
| #if V8_TARGET_ARCH_PPC64 |
| extsw(scratch, src); |
| std(scratch, MemOperand(sp, 0)); |
| #else |
| srawi(scratch, src, 31); |
| stw(scratch, MemOperand(sp, Register::kExponentOffset)); |
| stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| #endif |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovUnsignedIntToDouble(DoubleRegister dst, Register src, |
| Register scratch) { |
| // zero-extend src to 64-bit |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mtfprwz(dst, src); |
| return; |
| } |
| #endif |
| |
| DCHECK(src != scratch); |
| subi(sp, sp, Operand(kDoubleSize)); |
| #if V8_TARGET_ARCH_PPC64 |
| clrldi(scratch, src, Operand(32)); |
| std(scratch, MemOperand(sp, 0)); |
| #else |
| li(scratch, Operand::Zero()); |
| stw(scratch, MemOperand(sp, Register::kExponentOffset)); |
| stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| #endif |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovInt64ToDouble(DoubleRegister dst, |
| #if !V8_TARGET_ARCH_PPC64 |
| Register src_hi, |
| #endif |
| Register src) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mtfprd(dst, src); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| #if V8_TARGET_ARCH_PPC64 |
| std(src, MemOperand(sp, 0)); |
| #else |
| stw(src_hi, MemOperand(sp, Register::kExponentOffset)); |
| stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| #endif |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| |
| #if V8_TARGET_ARCH_PPC64 |
| void TurboAssembler::MovInt64ComponentsToDouble(DoubleRegister dst, |
| Register src_hi, |
| Register src_lo, |
| Register scratch) { |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| sldi(scratch, src_hi, Operand(32)); |
| rldimi(scratch, src_lo, 0, 32); |
| mtfprd(dst, scratch); |
| return; |
| } |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stw(src_hi, MemOperand(sp, Register::kExponentOffset)); |
| stw(src_lo, MemOperand(sp, Register::kMantissaOffset)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| #endif |
| |
| void TurboAssembler::InsertDoubleLow(DoubleRegister dst, Register src, |
| Register scratch) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mffprd(scratch, dst); |
| rldimi(scratch, src, 0, 32); |
| mtfprd(dst, scratch); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stfd(dst, MemOperand(sp)); |
| stw(src, MemOperand(sp, Register::kMantissaOffset)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::InsertDoubleHigh(DoubleRegister dst, Register src, |
| Register scratch) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mffprd(scratch, dst); |
| rldimi(scratch, src, 32, 0); |
| mtfprd(dst, scratch); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stfd(dst, MemOperand(sp)); |
| stw(src, MemOperand(sp, Register::kExponentOffset)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfd(dst, MemOperand(sp)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovDoubleLowToInt(Register dst, DoubleRegister src) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mffprwz(dst, src); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stfd(src, MemOperand(sp)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lwz(dst, MemOperand(sp, Register::kMantissaOffset)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovDoubleHighToInt(Register dst, DoubleRegister src) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mffprd(dst, src); |
| srdi(dst, dst, Operand(32)); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stfd(src, MemOperand(sp)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lwz(dst, MemOperand(sp, Register::kExponentOffset)); |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovDoubleToInt64( |
| #if !V8_TARGET_ARCH_PPC64 |
| Register dst_hi, |
| #endif |
| Register dst, DoubleRegister src) { |
| #if V8_TARGET_ARCH_PPC64 |
| if (CpuFeatures::IsSupported(FPR_GPR_MOV)) { |
| mffprd(dst, src); |
| return; |
| } |
| #endif |
