| // Copyright 2014 the V8 project authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <cmath> |
| |
| #if V8_TARGET_ARCH_PPC |
| |
| #include "src/assembler.h" |
| #include "src/base/bits.h" |
| #include "src/codegen.h" |
| #include "src/disasm.h" |
| #include "src/macro-assembler.h" |
| #include "src/ostreams.h" |
| #include "src/ppc/constants-ppc.h" |
| #include "src/ppc/frame-constants-ppc.h" |
| #include "src/ppc/simulator-ppc.h" |
| #include "src/runtime/runtime-utils.h" |
| |
| #if defined(USE_SIMULATOR) |
| |
| // Only build the simulator if not compiling for real PPC hardware. |
| namespace v8 { |
| namespace internal { |
| |
| const auto GetRegConfig = RegisterConfiguration::Default; |
| |
| // static |
| base::LazyInstance<Simulator::GlobalMonitor>::type Simulator::global_monitor_ = |
| LAZY_INSTANCE_INITIALIZER; |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent way through |
| // ::v8::internal::OS in the same way as SNPrintF is that the |
| // Windows C Run-Time Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The PPCDebugger class is used by the simulator while debugging simulated |
| // PowerPC code. |
| class PPCDebugger { |
| public: |
| explicit PPCDebugger(Simulator* sim) : sim_(sim) {} |
| |
| void Stop(Instruction* instr); |
| void Debug(); |
| |
| private: |
| static const Instr kBreakpointInstr = (TWI | 0x1F * B21); |
| static const Instr kNopInstr = (ORI); // ori, 0,0,0 |
| |
| Simulator* sim_; |
| |
| intptr_t GetRegisterValue(int regnum); |
| double GetRegisterPairDoubleValue(int regnum); |
| double GetFPDoubleRegisterValue(int regnum); |
| bool GetValue(const char* desc, intptr_t* value); |
| bool GetFPDoubleValue(const char* desc, double* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instruction* break_pc); |
| bool DeleteBreakpoint(Instruction* break_pc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| }; |
| |
| void PPCDebugger::Stop(Instruction* instr) { |
| // Get the stop code. |
| // use of kStopCodeMask not right on PowerPC |
| uint32_t code = instr->SvcValue() & kStopCodeMask; |
| // Retrieve the encoded address, which comes just after this stop. |
| char* msg = |
| *reinterpret_cast<char**>(sim_->get_pc() + Instruction::kInstrSize); |
| // Update this stop description. |
| if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { |
| sim_->watched_stops_[code].desc = msg; |
| } |
| // Print the stop message and code if it is not the default code. |
| if (code != kMaxStopCode) { |
| PrintF("Simulator hit stop %u: %s\n", code, msg); |
| } else { |
| PrintF("Simulator hit %s\n", msg); |
| } |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); |
| Debug(); |
| } |
| |
| intptr_t PPCDebugger::GetRegisterValue(int regnum) { |
| return sim_->get_register(regnum); |
| } |
| |
| |
| double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { |
| return sim_->get_double_from_register_pair(regnum); |
| } |
| |
| |
| double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { |
| return sim_->get_double_from_d_register(regnum); |
| } |
| |
| |
| bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { |
| int regnum = Registers::Number(desc); |
| if (regnum != kNoRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else { |
| if (strncmp(desc, "0x", 2) == 0) { |
| return SScanF(desc + 2, "%" V8PRIxPTR, |
| reinterpret_cast<uintptr_t*>(value)) == 1; |
| } else { |
| return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast<uintptr_t*>(value)) == |
| 1; |
| } |
| } |
| return false; |
| } |
| |
| |
| bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { |
| int regnum = DoubleRegisters::Number(desc); |
| if (regnum != kNoRegister) { |
| *value = sim_->get_double_from_d_register(regnum); |
| return true; |
| } |
| return false; |
| } |
| |
| |
| bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != nullptr) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = break_pc; |
| sim_->break_instr_ = break_pc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = nullptr; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void PPCDebugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void PPCDebugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != nullptr) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| |
| void PPCDebugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| char* argv[3] = {cmd, arg1, arg2}; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| // Disable tracing while simulating |
| bool trace = ::v8::internal::FLAG_trace_sim; |
| ::v8::internal::FLAG_trace_sim = false; |
| |
| while (!done && !sim_->has_bad_pc()) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == nullptr) { |
| break; |
| } else { |
| char* last_input = sim_->last_debugger_input(); |
| if (strcmp(line, "\n") == 0 && last_input != nullptr) { |
| line = last_input; |
| } else { |
| // Ownership is transferred to sim_; |
| sim_->set_last_debugger_input(line); |
| } |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int argc = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| intptr_t value; |
| |
| // If at a breakpoint, proceed past it. |
| if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
| ->InstructionBits() == 0x7D821008) { |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
| } else { |
| sim_->ExecuteInstruction( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } |
| |
| if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { |
| for (int i = 1; i < value; i++) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte*>(sim_->get_pc())); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), |
| buffer.start()); |
| sim_->ExecuteInstruction( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } |
| } |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // If at a breakpoint, proceed past it. |
| if ((reinterpret_cast<Instruction*>(sim_->get_pc())) |
| ->InstructionBits() == 0x7D821008) { |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); |
| } else { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->ExecuteInstruction( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { |
| intptr_t value; |
| double dvalue; |
| if (strcmp(arg1, "all") == 0) { |
| for (int i = 0; i < kNumRegisters; i++) { |
| value = GetRegisterValue(i); |
| PrintF(" %3s: %08" V8PRIxPTR, |
| GetRegConfig()->GetGeneralRegisterName(i), value); |
| if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
| (i % 2) == 0) { |
| dvalue = GetRegisterPairDoubleValue(i); |
| PrintF(" (%f)\n", dvalue); |
| } else if (i != 0 && !((i + 1) & 3)) { |
| PrintF("\n"); |
| } |
| } |
| PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR |
| " " |
| "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", |
| sim_->special_reg_pc_, sim_->special_reg_lr_, |
| sim_->special_reg_ctr_, sim_->special_reg_xer_, |
| sim_->condition_reg_); |
| } else if (strcmp(arg1, "alld") == 0) { |
| for (int i = 0; i < kNumRegisters; i++) { |
| value = GetRegisterValue(i); |
| PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, |
| GetRegConfig()->GetGeneralRegisterName(i), value, value); |
| if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && |
| (i % 2) == 0) { |
| dvalue = GetRegisterPairDoubleValue(i); |
| PrintF(" (%f)\n", dvalue); |
| } else if (!((i + 1) % 2)) { |
| PrintF("\n"); |
| } |
| } |
| PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR |
| " " |
| "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", |
| sim_->special_reg_pc_, sim_->special_reg_lr_, |
| sim_->special_reg_ctr_, sim_->special_reg_xer_, |
| sim_->condition_reg_); |
| } else if (strcmp(arg1, "allf") == 0) { |
| for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { |
| dvalue = GetFPDoubleRegisterValue(i); |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%3s: %f 0x%08x %08x\n", |
| GetRegConfig()->GetDoubleRegisterName(i), dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } |
| } else if (arg1[0] == 'r' && |
| (arg1[1] >= '0' && arg1[1] <= '9' && |
| (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && |
| arg1[3] == '\0')))) { |
| int regnum = strtoul(&arg1[1], 0, 10); |
| if (regnum != kNoRegister) { |
| value = GetRegisterValue(regnum); |
| PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