| |
| subi(sp, sp, Operand(kDoubleSize)); |
| stfd(src, MemOperand(sp)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| #if V8_TARGET_ARCH_PPC64 |
| ld(dst, MemOperand(sp, 0)); |
| #else |
| lwz(dst_hi, MemOperand(sp, Register::kExponentOffset)); |
| lwz(dst, MemOperand(sp, Register::kMantissaOffset)); |
| #endif |
| addi(sp, sp, Operand(kDoubleSize)); |
| } |
| |
| void TurboAssembler::MovIntToFloat(DoubleRegister dst, Register src) { |
| subi(sp, sp, Operand(kFloatSize)); |
| stw(src, MemOperand(sp, 0)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lfs(dst, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kFloatSize)); |
| } |
| |
| void TurboAssembler::MovFloatToInt(Register dst, DoubleRegister src) { |
| subi(sp, sp, Operand(kFloatSize)); |
| stfs(src, MemOperand(sp, 0)); |
| nop(GROUP_ENDING_NOP); // LHS/RAW optimization |
| lwz(dst, MemOperand(sp, 0)); |
| addi(sp, sp, Operand(kFloatSize)); |
| } |
| |
| void TurboAssembler::Add(Register dst, Register src, intptr_t value, |
| Register scratch) { |
| if (is_int16(value)) { |
| addi(dst, src, Operand(value)); |
| } else { |
| mov(scratch, Operand(value)); |
| add(dst, src, scratch); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmpi(Register src1, const Operand& src2, Register scratch, |
| CRegister cr) { |
| intptr_t value = src2.immediate(); |
| if (is_int16(value)) { |
| cmpi(src1, src2, cr); |
| } else { |
| mov(scratch, src2); |
| cmp(src1, scratch, cr); |
| } |
| } |
| |
| void TurboAssembler::Cmpli(Register src1, const Operand& src2, Register scratch, |
| CRegister cr) { |
| intptr_t value = src2.immediate(); |
| if (is_uint16(value)) { |
| cmpli(src1, src2, cr); |
| } else { |
| mov(scratch, src2); |
| cmpl(src1, scratch, cr); |
| } |
| } |
| |
| void TurboAssembler::Cmpwi(Register src1, const Operand& src2, Register scratch, |
| CRegister cr) { |
| intptr_t value = src2.immediate(); |
| if (is_int16(value)) { |
| cmpwi(src1, src2, cr); |
| } else { |
| mov(scratch, src2); |
| cmpw(src1, scratch, cr); |
| } |
| } |
| |
| |
| void MacroAssembler::Cmplwi(Register src1, const Operand& src2, |
| Register scratch, CRegister cr) { |
| intptr_t value = src2.immediate(); |
| if (is_uint16(value)) { |
| cmplwi(src1, src2, cr); |
| } else { |
| mov(scratch, src2); |
| cmplw(src1, scratch, cr); |
| } |
| } |
| |
| |
| void MacroAssembler::And(Register ra, Register rs, const Operand& rb, |
| RCBit rc) { |
| if (rb.is_reg()) { |
| and_(ra, rs, rb.rm(), rc); |
| } else { |
| if (is_uint16(rb.immediate()) && RelocInfo::IsNone(rb.rmode_) && |
| rc == SetRC) { |
| andi(ra, rs, rb); |
| } else { |
| // mov handles the relocation. |
| DCHECK(rs != r0); |
| mov(r0, rb); |
| and_(ra, rs, r0, rc); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Or(Register ra, Register rs, const Operand& rb, RCBit rc) { |
| if (rb.is_reg()) { |
| orx(ra, rs, rb.rm(), rc); |
| } else { |
| if (is_uint16(rb.immediate()) && RelocInfo::IsNone(rb.rmode_) && |
| rc == LeaveRC) { |
| ori(ra, rs, rb); |
| } else { |
| // mov handles the relocation. |
| DCHECK(rs != r0); |
| mov(r0, rb); |
| orx(ra, rs, r0, rc); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Xor(Register ra, Register rs, const Operand& rb, |
| RCBit rc) { |
| if (rb.is_reg()) { |
| xor_(ra, rs, rb.rm(), rc); |
| } else { |
| if (is_uint16(rb.immediate()) && RelocInfo::IsNone(rb.rmode_) && |
| rc == LeaveRC) { |
| xori(ra, rs, rb); |
| } else { |
| // mov handles the relocation. |
| DCHECK(rs != r0); |
| mov(r0, rb); |
| xor_(ra, rs, r0, rc); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::CmpSmiLiteral(Register src1, Smi* smi, Register scratch, |
| CRegister cr) { |
| #if V8_TARGET_ARCH_PPC64 |
| LoadSmiLiteral(scratch, smi); |
| cmp(src1, scratch, cr); |
| #else |
| Cmpi(src1, Operand(smi), scratch, cr); |
| #endif |
| } |
| |
| |
| void MacroAssembler::CmplSmiLiteral(Register src1, Smi* smi, Register scratch, |