| value); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| if (GetValue(arg1, &value)) { |
| PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, |
| value); |
| } else if (GetFPDoubleValue(arg1, &dvalue)) { |
| uint64_t as_words = bit_cast<uint64_t>(dvalue); |
| PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, |
| static_cast<uint32_t>(as_words >> 32), |
| static_cast<uint32_t>(as_words & 0xFFFFFFFF)); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| PrintF("print <register>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) || |
| (strcmp(cmd, "printobject") == 0)) { |
| if (argc == 2) { |
| intptr_t value; |
| OFStream os(stdout); |
| if (GetValue(arg1, &value)) { |
| Object* obj = reinterpret_cast<Object*>(value); |
| os << arg1 << ": \n"; |
| #ifdef DEBUG |
| obj->Print(os); |
| os << "\n"; |
| #else |
| os << Brief(obj) << "\n"; |
| #endif |
| } else { |
| os << arg1 << " unrecognized\n"; |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if (strcmp(cmd, "setpc") == 0) { |
| intptr_t value; |
| |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| sim_->set_pc(value); |
| } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { |
| intptr_t* cur = nullptr; |
| intptr_t* end = nullptr; |
| int next_arg = 1; |
| |
| if (strcmp(cmd, "stack") == 0) { |
| cur = reinterpret_cast<intptr_t*>(sim_->get_register(Simulator::sp)); |
| } else { // "mem" |
| intptr_t value; |
| if (!GetValue(arg1, &value)) { |
| PrintF("%s unrecognized\n", arg1); |
| continue; |
| } |
| cur = reinterpret_cast<intptr_t*>(value); |
| next_arg++; |
| } |
| |
| intptr_t words; // likely inaccurate variable name for 64bit |
| if (argc == next_arg) { |
| words = 10; |
| } else { |
| if (!GetValue(argv[next_arg], &words)) { |
| words = 10; |
| } |
| } |
| end = cur + words; |
| |
| while (cur < end) { |
| PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, |
| reinterpret_cast<intptr_t>(cur), *cur, *cur); |
| HeapObject* obj = reinterpret_cast<HeapObject*>(*cur); |
| intptr_t value = *cur; |
| Heap* current_heap = sim_->isolate_->heap(); |
| if (((value & 1) == 0) || |
| current_heap->ContainsSlow(obj->address())) { |
| PrintF(" ("); |
| if ((value & 1) == 0) { |
| PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj)); |
| } else { |
| obj->ShortPrint(); |
| } |
| PrintF(")"); |
| } |
| PrintF("\n"); |
| cur++; |
| } |
| } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte* prev = nullptr; |
| byte* cur = nullptr; |
| byte* end = nullptr; |
| |
| if (argc == 1) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstrSize); |
| } else if (argc == 2) { |
| int regnum = Registers::Number(arg1); |
| if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { |
| // The argument is an address or a register name. |
| intptr_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(value); |
| // Disassemble 10 instructions at <arg1>. |
| end = cur + (10 * Instruction::kInstrSize); |
| } |
| } else { |
| // The argument is the number of instructions. |
| intptr_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte*>(sim_->get_pc()); |
| // Disassemble <arg1> instructions. |
| end = cur + (value * Instruction::kInstrSize); |
| } |
| } |
| } else { |
| intptr_t value1; |
| intptr_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte*>(value1); |
| end = cur + (value2 * Instruction::kInstrSize); |
| } |
| } |
| |
| while (cur < end) { |
| prev = cur; |
| cur += dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev), |
| buffer.start()); |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::base::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (argc == 2) { |
| intptr_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(nullptr)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "cr") == 0) { |
| PrintF("Condition reg: %08x\n", sim_->condition_reg_); |
| } else if (strcmp(cmd, "lr") == 0) { |
| PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); |
| } else if (strcmp(cmd, "ctr") == 0) { |
| PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); |
| } else if (strcmp(cmd, "xer") == 0) { |
| PrintF("XER: %08x\n", sim_->special_reg_xer_); |
| } else if (strcmp(cmd, "fpscr") == 0) { |
| PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); |
| } else if (strcmp(cmd, "stop") == 0) { |
| intptr_t value; |
| intptr_t stop_pc = |
| sim_->get_pc() - (Instruction::kInstrSize + kPointerSize); |
| Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc); |
| Instruction* msg_address = |
| reinterpret_cast<Instruction*>(stop_pc + Instruction::kInstrSize); |
| if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { |
| // Remove the current stop. |
| if (sim_->isStopInstruction(stop_instr)) { |
| stop_instr->SetInstructionBits(kNopInstr); |
| msg_address->SetInstructionBits(kNopInstr); |
| } else { |
| PrintF("Not at debugger stop.\n"); |
| } |
| } else if (argc == 3) { |
| // Print information about all/the specified breakpoint(s). |
| if (strcmp(arg1, "info") == 0) { |
| if (strcmp(arg2, "all") == 0) { |
| PrintF("Stop information:\n"); |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->PrintStopInfo(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->PrintStopInfo(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "enable") == 0) { |
| // Enable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->EnableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->EnableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } else if (strcmp(arg1, "disable") == 0) { |
| // Disable all/the specified breakpoint(s). |
| if (strcmp(arg2, "all") == 0) { |
| for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { |
| sim_->DisableStop(i); |
| } |
| } else if (GetValue(arg2, &value)) { |
| sim_->DisableStop(value); |
| } else { |
| PrintF("Unrecognized argument.\n"); |
| } |
| } |
| } else { |
| PrintF("Wrong usage. Use help command for more information.\n"); |
| } |
| } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { |
| ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; |
| PrintF("Trace of executed instructions is %s\n", |
| ::v8::internal::FLAG_trace_sim ? "on" : "off"); |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi [num instructions]\n"); |
| PrintF(" step one/num instruction(s) (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to display all integer registers\n"); |
| PrintF( |
| " use register name 'alld' to display integer registers " |
| "with decimal values\n"); |
| PrintF(" use register name 'rN' to display register number 'N'\n"); |
| PrintF(" add argument 'fp' to print register pair double values\n"); |
| PrintF( |
| " use register name 'allf' to display floating-point " |
| "registers\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("cr\n"); |
| PrintF(" print condition register\n"); |
| PrintF("lr\n"); |
| PrintF(" print link register\n"); |
| PrintF("ctr\n"); |
| PrintF(" print ctr register\n"); |
| PrintF("xer\n"); |
| PrintF(" print XER\n"); |
| PrintF("fpscr\n"); |
| PrintF(" print FPSCR\n"); |
| PrintF("stack [<num words>]\n"); |
| PrintF(" dump stack content, default dump 10 words)\n"); |
| PrintF("mem <address> [<num words>]\n"); |
| PrintF(" dump memory content, default dump 10 words)\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [<address/register>]\n"); |
| PrintF("disasm [[<address/register>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions\n"); |
| PrintF(" from pc (alias 'di')\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("trace (alias 't')\n"); |
| PrintF(" toogle the tracing of all executed statements\n"); |
| PrintF("stop feature:\n"); |
| PrintF(" Description:\n"); |
| PrintF(" Stops are debug instructions inserted by\n"); |
| PrintF(" the Assembler::stop() function.\n"); |
| PrintF(" When hitting a stop, the Simulator will\n"); |
| PrintF(" stop and and give control to the PPCDebugger.\n"); |
| PrintF(" The first %d stop codes are watched:\n", |
| Simulator::kNumOfWatchedStops); |
| PrintF(" - They can be enabled / disabled: the Simulator\n"); |
| PrintF(" will / won't stop when hitting them.\n"); |
| PrintF(" - The Simulator keeps track of how many times they \n"); |
| PrintF(" are met. (See the info command.) Going over a\n"); |
| PrintF(" disabled stop still increases its counter. \n"); |