| CRegister cr) { |
| #if V8_TARGET_ARCH_PPC64 |
| LoadSmiLiteral(scratch, smi); |
| cmpl(src1, scratch, cr); |
| #else |
| Cmpli(src1, Operand(smi), scratch, cr); |
| #endif |
| } |
| |
| |
| void MacroAssembler::AddSmiLiteral(Register dst, Register src, Smi* smi, |
| Register scratch) { |
| #if V8_TARGET_ARCH_PPC64 |
| LoadSmiLiteral(scratch, smi); |
| add(dst, src, scratch); |
| #else |
| Add(dst, src, reinterpret_cast<intptr_t>(smi), scratch); |
| #endif |
| } |
| |
| |
| void MacroAssembler::SubSmiLiteral(Register dst, Register src, Smi* smi, |
| Register scratch) { |
| #if V8_TARGET_ARCH_PPC64 |
| LoadSmiLiteral(scratch, smi); |
| sub(dst, src, scratch); |
| #else |
| Add(dst, src, -(reinterpret_cast<intptr_t>(smi)), scratch); |
| #endif |
| } |
| |
| |
| void MacroAssembler::AndSmiLiteral(Register dst, Register src, Smi* smi, |
| Register scratch, RCBit rc) { |
| #if V8_TARGET_ARCH_PPC64 |
| LoadSmiLiteral(scratch, smi); |
| and_(dst, src, scratch, rc); |
| #else |
| And(dst, src, Operand(smi), rc); |
| #endif |
| } |
| |
| |
| // Load a "pointer" sized value from the memory location |
| void TurboAssembler::LoadP(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| /* cannot use d-form */ |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| LoadPX(dst, MemOperand(mem.ra(), scratch)); |
| } else { |
| #if V8_TARGET_ARCH_PPC64 |
| int misaligned = (offset & 3); |
| if (misaligned) { |
| // adjust base to conform to offset alignment requirements |
| // Todo: enhance to use scratch if dst is unsuitable |
| DCHECK(dst != r0); |
| addi(dst, mem.ra(), Operand((offset & 3) - 4)); |
| ld(dst, MemOperand(dst, (offset & ~3) + 4)); |
| } else { |
| ld(dst, mem); |
| } |
| #else |
| lwz(dst, mem); |
| #endif |
| } |
| } |
| |
| void TurboAssembler::LoadPU(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| /* cannot use d-form */ |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| LoadPUX(dst, MemOperand(mem.ra(), scratch)); |
| } else { |
| #if V8_TARGET_ARCH_PPC64 |
| ldu(dst, mem); |
| #else |
| lwzu(dst, mem); |
| #endif |
| } |
| } |
| |
| // Store a "pointer" sized value to the memory location |
| void TurboAssembler::StoreP(Register src, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| /* cannot use d-form */ |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| StorePX(src, MemOperand(mem.ra(), scratch)); |
| } else { |
| #if V8_TARGET_ARCH_PPC64 |
| int misaligned = (offset & 3); |
| if (misaligned) { |
| // adjust base to conform to offset alignment requirements |
| // a suitable scratch is required here |
| DCHECK(scratch != no_reg); |
| if (scratch == r0) { |
| LoadIntLiteral(scratch, offset); |
| stdx(src, MemOperand(mem.ra(), scratch)); |
| } else { |
| addi(scratch, mem.ra(), Operand((offset & 3) - 4)); |
| std(src, MemOperand(scratch, (offset & ~3) + 4)); |
| } |
| } else { |
| std(src, mem); |
| } |
| #else |
| stw(src, mem); |
| #endif |
| } |
| } |
| |
| void TurboAssembler::StorePU(Register src, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| /* cannot use d-form */ |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| StorePUX(src, MemOperand(mem.ra(), scratch)); |
| } else { |
| #if V8_TARGET_ARCH_PPC64 |
| stdu(src, mem); |
| #else |
| stwu(src, mem); |
| #endif |
| } |
| } |
| |
| void TurboAssembler::LoadWordArith(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| lwax(dst, MemOperand(mem.ra(), scratch)); |
| } else { |
| #if V8_TARGET_ARCH_PPC64 |
| int misaligned = (offset & 3); |
| if (misaligned) { |
| // adjust base to conform to offset alignment requirements |
| // Todo: enhance to use scratch if dst is unsuitable |
| DCHECK(dst != r0); |
| addi(dst, mem.ra(), Operand((offset & 3) - 4)); |
| lwa(dst, MemOperand(dst, (offset & ~3) + 4)); |
| } else { |
| lwa(dst, mem); |
| } |
| #else |
| lwz(dst, mem); |