| PrintF(" Commands:\n"); |
| PrintF(" stop info all/<code> : print infos about number <code>\n"); |
| PrintF(" or all stop(s).\n"); |
| PrintF(" stop enable/disable all/<code> : enables / disables\n"); |
| PrintF(" all or number <code> stop(s)\n"); |
| PrintF(" stop unstop\n"); |
| PrintF(" ignore the stop instruction at the current location\n"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| // Restore tracing |
| ::v8::internal::FLAG_trace_sim = trace; |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| static bool ICacheMatch(void* one, void* two) { |
| DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0); |
| DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0); |
| return one == two; |
| } |
| |
| |
| static uint32_t ICacheHash(void* key) { |
| return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2; |
| } |
| |
| |
| static bool AllOnOnePage(uintptr_t start, int size) { |
| intptr_t start_page = (start & ~CachePage::kPageMask); |
| intptr_t end_page = ((start + size) & ~CachePage::kPageMask); |
| return start_page == end_page; |
| } |
| |
| |
| void Simulator::set_last_debugger_input(char* input) { |
| DeleteArray(last_debugger_input_); |
| last_debugger_input_ = input; |
| } |
| |
| void Simulator::SetRedirectInstruction(Instruction* instruction) { |
| instruction->SetInstructionBits(rtCallRedirInstr | kCallRtRedirected); |
| } |
| |
| void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, |
| void* start_addr, size_t size) { |
| intptr_t start = reinterpret_cast<intptr_t>(start_addr); |
| int intra_line = (start & CachePage::kLineMask); |
| start -= intra_line; |
| size += intra_line; |
| size = ((size - 1) | CachePage::kLineMask) + 1; |
| int offset = (start & CachePage::kPageMask); |
| while (!AllOnOnePage(start, size - 1)) { |
| int bytes_to_flush = CachePage::kPageSize - offset; |
| FlushOnePage(i_cache, start, bytes_to_flush); |
| start += bytes_to_flush; |
| size -= bytes_to_flush; |
| DCHECK_EQ(0, static_cast<int>(start & CachePage::kPageMask)); |
| offset = 0; |
| } |
| if (size != 0) { |
| FlushOnePage(i_cache, start, size); |
| } |
| } |
| |
| CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, |
| void* page) { |
| base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); |
| if (entry->value == nullptr) { |
| CachePage* new_page = new CachePage(); |
| entry->value = new_page; |
| } |
| return reinterpret_cast<CachePage*>(entry->value); |
| } |
| |
| |
| // Flush from start up to and not including start + size. |
| void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, |
| intptr_t start, int size) { |
| DCHECK_LE(size, CachePage::kPageSize); |
| DCHECK(AllOnOnePage(start, size - 1)); |
| DCHECK_EQ(start & CachePage::kLineMask, 0); |
| DCHECK_EQ(size & CachePage::kLineMask, 0); |
| void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask)); |
| int offset = (start & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* valid_bytemap = cache_page->ValidityByte(offset); |
| memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); |
| } |
| |
| void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, |
| Instruction* instr) { |
| intptr_t address = reinterpret_cast<intptr_t>(instr); |
| void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask)); |
| void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask)); |
| int offset = (address & CachePage::kPageMask); |
| CachePage* cache_page = GetCachePage(i_cache, page); |
| char* cache_valid_byte = cache_page->ValidityByte(offset); |
| bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); |
| char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); |
| if (cache_hit) { |
| // Check that the data in memory matches the contents of the I-cache. |
| CHECK_EQ(0, |
| memcmp(reinterpret_cast<void*>(instr), |
| cache_page->CachedData(offset), Instruction::kInstrSize)); |
| } else { |
| // Cache miss. Load memory into the cache. |
| memcpy(cached_line, line, CachePage::kLineLength); |
| *cache_valid_byte = CachePage::LINE_VALID; |
| } |
| } |
| |
| |
| Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { |
| i_cache_ = isolate_->simulator_i_cache(); |
| if (i_cache_ == nullptr) { |
| i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); |
| isolate_->set_simulator_i_cache(i_cache_); |
| } |
| // Set up simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| #if V8_TARGET_ARCH_PPC64 |
| size_t stack_size = FLAG_sim_stack_size * KB; |
| #else |
| size_t stack_size = MB; // allocate 1MB for stack |
| #endif |
| stack_size += 2 * stack_protection_size_; |
| stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = nullptr; |
| break_instr_ = 0; |
| |
| // Set up architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumGPRs; i++) { |
| registers_[i] = 0; |
| } |
| condition_reg_ = 0; |
| fp_condition_reg_ = 0; |
| special_reg_pc_ = 0; |
| special_reg_lr_ = 0; |
| special_reg_ctr_ = 0; |
| |
| // Initializing FP registers. |
| for (int i = 0; i < kNumFPRs; i++) { |
| fp_registers_[i] = 0.0; |
| } |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = |
| reinterpret_cast<intptr_t>(stack_) + stack_size - stack_protection_size_; |
| |
| last_debugger_input_ = nullptr; |
| } |
| |
| Simulator::~Simulator() { |
| global_monitor_.Pointer()->RemoveProcessor(&global_monitor_processor_); |
| free(stack_); |
| } |
| |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current(Isolate* isolate) { |
| v8::internal::Isolate::PerIsolateThreadData* isolate_data = |
| isolate->FindOrAllocatePerThreadDataForThisThread(); |
| DCHECK_NOT_NULL(isolate_data); |
| |
| Simulator* sim = isolate_data->simulator(); |
| if (sim == nullptr) { |
| // TODO(146): delete the simulator object when a thread/isolate goes away. |
| sim = new Simulator(isolate); |
| isolate_data->set_simulator(sim); |
| } |
| return sim; |
| } |
| |
| |
| // Sets the register in the architecture state. |
| void Simulator::set_register(int reg, intptr_t value) { |
| DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| registers_[reg] = value; |
| } |
| |
| |
| // Get the register from the architecture state. |
| intptr_t Simulator::get_register(int reg) const { |
| DCHECK((reg >= 0) && (reg < kNumGPRs)); |
| // Stupid code added to avoid bug in GCC. |
| // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 |
| if (reg >= kNumGPRs) return 0; |
| // End stupid code. |
| return registers_[reg]; |
| } |
| |
| |
| double Simulator::get_double_from_register_pair(int reg) { |
| DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); |
| |
| double dm_val = 0.0; |
| #if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode |
| // Read the bits from the unsigned integer register_[] array |
| // into the double precision floating point value and return it. |
| char buffer[sizeof(fp_registers_[0])]; |
| memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); |
| memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); |
| #endif |
| return (dm_val); |
| } |
| |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(intptr_t value) { |
| pc_modified_ = true; |
| special_reg_pc_ = value; |
| } |
| |
| |
| bool Simulator::has_bad_pc() const { |
| return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); |
| } |
| |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| intptr_t Simulator::get_pc() const { return special_reg_pc_; } |
| |
| |
| // Runtime FP routines take: |
| // - two double arguments |
| // - one double argument and zero or one integer arguments. |
| // All are consructed here from d1, d2 and r3. |
| void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { |
| *x = get_double_from_d_register(1); |
| *y = get_double_from_d_register(2); |
| *z = get_register(3); |
| } |
| |
| |
| // The return value is in d1. |
| void Simulator::SetFpResult(const double& result) { |
| set_d_register_from_double(1, result); |
| } |
| |
| |
| void Simulator::TrashCallerSaveRegisters() { |
| // We don't trash the registers with the return value. |
| #if 0 // A good idea to trash volatile registers, needs to be done |
| registers_[2] = 0x50BAD4U; |
| registers_[3] = 0x50BAD4U; |
| registers_[12] = 0x50BAD4U; |
| #endif |
| } |
| |
| |
| uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| return *ptr; |
| } |
| |
| uint32_t Simulator::ReadExWU(intptr_t addr, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| return *ptr; |
| } |
| |
| int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| |
| int Simulator::WriteExW(intptr_t addr, uint32_t value, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| uint32_t* ptr = reinterpret_cast<uint32_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int32_t* ptr = reinterpret_cast<int32_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| |
| uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| |
| uint16_t Simulator::ReadExHU(intptr_t addr, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| |
| int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| |
| |
| void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| |
| int Simulator::WriteExH(intptr_t addr, uint16_t value, Instruction* instr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| uint8_t Simulator::ReadBU(intptr_t addr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| |
| int8_t Simulator::ReadB(intptr_t addr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return *ptr; |
| } |
| |
| uint8_t Simulator::ReadExBU(intptr_t addr) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte); |
| global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, |
| &global_monitor_processor_); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr; |
| } |
| |
| void Simulator::WriteB(intptr_t addr, uint8_t value) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| void Simulator::WriteB(intptr_t addr, int8_t value) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| int Simulator::WriteExB(intptr_t addr, uint8_t value) { |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) && |
| global_monitor_.Pointer()->NotifyStoreExcl_Locked( |
| addr, &global_monitor_processor_)) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| intptr_t* Simulator::ReadDW(intptr_t addr) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyLoad(addr); |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return ptr; |
| } |
| |
| |
| void Simulator::WriteDW(intptr_t addr, int64_t value) { |
| // All supported PPC targets allow unaligned accesses, so we don't need to |
| // check the alignment here. |
| base::LockGuard<base::Mutex> lock_guard(&global_monitor_.Pointer()->mutex); |
| local_monitor_.NotifyStore(addr); |
| global_monitor_.Pointer()->NotifyStore_Locked(addr, |
| &global_monitor_processor_); |
| int64_t* ptr = reinterpret_cast<int64_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { |
| // The simulator uses a separate JS stack. If we have exhausted the C stack, |
| // we also drop down the JS limit to reflect the exhaustion on the JS stack. |
| if (GetCurrentStackPosition() < c_limit) { |
| return reinterpret_cast<uintptr_t>(get_sp()); |
| } |
| |
| // Otherwise the limit is the JS stack. Leave a safety margin to prevent |
| // overrunning the stack when pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + stack_protection_size_; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", |
| reinterpret_cast<intptr_t>(instr), format); |
| UNIMPLEMENTED(); |
| } |
| |
| |
| // Calculate C flag value for additions. |
| bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| uint32_t urest = 0xFFFFFFFFU - uleft; |
| |
| return (uright > urest) || |
| (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); |
| } |
| |
| |
| // Calculate C flag value for subtractions. |
| bool Simulator::BorrowFrom(int32_t left, int32_t right) { |
| uint32_t uleft = static_cast<uint32_t>(left); |
| uint32_t uright = static_cast<uint32_t>(right); |
| |
| return (uright > uleft); |
| } |
| |
| |
| // Calculate V flag value for additions and subtractions. |
| bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, |
| bool addition) { |
| bool overflow; |
| if (addition) { |
| // operands have the same sign |
| overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) |
| // and operands and result have different sign |
| && |
| ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } else { |
| // operands have different signs |
| overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) |
| // and first operand and result have different signs |
| && |
| ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); |
| } |
| return overflow; |
| } |
| |
| |
| #if V8_TARGET_ARCH_PPC64 |
| static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { |
| *x = reinterpret_cast<intptr_t>(pair->x); |
| *y = reinterpret_cast<intptr_t>(pair->y); |
| } |
| #else |
| static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { |
| #if V8_TARGET_BIG_ENDIAN |
| *x = static_cast<int32_t>(*pair >> 32); |
| *y = static_cast<int32_t>(*pair); |
| #else |
| *x = static_cast<int32_t>(*pair); |
| *y = static_cast<int32_t>(*pair >> 32); |
| #endif |
| } |
| #endif |
| |
| // Calls into the V8 runtime. |
| typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, |
| intptr_t arg2, intptr_t arg3, |
| intptr_t arg4, intptr_t arg5, |
| intptr_t arg6, intptr_t arg7, |
| intptr_t arg8); |
| typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1, |
| intptr_t arg2, intptr_t arg3, |
| intptr_t arg4, intptr_t arg5); |
| |
| // These prototypes handle the four types of FP calls. |
| typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); |
| typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); |
| typedef double (*SimulatorRuntimeFPCall)(double darg0); |
| typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); |
| |
| // This signature supports direct call in to API function native callback |
| // (refer to InvocationCallback in v8.h). |
| typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); |
| typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); |
| |
| // This signature supports direct call to accessor getter callback. |
| typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); |
| typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, |
| intptr_t arg1, void* arg2); |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. |
| void Simulator::SoftwareInterrupt(Instruction* instr) { |
| int svc = instr->SvcValue(); |
| switch (svc) { |
| case kCallRtRedirected: { |
| // Check if stack is aligned. Error if not aligned is reported below to |
| // include information on the function called. |
| bool stack_aligned = |
| (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == |
| 0; |
| Redirection* redirection = Redirection::FromInstruction(instr); |
| const int kArgCount = 9; |
| const int kRegisterArgCount = 8; |
| int arg0_regnum = 3; |
| intptr_t result_buffer = 0; |
| bool uses_result_buffer = |
| (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR && |
| !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); |
| if (uses_result_buffer) { |
| result_buffer = get_register(r3); |
| arg0_regnum++; |
| } |
| intptr_t arg[kArgCount]; |
| // First eight arguments in registers r3-r10. |
| for (int i = 0; i < kRegisterArgCount; i++) { |
| arg[i] = get_register(arg0_regnum + i); |
| } |
| intptr_t* stack_pointer = reinterpret_cast<intptr_t*>(get_register(sp)); |
| // Remaining argument on stack |
| arg[kRegisterArgCount] = stack_pointer[kStackFrameExtraParamSlot]; |
| STATIC_ASSERT(kArgCount == kRegisterArgCount + 1); |
| STATIC_ASSERT(kMaxCParameters == 9); |
| bool fp_call = |
| (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || |
| (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| intptr_t saved_lr = special_reg_lr_; |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| if (fp_call) { |
| double dval0, dval1; // one or two double parameters |
| intptr_t ival; // zero or one integer parameters |
| int iresult = 0; // integer return value |
| double dresult = 0; // double return value |
| GetFpArgs(&dval0, &dval1, &ival); |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| SimulatorRuntimeCall generic_target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Call to host function at %p with args %f, %f", |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, dval1); |
| break; |
| case ExternalReference::BUILTIN_FP_CALL: |
| PrintF("Call to host function at %p with arg %f", |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0); |