| #endif |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand currently only supports d-form |
| void MacroAssembler::LoadWord(Register dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| lwzx(dst, MemOperand(base, scratch)); |
| } else { |
| lwz(dst, mem); |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand current only supports d-form |
| void MacroAssembler::StoreWord(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| stwx(src, MemOperand(base, scratch)); |
| } else { |
| stw(src, mem); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadHalfWordArith(Register dst, const MemOperand& mem, |
| Register scratch) { |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| DCHECK(scratch != no_reg); |
| mov(scratch, Operand(offset)); |
| lhax(dst, MemOperand(mem.ra(), scratch)); |
| } else { |
| lha(dst, mem); |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand currently only supports d-form |
| void MacroAssembler::LoadHalfWord(Register dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| lhzx(dst, MemOperand(base, scratch)); |
| } else { |
| lhz(dst, mem); |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand current only supports d-form |
| void MacroAssembler::StoreHalfWord(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| sthx(src, MemOperand(base, scratch)); |
| } else { |
| sth(src, mem); |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand currently only supports d-form |
| void MacroAssembler::LoadByte(Register dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| lbzx(dst, MemOperand(base, scratch)); |
| } else { |
| lbz(dst, mem); |
| } |
| } |
| |
| |
| // Variable length depending on whether offset fits into immediate field |
| // MemOperand current only supports d-form |
| void MacroAssembler::StoreByte(Register src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| LoadIntLiteral(scratch, offset); |
| stbx(src, MemOperand(base, scratch)); |
| } else { |
| stb(src, mem); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadRepresentation(Register dst, const MemOperand& mem, |
| Representation r, Register scratch) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8()) { |
| LoadByte(dst, mem, scratch); |
| extsb(dst, dst); |
| } else if (r.IsUInteger8()) { |
| LoadByte(dst, mem, scratch); |
| } else if (r.IsInteger16()) { |
| LoadHalfWordArith(dst, mem, scratch); |
| } else if (r.IsUInteger16()) { |
| LoadHalfWord(dst, mem, scratch); |
| #if V8_TARGET_ARCH_PPC64 |
| } else if (r.IsInteger32()) { |
| LoadWordArith(dst, mem, scratch); |
| #endif |
| } else { |
| LoadP(dst, mem, scratch); |
| } |
| } |
| |
| |
| void MacroAssembler::StoreRepresentation(Register src, const MemOperand& mem, |
| Representation r, Register scratch) { |
| DCHECK(!r.IsDouble()); |
| if (r.IsInteger8() || r.IsUInteger8()) { |
| StoreByte(src, mem, scratch); |
| } else if (r.IsInteger16() || r.IsUInteger16()) { |
| StoreHalfWord(src, mem, scratch); |
| #if V8_TARGET_ARCH_PPC64 |
| } else if (r.IsInteger32()) { |
| StoreWord(src, mem, scratch); |
| #endif |
| } else { |
| if (r.IsHeapObject()) { |
| AssertNotSmi(src); |
| } else if (r.IsSmi()) { |
| AssertSmi(src); |
| } |
| StoreP(src, mem, scratch); |
| } |
| } |
| |
| void TurboAssembler::LoadDouble(DoubleRegister dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| lfdx(dst, MemOperand(base, scratch)); |
| } else { |
| lfd(dst, mem); |
| } |
| } |
| |
| void MacroAssembler::LoadDoubleU(DoubleRegister dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| lfdux(dst, MemOperand(base, scratch)); |
| } else { |
| lfdu(dst, mem); |
| } |
| } |
| |
| void TurboAssembler::LoadSingle(DoubleRegister dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| lfsx(dst, MemOperand(base, scratch)); |
| } else { |
| lfs(dst, mem); |
| } |
| } |
| |
| void TurboAssembler::LoadSingleU(DoubleRegister dst, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| lfsux(dst, MemOperand(base, scratch)); |