| break; |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, |
| static_cast<void*>(FUNCTION_ADDR(generic_target)), |
| dval0, ival); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: { |
| SimulatorRuntimeCompareCall target = |
| reinterpret_cast<SimulatorRuntimeCompareCall>(external); |
| iresult = target(dval0, dval1); |
| set_register(r3, iresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_FP_CALL: { |
| SimulatorRuntimeFPFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPFPCall>(external); |
| dresult = target(dval0, dval1); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_CALL: { |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| dresult = target(dval0); |
| SetFpResult(dresult); |
| break; |
| } |
| case ExternalReference::BUILTIN_FP_INT_CALL: { |
| SimulatorRuntimeFPIntCall target = |
| reinterpret_cast<SimulatorRuntimeFPIntCall>(external); |
| dresult = target(dval0, ival); |
| SetFpResult(dresult); |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| switch (redirection->type()) { |
| case ExternalReference::BUILTIN_COMPARE_CALL: |
| PrintF("Returned %08x\n", iresult); |
| break; |
| case ExternalReference::BUILTIN_FP_FP_CALL: |
| case ExternalReference::BUILTIN_FP_CALL: |
| case ExternalReference::BUILTIN_FP_INT_CALL: |
| PrintF("Returned %f\n", dresult); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { |
| // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| // explanation of register usage. |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08" V8PRIxPTR, |
| reinterpret_cast<void*>(external), arg[0]); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeDirectApiCall target = |
| reinterpret_cast<SimulatorRuntimeDirectApiCall>(external); |
| target(arg[0]); |
| } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { |
| // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| // explanation of register usage. |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08" V8PRIxPTR |
| " %08" V8PRIxPTR, |
| reinterpret_cast<void*>(external), arg[0], arg[1]); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeProfilingApiCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external); |
| target(arg[0], Redirection::ReverseRedirection(arg[1])); |
| } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { |
| // See callers of MacroAssembler::CallApiFunctionAndReturn for |
| // explanation of register usage. |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08" V8PRIxPTR |
| " %08" V8PRIxPTR, |
| reinterpret_cast<void*>(external), arg[0], arg[1]); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeDirectGetterCall target = |
| reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external); |
| if (!ABI_PASSES_HANDLES_IN_REGS) { |
| arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
| } |
| target(arg[0], arg[1]); |
| } else if (redirection->type() == |
| ExternalReference::PROFILING_GETTER_CALL) { |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| PrintF("Call to host function at %p args %08" V8PRIxPTR |
| " %08" V8PRIxPTR " %08" V8PRIxPTR, |
| reinterpret_cast<void*>(external), arg[0], arg[1], arg[2]); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| SimulatorRuntimeProfilingGetterCall target = |
| reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external); |
| if (!ABI_PASSES_HANDLES_IN_REGS) { |
| arg[0] = *(reinterpret_cast<intptr_t*>(arg[0])); |
| } |
| target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); |
| } else { |
| // builtin call. |
| if (::v8::internal::FLAG_trace_sim || !stack_aligned) { |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| PrintF( |
| "Call to host function at %p,\n" |
| "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR |
| ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR |
| ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, |
| static_cast<void*>(FUNCTION_ADDR(target)), arg[0], arg[1], arg[2], |
| arg[3], arg[4], arg[5], arg[6], arg[7], arg[8]); |
| if (!stack_aligned) { |
| PrintF(" with unaligned stack %08" V8PRIxPTR "\n", |
| get_register(sp)); |
| } |
| PrintF("\n"); |
| } |
| CHECK(stack_aligned); |
| if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) { |
| SimulatorRuntimePairCall target = |
| reinterpret_cast<SimulatorRuntimePairCall>(external); |
| ObjectPair result = |
| target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); |
| intptr_t x; |
| intptr_t y; |
| decodeObjectPair(&result, &x, &y); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y); |
| } |
| if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) { |
| set_register(r3, x); |
| set_register(r4, y); |
| } else { |
| memcpy(reinterpret_cast<void*>(result_buffer), &result, |
| sizeof(ObjectPair)); |
| set_register(r3, result_buffer); |
| } |
| } else { |
| DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| intptr_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], |
| arg[5], arg[6], arg[7], arg[8]); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08" V8PRIxPTR "\n", result); |
| } |
| set_register(r3, result); |
| } |
| } |
| set_pc(saved_lr); |
| break; |
| } |
| case kBreakpoint: { |
| PPCDebugger dbg(this); |
| dbg.Debug(); |
| break; |
| } |
| // stop uses all codes greater than 1 << 23. |
| default: { |
| if (svc >= (1 << 23)) { |
| uint32_t code = svc & kStopCodeMask; |
| if (isWatchedStop(code)) { |
| IncreaseStopCounter(code); |
| } |
| // Stop if it is enabled, otherwise go on jumping over the stop |
| // and the message address. |
| if (isEnabledStop(code)) { |
| PPCDebugger dbg(this); |
| dbg.Stop(instr); |
| } else { |
| set_pc(get_pc() + Instruction::kInstrSize + kPointerSize); |
| } |
| } else { |
| // This is not a valid svc code. |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| } |
| |
| |
| // Stop helper functions. |
| bool Simulator::isStopInstruction(Instruction* instr) { |
| return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); |
| } |
| |
| |
| bool Simulator::isWatchedStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| return code < kNumOfWatchedStops; |
| } |
| |
| |
| bool Simulator::isEnabledStop(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| // Unwatched stops are always enabled. |
| return !isWatchedStop(code) || |
| !(watched_stops_[code].count & kStopDisabledBit); |
| } |
| |
| |
| void Simulator::EnableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (!isEnabledStop(code)) { |
| watched_stops_[code].count &= ~kStopDisabledBit; |
| } |
| } |
| |
| |
| void Simulator::DisableStop(uint32_t code) { |
| DCHECK(isWatchedStop(code)); |
| if (isEnabledStop(code)) { |
| watched_stops_[code].count |= kStopDisabledBit; |
| } |
| } |
| |
| |
| void Simulator::IncreaseStopCounter(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| DCHECK(isWatchedStop(code)); |
| if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) { |
| PrintF( |
| "Stop counter for code %i has overflowed.\n" |
| "Enabling this code and reseting the counter to 0.\n", |
| code); |
| watched_stops_[code].count = 0; |
| EnableStop(code); |
| } else { |
| watched_stops_[code].count++; |
| } |
| } |
| |
| |
| // Print a stop status. |
| void Simulator::PrintStopInfo(uint32_t code) { |
| DCHECK_LE(code, kMaxStopCode); |
| if (!isWatchedStop(code)) { |
| PrintF("Stop not watched."); |
| } else { |
| const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; |
| int32_t count = watched_stops_[code].count & ~kStopDisabledBit; |
| // Don't print the state of unused breakpoints. |
| if (count != 0) { |
| if (watched_stops_[code].desc) { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, |
| state, count, watched_stops_[code].desc); |
| } else { |
| PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, |
| count); |
| } |
| } |
| } |
| } |
| |
| |
| void Simulator::SetCR0(intptr_t result, bool setSO) { |
| int bf = 0; |
| if (result < 0) { |
| bf |= 0x80000000; |
| } |
| if (result > 0) { |
| bf |= 0x40000000; |
| } |
| if (result == 0) { |
| bf |= 0x20000000; |
| } |
| if (setSO) { |
| bf |= 0x10000000; |
| } |
| condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
| } |
| |
| |
| void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) { |
| int bo = instr->Bits(25, 21) << 21; |
| int condition_bit = instr->Bits(20, 16); |
| int condition_mask = 0x80000000 >> condition_bit; |
| switch (bo) { |
| case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false |
| case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false |
| UNIMPLEMENTED(); |
| case BF: { // Branch if condition false |
| if (condition_reg_ & condition_mask) return; |
| break; |
| } |
| case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true |
| case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true |
| UNIMPLEMENTED(); |
| case BT: { // Branch if condition true |
| if (!(condition_reg_ & condition_mask)) return; |
| break; |
| } |
| case DCBNZ: // Decrement CTR; branch if CTR != 0 |
| case DCBEZ: // Decrement CTR; branch if CTR == 0 |
| special_reg_ctr_ -= 1; |
| if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return; |
| break; |
| case BA: { // Branch always |
| break; |
| } |
| default: |
| UNIMPLEMENTED(); // Invalid encoding |
| } |
| |
| intptr_t old_pc = get_pc(); |
| |
| switch (type) { |
| case BC_OFFSET: { |
| int offset = (instr->Bits(15, 2) << 18) >> 16; |
| set_pc(old_pc + offset); |
| break; |
| } |
| case BC_LINK_REG: |
| set_pc(special_reg_lr_); |
| break; |
| case BC_CTR_REG: |
| set_pc(special_reg_ctr_); |
| break; |
| } |
| |
| if (instr->Bit(0) == 1) { // LK flag set |
| special_reg_lr_ = old_pc + 4; |
| } |
| } |
| |
| void Simulator::ExecuteGeneric(Instruction* instr) { |
| uint32_t opcode = instr->OpcodeBase(); |
| switch (opcode) { |
| case SUBFIC: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| intptr_t ra_val = get_register(ra); |
| int32_t im_val = instr->Bits(15, 0); |
| im_val = SIGN_EXT_IMM16(im_val); |
| intptr_t alu_out = im_val - ra_val; |
| set_register(rt, alu_out); |
| // todo - handle RC bit |
| break; |
| } |
| case CMPLI: { |
| int ra = instr->RAValue(); |
| uint32_t im_val = instr->Bits(15, 0); |
| int cr = instr->Bits(25, 23); |
| uint32_t bf = 0; |
| #if V8_TARGET_ARCH_PPC64 |
| int L = instr->Bit(21); |
| if (L) { |
| #endif |
| uintptr_t ra_val = get_register(ra); |
| if (ra_val < im_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > im_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == im_val) { |
| bf |= 0x20000000; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| uint32_t ra_val = get_register(ra); |
| if (ra_val < im_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > im_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == im_val) { |
| bf |= 0x20000000; |
| } |
| } |
| #endif |
| uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
| uint32_t condition = bf >> (cr * 4); |
| condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
| break; |
| } |
| case CMPI: { |
| int ra = instr->RAValue(); |
| int32_t im_val = instr->Bits(15, 0); |
| im_val = SIGN_EXT_IMM16(im_val); |
| int cr = instr->Bits(25, 23); |
| uint32_t bf = 0; |
| #if V8_TARGET_ARCH_PPC64 |
| int L = instr->Bit(21); |
| if (L) { |
| #endif |
| intptr_t ra_val = get_register(ra); |
| if (ra_val < im_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > im_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == im_val) { |
| bf |= 0x20000000; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| int32_t ra_val = get_register(ra); |
| if (ra_val < im_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > im_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == im_val) { |
| bf |= 0x20000000; |
| } |
| } |
| #endif |
| uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
| uint32_t condition = bf >> (cr * 4); |
| condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
| break; |
| } |
| case ADDIC: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| uintptr_t ra_val = get_register(ra); |
| uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
| uintptr_t alu_out = ra_val + im_val; |
| // Check overflow |
| if (~ra_val < im_val) { |
| special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
| } else { |
| special_reg_xer_ &= ~0xF0000000; |
| } |
| set_register(rt, alu_out); |
| break; |
| } |
| case ADDI: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
| intptr_t alu_out; |
| if (ra == 0) { |
| alu_out = im_val; |
| } else { |
| intptr_t ra_val = get_register(ra); |
| alu_out = ra_val + im_val; |
| } |
| set_register(rt, alu_out); |
| // todo - handle RC bit |
| break; |
| } |
| case ADDIS: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int32_t im_val = (instr->Bits(15, 0) << 16); |
| intptr_t alu_out; |
| if (ra == 0) { // treat r0 as zero |
| alu_out = im_val; |
| } else { |
| intptr_t ra_val = get_register(ra); |
| alu_out = ra_val + im_val; |
| } |
| set_register(rt, alu_out); |
| break; |
| } |
| case BCX: { |
| ExecuteBranchConditional(instr, BC_OFFSET); |
| break; |
| } |
| case BX: { |
| int offset = (instr->Bits(25, 2) << 8) >> 6; |
| if (instr->Bit(0) == 1) { // LK flag set |
| special_reg_lr_ = get_pc() + 4; |
| } |
| set_pc(get_pc() + offset); |
| // todo - AA flag |
| break; |
| } |
| case MCRF: |
| UNIMPLEMENTED(); // Not used by V8. |
| case BCLRX: |
| ExecuteBranchConditional(instr, BC_LINK_REG); |
| break; |
| case BCCTRX: |
| ExecuteBranchConditional(instr, BC_CTR_REG); |
| break; |
| case CRNOR: |
| case RFI: |
| case CRANDC: |
| UNIMPLEMENTED(); |
| case ISYNC: { |
| // todo - simulate isync |
| break; |
| } |
| case CRXOR: { |
| int bt = instr->Bits(25, 21); |
| int ba = instr->Bits(20, 16); |
| int bb = instr->Bits(15, 11); |
| int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; |
| int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; |
| int bt_val = ba_val ^ bb_val; |
| bt_val = bt_val << (31 - bt); // shift bit to correct destination |
| condition_reg_ &= ~(0x80000000 >> bt); |
| condition_reg_ |= bt_val; |
| break; |
| } |
| case CREQV: { |
| int bt = instr->Bits(25, 21); |
| int ba = instr->Bits(20, 16); |
| int bb = instr->Bits(15, 11); |
| int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; |
| int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; |
| int bt_val = 1 - (ba_val ^ bb_val); |
| bt_val = bt_val << (31 - bt); // shift bit to correct destination |
| condition_reg_ &= ~(0x80000000 >> bt); |
| condition_reg_ |= bt_val; |
| break; |
| } |
| case CRNAND: |
| case CRAND: |
| case CRORC: |
| case CROR: { |
| UNIMPLEMENTED(); // Not used by V8. |
| break; |
| } |
| case RLWIMIX: { |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| uint32_t rs_val = get_register(rs); |
| int32_t ra_val = get_register(ra); |
| int sh = instr->Bits(15, 11); |
| int mb = instr->Bits(10, 6); |
| int me = instr->Bits(5, 1); |
| uint32_t result = base::bits::RotateLeft32(rs_val, sh); |
| int mask = 0; |
| if (mb < me + 1) { |
| int bit = 0x80000000 >> mb; |
| for (; mb <= me; mb++) { |
| mask |= bit; |
| bit >>= 1; |
| } |
| } else if (mb == me + 1) { |
| mask = 0xFFFFFFFF; |
| } else { // mb > me+1 |
| int bit = 0x80000000 >> (me + 1); // needs to be tested |
| mask = 0xFFFFFFFF; |
| for (; me < mb; me++) { |
| mask ^= bit; |
| bit >>= 1; |
| } |
| } |
| result &= mask; |
| ra_val &= ~mask; |
| result |= ra_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| case RLWINMX: |
| case RLWNMX: { |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| uint32_t rs_val = get_register(rs); |
| int sh = 0; |
| if (opcode == RLWINMX) { |
| sh = instr->Bits(15, 11); |
| } else { |
| int rb = instr->RBValue(); |
| uint32_t rb_val = get_register(rb); |
| sh = (rb_val & 0x1F); |
| } |
| int mb = instr->Bits(10, 6); |
| int me = instr->Bits(5, 1); |
| uint32_t result = base::bits::RotateLeft32(rs_val, sh); |
| int mask = 0; |
| if (mb < me + 1) { |
| int bit = 0x80000000 >> mb; |
| for (; mb <= me; mb++) { |
| mask |= bit; |
| bit >>= 1; |
| } |
| } else if (mb == me + 1) { |
| mask = 0xFFFFFFFF; |
| } else { // mb > me+1 |
| int bit = 0x80000000 >> (me + 1); // needs to be tested |
| mask = 0xFFFFFFFF; |
| for (; me < mb; me++) { |
| mask ^= bit; |
| bit >>= 1; |
| } |
| } |
| result &= mask; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| case ORI: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val | im_val; |
| set_register(ra, alu_out); |
| break; |
| } |
| case ORIS: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val | (im_val << 16); |
| set_register(ra, alu_out); |
| break; |