| } else { |
| lfsu(dst, mem); |
| } |
| } |
| |
| void TurboAssembler::StoreDouble(DoubleRegister src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| stfdx(src, MemOperand(base, scratch)); |
| } else { |
| stfd(src, mem); |
| } |
| } |
| |
| void TurboAssembler::StoreDoubleU(DoubleRegister src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| stfdux(src, MemOperand(base, scratch)); |
| } else { |
| stfdu(src, mem); |
| } |
| } |
| |
| void TurboAssembler::StoreSingle(DoubleRegister src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| stfsx(src, MemOperand(base, scratch)); |
| } else { |
| stfs(src, mem); |
| } |
| } |
| |
| void TurboAssembler::StoreSingleU(DoubleRegister src, const MemOperand& mem, |
| Register scratch) { |
| Register base = mem.ra(); |
| int offset = mem.offset(); |
| |
| if (!is_int16(offset)) { |
| mov(scratch, Operand(offset)); |
| stfsux(src, MemOperand(base, scratch)); |
| } else { |
| stfsu(src, mem); |
| } |
| } |
| |
| Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, |
| Register reg4, Register reg5, |
| Register reg6) { |
| RegList regs = 0; |
| if (reg1.is_valid()) regs |= reg1.bit(); |
| if (reg2.is_valid()) regs |= reg2.bit(); |
| if (reg3.is_valid()) regs |= reg3.bit(); |
| if (reg4.is_valid()) regs |= reg4.bit(); |
| if (reg5.is_valid()) regs |= reg5.bit(); |
| if (reg6.is_valid()) regs |= reg6.bit(); |
| |
| const RegisterConfiguration* config = RegisterConfiguration::Default(); |
| for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { |
| int code = config->GetAllocatableGeneralCode(i); |
| Register candidate = Register::from_code(code); |
| if (regs & candidate.bit()) continue; |
| return candidate; |
| } |
| UNREACHABLE(); |
| } |
| |
| void TurboAssembler::SwapP(Register src, Register dst, Register scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAliased(src, dst, scratch)); |
| mr(scratch, src); |
| mr(src, dst); |
| mr(dst, scratch); |
| } |
| |
| void TurboAssembler::SwapP(Register src, MemOperand dst, Register scratch) { |
| if (dst.ra() != r0) DCHECK(!AreAliased(src, dst.ra(), scratch)); |
| if (dst.rb() != r0) DCHECK(!AreAliased(src, dst.rb(), scratch)); |
| DCHECK(!AreAliased(src, scratch)); |
| mr(scratch, src); |
| LoadP(src, dst); |
| StoreP(scratch, dst); |
| } |
| |
| void TurboAssembler::SwapP(MemOperand src, MemOperand dst, Register scratch_0, |
| Register scratch_1) { |
| if (src.ra() != r0) DCHECK(!AreAliased(src.ra(), scratch_0, scratch_1)); |
| if (src.rb() != r0) DCHECK(!AreAliased(src.rb(), scratch_0, scratch_1)); |
| if (dst.ra() != r0) DCHECK(!AreAliased(dst.ra(), scratch_0, scratch_1)); |
| if (dst.rb() != r0) DCHECK(!AreAliased(dst.rb(), scratch_0, scratch_1)); |
| DCHECK(!AreAliased(scratch_0, scratch_1)); |
| LoadP(scratch_0, src); |
| LoadP(scratch_1, dst); |
| StoreP(scratch_0, dst); |
| StoreP(scratch_1, src); |
| } |
| |
| void TurboAssembler::SwapFloat32(DoubleRegister src, DoubleRegister dst, |
| DoubleRegister scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAliased(src, dst, scratch)); |
| fmr(scratch, src); |
| fmr(src, dst); |
| fmr(dst, scratch); |
| } |
| |
| void TurboAssembler::SwapFloat32(DoubleRegister src, MemOperand dst, |
| DoubleRegister scratch) { |
| DCHECK(!AreAliased(src, scratch)); |
| fmr(scratch, src); |
| LoadSingle(src, dst); |
| StoreSingle(scratch, dst); |
| } |
| |
| void TurboAssembler::SwapFloat32(MemOperand src, MemOperand dst, |
| DoubleRegister scratch_0, |
| DoubleRegister scratch_1) { |
| DCHECK(!AreAliased(scratch_0, scratch_1)); |
| LoadSingle(scratch_0, src); |
| LoadSingle(scratch_1, dst); |
| StoreSingle(scratch_0, dst); |
| StoreSingle(scratch_1, src); |
| } |
| |
| void TurboAssembler::SwapDouble(DoubleRegister src, DoubleRegister dst, |
| DoubleRegister scratch) { |
| if (src == dst) return; |
| DCHECK(!AreAl
|