| } |
| case XORI: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val ^ im_val; |
| set_register(ra, alu_out); |
| // todo - set condition based SO bit |
| break; |
| } |
| case XORIS: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val ^ (im_val << 16); |
| set_register(ra, alu_out); |
| break; |
| } |
| case ANDIx: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val & im_val; |
| set_register(ra, alu_out); |
| SetCR0(alu_out); |
| break; |
| } |
| case ANDISx: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| intptr_t rs_val = get_register(rs); |
| uint32_t im_val = instr->Bits(15, 0); |
| intptr_t alu_out = rs_val & (im_val << 16); |
| set_register(ra, alu_out); |
| SetCR0(alu_out); |
| break; |
| } |
| case SRWX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uint32_t rs_val = get_register(rs); |
| uintptr_t rb_val = get_register(rb) & 0x3F; |
| intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SRDX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t rb_val = get_register(rb) & 0x7F; |
| intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #endif |
| case MODUW: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uint32_t ra_val = get_register(ra); |
| uint32_t rb_val = get_register(rb); |
| uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; |
| set_register(rt, alu_out); |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case MODUD: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uint64_t ra_val = get_register(ra); |
| uint64_t rb_val = get_register(rb); |
| uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; |
| set_register(rt, alu_out); |
| break; |
| } |
| #endif |
| case MODSW: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| int32_t ra_val = get_register(ra); |
| int32_t rb_val = get_register(rb); |
| bool overflow = (ra_val == kMinInt && rb_val == -1); |
| // result is undefined if divisor is zero or if operation |
| // is 0x80000000 / -1. |
| int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val; |
| set_register(rt, alu_out); |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case MODSD: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| int64_t ra_val = get_register(ra); |
| int64_t rb_val = get_register(rb); |
| int64_t one = 1; // work-around gcc |
| int64_t kMinLongLong = (one << 63); |
| // result is undefined if divisor is zero or if operation |
| // is 0x80000000_00000000 / -1. |
| int64_t alu_out = |
| (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) |
| ? -1 |
| : ra_val % rb_val; |
| set_register(rt, alu_out); |
| break; |
| } |
| #endif |
| case SRAW: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| int32_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb) & 0x3F; |
| intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SRAD: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb) & 0x7F; |
| intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #endif |
| case SRAWIX: { |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| int sh = instr->Bits(15, 11); |
| int32_t rs_val = get_register(rs); |
| intptr_t result = rs_val >> sh; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case EXTSW: { |
| const int shift = kBitsPerPointer - 32; |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t ra_val = (rs_val << shift) >> shift; |
| set_register(ra, ra_val); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(ra_val); |
| } |
| break; |
| } |
| #endif |
| case EXTSH: { |
| const int shift = kBitsPerPointer - 16; |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t ra_val = (rs_val << shift) >> shift; |
| set_register(ra, ra_val); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(ra_val); |
| } |
| break; |
| } |
| case EXTSB: { |
| const int shift = kBitsPerPointer - 8; |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t ra_val = (rs_val << shift) >> shift; |
| set_register(ra, ra_val); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(ra_val); |
| } |
| break; |
| } |
| case LFSUX: |
| case LFSX: { |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| intptr_t rb_val = get_register(rb); |
| int32_t val = ReadW(ra_val + rb_val, instr); |
| float* fptr = reinterpret_cast<float*>(&val); |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| // Conversion using double changes sNan to qNan on ia32/x64 |
| if ((val & 0x7F800000) == 0x7F800000) { |
| int64_t dval = static_cast<int64_t>(val); |
| dval = ((dval & 0xC0000000) << 32) | ((dval & 0x40000000) << 31) | |
| ((dval & 0x40000000) << 30) | ((dval & 0x7FFFFFFF) << 29) | 0x0; |
| set_d_register(frt, dval); |
| } else { |
| set_d_register_from_double(frt, static_cast<double>(*fptr)); |
| } |
| #else |
| set_d_register_from_double(frt, static_cast<double>(*fptr)); |
| #endif |
| if (opcode == LFSUX) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + rb_val); |
| } |
| break; |
| } |
| case LFDUX: |
| case LFDX: { |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| intptr_t rb_val = get_register(rb); |
| int64_t* dptr = reinterpret_cast<int64_t*>(ReadDW(ra_val + rb_val)); |
| set_d_register(frt, *dptr); |
| if (opcode == LFDUX) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + rb_val); |
| } |
| break; |
| } |
| case STFSUX: { |
| case STFSX: |
| int frs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| intptr_t rb_val = get_register(rb); |
| float frs_val = static_cast<float>(get_double_from_d_register(frs)); |
| int32_t* p = reinterpret_cast<int32_t*>(&frs_val); |
| #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 |
| // Conversion using double changes sNan to qNan on ia32/x64 |
| int32_t sval = 0; |
| int64_t dval = get_d_register(frs); |
| if ((dval & 0x7FF0000000000000) == 0x7FF0000000000000) { |
| sval = ((dval & 0xC000000000000000) >> 32) | |
| ((dval & 0x07FFFFFFE0000000) >> 29); |
| p = &sval; |
| } else { |
| p = reinterpret_cast<int32_t*>(&frs_val); |
| } |
| #else |
| p = reinterpret_cast<int32_t*>(&frs_val); |
| #endif |
| WriteW(ra_val + rb_val, *p, instr); |
| if (opcode == STFSUX) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + rb_val); |
| } |
| break; |
| } |
| case STFDUX: { |
| case STFDX: |
| int frs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| intptr_t rb_val = get_register(rb); |
| int64_t frs_val = get_d_register(frs); |
| WriteDW(ra_val + rb_val, frs_val); |
| if (opcode == STFDUX) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + rb_val); |
| } |
| break; |
| } |
| case POPCNTW: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t count = 0; |
| int n = 0; |
| uintptr_t bit = 0x80000000; |
| for (; n < 32; n++) { |
| if (bit & rs_val) count++; |
| bit >>= 1; |
| } |
| set_register(ra, count); |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case POPCNTD: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t count = 0; |
| int n = 0; |
| uintptr_t bit = 0x8000000000000000UL; |
| for (; n < 64; n++) { |
| if (bit & rs_val) count++; |
| bit >>= 1; |
| } |
| set_register(ra, count); |
| break; |
| } |
| #endif |
| case SYNC: { |
| // todo - simulate sync |
| break; |
| } |
| case ICBI: { |
| // todo - simulate icbi |
| break; |
| } |
| |
| case LWZU: |
| case LWZ: { |
| int ra = instr->RAValue(); |
| int rt = instr->RTValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
| set_register(rt, ReadWU(ra_val + offset, instr)); |
| if (opcode == LWZU) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + offset); |
| } |
| break; |
| } |
| |
| case LBZU: |
| case LBZ: { |
| int ra = instr->RAValue(); |
| int rt = instr->RTValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
| set_register(rt, ReadB(ra_val + offset) & 0xFF); |
| if (opcode == LBZU) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + offset); |
| } |
| break; |
| } |
| |
| case STWU: |
| case STW: { |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int32_t rs_val = get_register(rs); |
| int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); |
| WriteW(ra_val + offset, rs_val, instr); |
| if (opcode == STWU) { |
| DCHECK_NE(ra, 0); |
| set_register(ra, ra_val + offset); |
| } |
| break; |
| } |
| case SRADIX: { |
| int ra = instr->RAValue(); |
| int rs = instr->RSValue(); |
| int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); |
| intptr_t rs_val = get_register(rs); |
| intptr_t result = rs_val >> sh; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| case STBCX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int8_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb); |
| SetCR0(WriteExB(ra_val + rb_val, rs_val)); |
| break; |
| } |
| case STHCX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int16_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb); |
| SetCR0(WriteExH(ra_val + rb_val, rs_val, instr)); |
| break; |
| } |
| case STWCX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t ra_val = ra == 0 ? 0 : get_register(ra); |
| int32_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb); |
| SetCR0(WriteExW(ra_val + rb_val, rs_val, instr)); |
| break; |
| } |
| case TW: { |
| // used for call redirection in simulation mode |
| SoftwareInterrupt(instr); |
| break; |
| } |
| case CMP: { |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| int cr = instr->Bits(25, 23); |
| uint32_t bf = 0; |
| #if V8_TARGET_ARCH_PPC64 |
| int L = instr->Bit(21); |
| if (L) { |
| #endif |
| intptr_t ra_val = get_register(ra); |
| intptr_t rb_val = get_register(rb); |
| if (ra_val < rb_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > rb_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == rb_val) { |
| bf |= 0x20000000; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| } else { |
| int32_t ra_val = get_register(ra); |
| int32_t rb_val = get_register(rb); |
| if (ra_val < rb_val) { |
| bf |= 0x80000000; |
| } |
| if (ra_val > rb_val) { |
| bf |= 0x40000000; |
| } |
| if (ra_val == rb_val) { |
| bf |= 0x20000000; |
| } |
| } |
| #endif |
| uint32_t condition_mask = 0xF0000000U >> (cr * 4); |
| uint32_t condition = bf >> (cr * 4); |
| condition_reg_ = (condition_reg_ & ~condition_mask) | condition; |
| break; |
| } |
| case SUBFCX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| // int oe = instr->Bit(10); |
| uintptr_t ra_val = get_register(ra); |
| uintptr_t rb_val = get_register(rb); |
| uintptr_t alu_out = ~ra_val + rb_val + 1; |
| // Set carry |
| if (ra_val <= rb_val) { |
| special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
| } else { |
| special_reg_xer_ &= ~0xF0000000; |
| } |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(alu_out); |
| } |
| // todo - handle OE bit |
| break; |
| } |
| case SUBFEX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| // int oe = instr->Bit(10); |
| uintptr_t ra_val = get_register(ra); |
| uintptr_t rb_val = get_register(rb); |
| uintptr_t alu_out = ~ra_val + rb_val; |
| if (special_reg_xer_ & 0x20000000) { |
| alu_out += 1; |
| } |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(static_cast<intptr_t>(alu_out)); |
| } |
| // todo - handle OE bit |
| break; |
| } |
| case ADDCX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| // int oe = instr->Bit(10); |
| uintptr_t ra_val = get_register(ra); |
| uintptr_t rb_val = get_register(rb); |
| uintptr_t alu_out = ra_val + rb_val; |
| // Set carry |
| if (~ra_val < rb_val) { |
| special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; |
| } else { |
| special_reg_xer_ &= ~0xF0000000; |
| } |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(static_cast<intptr_t>(alu_out)); |
| } |
| // todo - handle OE bit |
| break; |
| } |
| case ADDEX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| // int oe = instr->Bit(10); |
| uintptr_t ra_val = get_register(ra); |
| uintptr_t rb_val = get_register(rb); |
| uintptr_t alu_out = ra_val + rb_val; |
| if (special_reg_xer_ & 0x20000000) { |
| alu_out += 1; |
| } |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(static_cast<intptr_t>(alu_out)); |
| } |
| // todo - handle OE bit |
| break; |
| } |
| case MULHWX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); |
| int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); |
| int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; |
| alu_out >>= 32; |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(static_cast<intptr_t>(alu_out)); |
| } |
| break; |
| } |
| case MULHWUX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF); |
| uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF); |
| uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val; |
| alu_out >>= 32; |
| set_register(rt, alu_out); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(static_cast<intptr_t>(alu_out)); |
| } |
| break; |
| } |
| case NEGX: { |
| int rt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| intptr_t ra_val = get_register(ra); |
| intptr_t alu_out = 1 + ~ra_val; |
| #if V8_TARGET_ARCH_PPC64 |
| intptr_t one = 1; // work-around gcc |
| intptr_t kOverflowVal = (one << 63); |
| #else |
| intptr_t kOverflowVal = kMinInt; |
| #endif |
| set_register(rt, alu_out); |
| if (instr->Bit(10)) { // OE bit set |
| if (ra_val == kOverflowVal) { |
| special_reg_xer_ |= 0xC0000000; // set SO,OV |
| } else { |
| special_reg_xer_ &= ~0x40000000; // clear OV |
| } |
| } |
| if (instr->Bit(0)) { // RC bit set |
| bool setSO = (special_reg_xer_ & 0x80000000); |
| SetCR0(alu_out, setSO); |
| } |
| break; |
| } |
| case SLWX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uint32_t rs_val = get_register(rs); |
| uintptr_t rb_val = get_register(rb) & 0x3F; |
| uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case SLDX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t rb_val = get_register(rb) & 0x7F; |
| uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val; |
| set_register(ra, result); |
| if (instr->Bit(0)) { // RC bit set |
| SetCR0(result); |
| } |
| break; |
| } |
| case MFVSRD: { |
| DCHECK(!instr->Bit(0)); |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int64_t frt_val = get_d_register(frt); |
| set_register(ra, frt_val); |
| break; |
| } |
| case MFVSRWZ: { |
| DCHECK(!instr->Bit(0)); |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int64_t frt_val = get_d_register(frt); |
| set_register(ra, static_cast<uint32_t>(frt_val)); |
| break; |
| } |
| case MTVSRD: { |
| DCHECK(!instr->Bit(0)); |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int64_t ra_val = get_register(ra); |
| set_d_register(frt, ra_val); |
| break; |
| } |
| case MTVSRWA: { |
| DCHECK(!instr->Bit(0)); |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| int64_t ra_val = static_cast<int32_t>(get_register(ra)); |
| set_d_register(frt, ra_val); |
| break; |
| } |
| case MTVSRWZ: { |
| DCHECK(!instr->Bit(0)); |
| int frt = instr->RTValue(); |
| int ra = instr->RAValue(); |
| uint64_t ra_val = static_cast<uint32_t>(get_register(ra)); |
| set_d_register(frt, ra_val); |
| break; |
| } |
| #endif |
| case CNTLZWX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t count = 0; |
| int n = 0; |
| uintptr_t bit = 0x80000000; |
| for (; n < 32; n++) { |
| if (bit & rs_val) break; |
| count++; |
| bit >>= 1; |
| } |
| set_register(ra, count); |
| if (instr->Bit(0)) { // RC Bit set |
| int bf = 0; |
| if (count > 0) { |
| bf |= 0x40000000; |
| } |
| if (count == 0) { |
| bf |= 0x20000000; |
| } |
| condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
| } |
| break; |
| } |
| #if V8_TARGET_ARCH_PPC64 |
| case CNTLZDX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| uintptr_t rs_val = get_register(rs); |
| uintptr_t count = 0; |
| int n = 0; |
| uintptr_t bit = 0x8000000000000000UL; |
| for (; n < 64; n++) { |
| if (bit & rs_val) break; |
| count++; |
| bit >>= 1; |
| } |
| set_register(ra, count); |
| if (instr->Bit(0)) { // RC Bit set |
| int bf = 0; |
| if (count > 0) { |
| bf |= 0x40000000; |
| } |
| if (count == 0) { |
| bf |= 0x20000000; |
| } |
| condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; |
| } |
| break; |
| } |
| #endif |
| case ANDX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb); |
| intptr_t alu_out = rs_val & rb_val; |
| set_register(ra, alu_out); |
| if (instr->Bit(0)) { // RC Bit set |
| SetCR0(alu_out); |
| } |
| break; |
| } |
| case ANDCX: { |
| int rs = instr->RSValue(); |
| int ra = instr->RAValue(); |
| int rb = instr->RBValue(); |
| intptr_t rs_val = get_register(rs); |
| intptr_t rb_val = get_register(rb); |
| intptr_t alu_out = rs_val & ~rb_val; |
| set_register(ra, alu_out); |
| if (instr->Bit(0)) { // RC Bit set |
| SetCR0(alu_out); |
|